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Abstract—This article introduces an original approach to
understand the behavior of standard kernel spectral clustering
algorithms (such as the Ng–Jordan–Weiss method) for large
dimensional datasets. Precisely, using advanced methods from
the field of random matrix theory and assuming Gaussian data
vectors, we show that the Laplacian of the kernel matrix can
asymptotically be well approximated by an analytically tractable
equivalent random matrix. The analysis of the former allows one
to understand deeply the mechanism into play and in particular
the impact of the choice of the kernel function and some theo-
retical limits of the method. Despite our Gaussian assumption,
we also observe that the predicted theoretical behavior is a
close match to that experienced on real datasets (taken from
the MNIST database).1

I. INTRODUCTION

Letting x1, . . . , xn ∈ Rp be n data vectors, kernel spectral
clustering consists in a variety of algorithms designed to
cluster these data in an unsupervised manner by retrieving
information from the leading eigenvectors of (a possibly mod-
ified version of) the so-called kernel matrix K = {Kij}ni,j=1

with e.g.,2 Kij = f(‖xi − xj‖/p) for some f : R → R+.
There are multiple reasons (see e.g., [1]) to expect that the
aforementioned eigenvectors contain information about the
optimal data clustering. One of the most prominent of those
was put forward by Ng–Jordan–Weiss in [2] who notice that,
if the data are ideally well split in k classes C1, . . . , Ck that
ensure f(‖xi − xj‖/p) = 0 if and only if xi and xj belong
to distinct classes, then the eigenvectors associated with the
k−1 smallest eigenvalues of In−D−

1
2KD−

1
2 , D , D(K1n),

live in the span of 1C1 , . . . , 1Ck , the indicator vectors of the
classes. In the non-trivial case where such a separating f does
not exist, one would thus expect the leading eigenvectors to
be instead perturbed versions of indicator vectors. We shall
precisely study the matrix In −D−

1
2KD−

1
2 in this article.

Nonetheless, despite this conspicuous argument, very little
is known about the actual performance of kernel spectral
clustering in actual working conditions. In particular, to the
authors’ knowledge, there exists no contribution addressing
the case of arbitrary p and n. In this article, we propose a
new approach consisting in assuming that both p and n are
large, and exploiting recent results from random matrix theory.
Our method is inspired by [3] which studies the asymptotic
distribution of the eigenvalues of K for i.i.d. vectors xi. We
generalize here [3] by assuming that the xi’s are drawn from

1Couillet’s work is supported by RMT4GRAPH (ANR-14-CE28-0006).
2As shall be seen below, the (non conventional) division by p here is the

proper norm scale in the large n, p regime.

a mixture of k Gaussian vectors having means µ1, . . . , µk and
covariances C1, . . . , Ck. We then go further by studying the
resulting model and showing that L = D−

1
2KD−

1
2 can be

approximated by a matrix of the so-called spiked model type
[4], [5], that is a matrix with clustered eigenvalues and a few
isolated outliers. Among other results, our main findings are:
• in the large n, p regime, only a very local aspect of the

kernel function really matters for clustering;
• there exists a critical growth regime (with p and n) of

the µi’s and Ci’s for which spectral clustering leads to
non-trivial misclustering probability;

• we precisely analyze elementary toy models, in which the
number of exploitable eigenvectors and the influence of
the kernel function may vary significantly.

On top of these theoretical findings, we shall observe
that, quite unexpectedly, the kernel spectral algorithms be-
have similar to our theoretical findings on real datasets. We
precisely see that clustering performed upon a subset of the
MNIST (handwritten figures) database behaves as though the
vectorized images were extracted from a Gaussian mixture.

Notations: The norm ‖ · ‖ stands for the Euclidean norm
for vectors and the operator norm for matrices. The vector
1m ∈ Rm stands for the vector filled with ones. The operator
D(v) = D({va}ka=1) is the diagonal matrix having v1, . . . , vk
as its diagonal elements. The Dirac mass at x is δx.

II. MODEL AND THEORETICAL RESULTS

Let x1, . . . , xn ∈ Rp be independent vectors with
xn1+...+n`−1+1, . . . , xn1+...+n` ∈ C` for each ` ∈ {1, . . . , k},
where n0 = 0 and n1 + . . .+ nk = n. Class Ca encompasses
data xi = µa + wi for some µa ∈ Rp and wi ∼ N (0, Ca),
with Ca ∈ Rp×p nonnegative definite.

We shall consider the large dimensional regime where both
n and p grow simultaneously large. In this regime, we shall
require the µi’s and Ci’s to behave in a precise manner. As a
matter of fact, we may state as a first result that the following
set of assumptions form the exact regime under which spectral
clustering is a non trivial problem.

Assumption 1 (Growth Rate): As n → ∞, p
n → c0 > 0,

ni
n → ci > 0 (we will write c = [c1, . . . , ck]T). Besides,

1) For µ◦ ,
∑k
i=1

ni
n µi and µ◦i = µi − µ◦, ‖µ◦i ‖ = O(1)

2) For C◦ ,
∑k
i=1

ni
n Ci and C◦i = Ci−C◦, ‖Ca‖ = O(1)

and trC◦a = O(
√
n).

3) 2
p trC◦ converges as n→∞ to τ > 0.

The value τ is important since 1
p‖xi−xj‖

2 a.s.−→ τ uniformly
on i 6= j in {1, . . . , n}.



We now define the kernel function as follows.
Assumption 2 (Kernel function): Function f is three-times

continuously differentiable around τ and f(τ) > 0.
Then we introduce the kernel matrix

K ,

{
f

(
1

p
‖xi − xj‖2

)}n
i,j=1

.

From the previous remark on τ , note that all non-diagonal
elements of K tend to f(τ) and thus K can be point-wise
developed using Taylor expansion. However, our interest is on
(a slightly modified form of) the Laplacian matrix

L , nD−
1
2KD−

1
2

where D = D(K1n) is usually referred to as the degree
matrix. Under Assumption 1, L is essentially a rank-one matrix
with D

1
2 1n for leading eigenvector (with n for eigenvalue). To

avoid this singularity, we shall instead study the matrix

L′ , nD−
1
2KD−

1
2 − nD

1
2 1n1TnD

1
2

1TnD1n
(1)

which we shall show to have all its eigenvalues of order O(1).3

Our main technical result shows that there is a matrix L̂′

such that ‖L′ − L̂′‖ P−→ 0, where L̂′ follows a tractable
random matrix model. Before introducing the latter, we need
the following fundamental deterministic element notations4

M , [µ◦1, . . . , µ
◦
k] ∈ Rp×k

t ,

{
1
√
p

trC◦a

}k
a=1

∈ Rk

T ,

{
1

p
trC◦aC

◦
b

}k
a,b=1

∈ Rk×k

J , [j1, . . . , jk] ∈ Rn×k

P , In −
1

n
1n1Tn ∈ Rn×n

where ja ∈ Rn is the canonical vector of class Ca, defined by
(ja)i = δxi∈Ca , and the random element notations

W , [w1, . . . , wn] ∈ Rp×n

Φ ,
1
√
p
WTM ∈ Rn×k

ψ ,
1

p

{
‖wi‖2 − E[‖wi‖2]

)
}ni=1 ∈ Rn.

Theorem 1 (Random Matrix Equivalent): Let Assumptions 1
and 2 hold and L′ be defined by (1). Then, as n→∞,∥∥∥L′ − L̂′∥∥∥ P−→ 0

where L̂′ is given by

L̂′ ,
−2f ′(τ)

f(τ)

[
PWTWP

p
+ UBUT

]
+

2f ′(τ)

f(τ)
F (τ)In

3It is equivalent to study L′ or L that have the same eigenvalue-eigenvector
pairs but for the pair (n,D

1
2 1n) of L turned into (0, D

1
2 1n) for L′.

4Capital M stands here for means while t, T account for vector and matrix
of traces, P for a projection matrix (onto the orthogonal of 1n1Tn).

with F (τ) = f(0)−f(τ)+τf ′(τ)
2f ′(τ) and

U ,

[
1
√
p
J,Φ, ψ

]

B ,


B11 Ik − 1kc

T
(

5f ′(τ)
8f(τ) −

f ′′(τ)
2f ′(τ)

)
t

Ik − c1Tk 0k×k 0k×1(
5f ′(τ)
8f(τ) −

f ′′(τ)
2f ′(τ)

)
tT 01×k

5f ′(τ)
8f(τ) −

f ′′(τ)
2f ′(τ)


B11 = MTM +

(
5f ′(τ)

8f(τ)
− f ′′(τ)

2f ′(τ)

)
ttT − f ′′(τ)

f ′(τ)
T +

p

n
F (τ)1k1Tk

and the case f ′(τ) = 0 is obtained by extension by continuity
(in the limit f ′(τ)B being well defined as f ′(τ)→ 0).

From a mathematical standpoint, excluding the identity
matrix, when f ′(τ) 6= 0, L̂′ follows a spiked random matrix
model, that is its eigenvalues congregate in bulks but for a few
isolated eigenvalues, the eigenvectors of which align to some
extent to the eigenvectors of UBUT. When f ′(τ) = 0, L̂′ is
even a simpler small rank matrix. In both cases, the isolated
eigenvalue-eigenvector pairs of L̂′ are amenable to analysis.

From a practical aspect, note that U is constituted by the
vectors ji, while B contains the information about the inter-
class mean-deviations through M , and about the inter-class
covariance deviations through t and T . As such, the afore-
mentioned isolated eigenvalue-eigenvector pairs are expected
to correlate to the canonical class basis J and all the more so
that M , t, T have sufficiently strong norm.

From the point of view of the kernel function f , note that,
if f ′(τ) = 0, then M vanishes from the expression of L̂′,
thus not allowing spectral clustering to rely on differences
in means. Similarly, if f ′′(τ) = 0, then T vanishes, and
thus differences in “shape” between the covariance matrices
cannot be discriminated upon. Finally, if 5f ′(τ)

8f(τ) = f ′′(τ)
2f ′(τ) , then

differences in covariance traces are seemingly not exploitable.

Before introducing our main results, we need the following
technical assumption which ensures that 1

pPW
TWP does not

produce itself isolated eigenvalues (and thus, that the isolated
eigenvalues of L̂′ are solely due to UBUT).

Assumption 3 (Spike control): Letting λ1(Ca) ≥ . . . ≥
λp(Ca) be the eigenvalues of Ca, for each a, as n → ∞,
1
p

∑p
i=1 δλi(Ca)

D−→ νa, with support supp(νa), and

max
1≤i≤p

dist(λi(Ca), supp(νa))→ 0.

Theorem 2 (Isolated eigenvalues5): Let Assumptions 1–3
hold and define the k × k matrix

Gz = h(τ, z)Ik +

(
h(τ, z)MT

Ip +

k∑
j=1

cjgj(z)Cj

−1M
− h(τ, z)

f ′′(τ)

f ′(τ)
T +

(
5f ′(τ)

8f(τ)
− f ′′(τ)

2f ′(τ)

)
ttT

)
Γ(z)

5Again, the case f ′(τ) = 0 is obtained by extension by continuity.



where

h(τ, z) = 1 +

(
5f ′(τ)

8f(τ)
− f ′′(τ)

2f ′(τ)

) k∑
i=1

cigi(z)
2

p
trC2

i

Γ(z) = D {caga(z)}ka=1 −

{
caga(z)cbgb(z)∑k

i=1 cigi(z)

}k
a,b=1

and g1(z), . . . , gk(z) are the unique solutions to the system

1

c0

1

ga(z)
= −z +

1

p
trCa

(
Ip +

k∑
i=1

cigi(z)Ci

)−1
.

Let ρ, away from the eigenvalue support of 1
pPW

TWP ,
be such that h(τ, ρ) 6= 0 and Gρ has a zero eigenvalue
of multiplicity mρ. Then there exists mρ eigenvalues of L
asymptotically close to

−2
f ′(τ)

f(τ)
ρ+

f(0)− f(τ) + τf ′(τ)

f(τ)
.

Let us now turn to the more interesting result concerning
the eigenvectors. This result is divided in two subsequent
formulas, concerning respectively the eigenvector D

1
2 1n as-

sociated with the eigenvalue n of L, and the remaining
(more interesting) eigenvectors associated with the eigenvalues
exhibited in Theorem 2.

Proposition 1 (Eigenvector D
1
2 1n): Let Assumptions 1–2

hold true. Then

D
1
2 1n√

1TnD1n
=

1n√
n

+
1

n
√
c0

[
f ′(τ)

2f(τ)
{ta1na}

k
a=1

+D
{√

2

p
tr(C2

a)1na

}k
a=1

ϕ+ oP(1)

]
for some ϕ ∼ N (0, In).

Theorem 3 (Eigenvector projections): Let Assumptions 1–3
hold. Let also λpj , . . . , λ

p
j+mρ−1 be isolated eigenvalues of L

all converging to ρ as per Theorem 2 and Πρ the projector on
the eigenspace associated to these eigenvalues. Then, with the
notations of Theorem 2,

1

p
JTΠρJ = −Γ(ρ)

mρ∑
i=1

h(τ, ρ)(Vr,ρ)i(Vl,ρ)
T
i

(Vl,ρ)Ti G
′
ρ(Vr,ρ)i

+ oP(1)

where Vr,ρ ∈ Ck×mρ and Vl,ρ ∈ Ck×mρ are sets of right and
left eigenvectors of Gρ associated with the eigenvalue zero,
and G′ρ is the derivative of Gz along z taken for z = ρ.

Proposition 1 provides an accurate characterization of
the eigenvector D

1
2 1n, which conveys clustering information

based on the difference in covariance traces (through t) mainly.
As for Theorem 3, it states that, as p, n grow large, the
alignment between the isolated eigenvectors of L and the
canonical class-basis j1, . . . , jk tends to be deterministic in
a theoretically tractable manner. In particular, the quantity

1

n
trD(c−1)JTΠρJ ∈ [0,mλ]

evaluates the alignment between Πρ and J , thus providing a
first hint on the expected performance of spectral clustering. A
second interest of Theorem 3 is that, for eigenvectors û of L
of multiplicity one (so Πρ = ûûT), the diagonal elements of
1
n D(c−

1
2 )JTΠρJ D(c−

1
2 ) provide the squared mean values

of the successive first j1, then next j2, etc., elements of û.
The off-diagonal elements of 1

n D(c−
1
2 )JTΠρJ D(c−

1
2 ) then

allow to decide on the signs of ûTji for each i. These pieces
of information are again crucial to estimate the expected
performance of spectral clustering.

However, the statements of Theorems 2 and 3 are difficult
to interpret from the onset. These become more explicit when
applied to simpler scenarios and allow one to draw interesting
conclusions. This is the target of the next section.

III. SPECIAL CASES

In this section, we apply Theorems 2 and 3 to the cases
where: (i) Ci = βIp for all i, with β > 0, (ii) all µi’s are
equal and Ci = (1 + γi√

p )βIp.
Assume first that Ci = βIp for all i. Then, letting ` be an

isolated eigenvalue of βIp +M D(c)MT, if

|`− β| > β
√
c0 (2)

then the matrix L has an eigenvalue (asymptotically) equal to

ρ = −2f ′(τ)

f(τ)

(
`

c0
+ β

`ij
`− β

)
+
f(0)− f(τ) + τf ′(τ)

f(τ)

Besides, we find that

1

n
JTΠρJ =

(
1

`
− c0β

2

`(β − `)2

)
D(c)MTΥρΥ

T
ρM D(c) + oP(1)

where Υρ ∈ Rp×mρ are the eigenvectors of βIp+M D(c)MT

associated with eigenvalue `.
Aside from the very simple result in itself, note that the

choice of f is (asymptotically) irrelevant here. Note also that
M D(c)MT plays an important role as its eigenvectors rule
the behavior of the eigenvectors of L used for clustering.

Assume now instead that for each i, µi = µ and Ci =
(1 + γi√

p )βIp for some γ1, . . . , γk ∈ R fixed, and we shall
denote γ = (γ1, . . . , γk)T. Then, if the separability condition
(2) is met, we now find after calculus that there exists at most
one isolated eigenvalue in L (beside n) again equal to

ρ = −2f ′(τ)

f(τ)

(
`

c0
+ β

`

`− β

)
+
f(0)− f(τ) + τf ′(τ)

f(τ)

but for ` = β2
(

5f ′(τ)
8f(τ) −

f ′(τ)
2f(τ)

)(
2 +

∑k
i=1 ciγ

2
i

)
. Moreover,

1

n
JTΠρJ =

1− c0 β2

(β−`)2

2 +
∑k
i=1 ciγ

2
i

D(c)γγTD(c) + oP(1).

If the separability condition is not met, then there is no isolated
eigenvalue beside n.

We note here the importance of an appropriate choice of
f . Note also that 1

n D(c−
1
2 )JTΠρJ D(c−

1
2 ) is proportional to

D(c
1
2 )γγTD(c

1
2 ) and thus the eigenvector aligns strongly to



Fig. 1. Samples from the MNIST database, without and with −10dB noise.

D(c
1
2 )γ itself. Thus the entries of D(c

1
2 )γ should be quite

distinct to achieve good clustering performance.

IV. SIMULATIONS

We complete this article by demonstrating that our results,
that apply in theory only to Gaussian xi’s, show a surprisingly
similar behavior when applied to real datasets. Here we
consider the clustering of n = 3×64 vectorized images of size
p = 784 from the MNIST training set database (numbers 0, 1,
and 2, as shown in Figure 1). Means and covariance are em-
pirically obtained from the full set of 60 000 MNIST images.
The matrix L is constructed based on f(x) = exp(−x/2).

Figure 2 shows that the eigenvalues of both L′ and L̂′, both
in the main bulk and outside, are quite close to one another
(precisely ‖L′ − L̂′‖/‖L′‖ ' 0.11). As for the eigenvectors
(displayed in decreasing eigenvalue order), they are in an
almost perfect match, as shown in Figure 3. In the latter is
also shown in thick (blue) lines the theoretical approximated
(signed) diagonal values of 1

n D(c−
1
2 )JTΠρJ D(c−

1
2 ), which

also show an extremely accurate match between theory and
practice. Here, the k-means algorithm applied to the four
displayed eigenvectors has a correct clustering rate of ' 86%.

Introducing a −10dB random additive noise to the same
MNIST data brings the approximation error down to ‖L′ −
L̂′‖/‖L′‖ ' 0.04 and the k-means correct clustering prob-
ability to ' 78% (with only two theoretically exploitable
eigenvectors instead of previously four).

0 10 20 30 40 50
0

0.5

1

1.5

2
·10−2

matching eigenvalues

Eigenvalues of L′

Eigenvalues of L̂′

Fig. 2. Eigenvalues of L′ and L̂′, MNIST data, p = 784, n = 192.

V. CONCLUDING REMARKS

The random matrix analysis of kernel matrices constitutes
a first step towards a precise understanding of the underlying

Fig. 3. Leading four eigenvectors of L (red) versus L̂ (black) and theoretical
class-wise means (blue); MNIST data.

mechanism of kernel spectral clustering. Our first theoretical
findings allow one to already have a partial understanding of
the leading kernel matrix eigenvectors on which clustering is
based. Notably, we precisely identified the (asymptotic) linear
combination of the class-basis canonical vectors around which
the eigenvectors are centered. Currently on-going work aims at
studying in addition the fluctuations of the eigenvectors around
the identified means. With all these informations, it shall then
be possible to precisely evaluate the performance of algorithms
such as k-means on the studied datasets.

This innovative approach to spectral clustering analysis, we
believe, will subsequently allow experimenters to get a clearer
picture of the differences between the various classical spectral
clustering algorithms (beyond the present Ng–Jordan–Weiss
algorithm), and shall eventually allow for the development
of finer and better performing techniques, in particular when
dealing with high dimensional datasets.
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