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Abstract—This paper considers a MIMO interference sys-
tem where interference alignment (IA) technique is adopted
to manage the problem of interference. We consider a time
division duplex (TDD) system where each transmitter estimates
its channel state information (CSI) by probing the receivers.
In addition, the transmitters share their local CSI estimate
between each other using a backhaul links of limited capacity. A
quantization over the backhaul is therefore required to reduce
the amount of information to exchange. We study in this paper
the impact of this quantization on the system performance and
determine the optimal number of transmitter-receiver pairs that
maximizes the system throughput.

I. INTRODUCTION

Interference is one of the major drawbacks in wireless
communication systems due to the large number of users
communicating on the same channel. This problem has moti-
vated the researchers to investigate transmitting schemes that
can mitigate interference. Interference alignment (IA) was
introduced in [1] as one of the most efficient interference
management technique. It is based on the concept of designing
precoding scheme that confine the interfering signals observed
at each receiver into a low dimensional subspace, providing
a larger subspace to decode the desired signal. In [2], IA has
been shown to achieve maximum multiplexing gain in MIMO
channels. One disadvantage of IA is that it requires global
channel state information (CSI) at each of the transmitters,
which is difficult to obtain in practical systems. Therefore, IA
under limited feedback was studied and several quantization
techniques were proposed, in order to aid the transmitters to
acquire (probe) CSI knowledge from receivers and then to
share it between each other. For instance, in [3] a compression
scheme for the cloud radio access networks is proposed. In
[4], the Grassmannian Manifold quantization technique was
adopted to reduce the information exchange. Another scheme
proposed in [5] is used in sending the channel conditions from
users to transmitters.

An important factor to consider, which is related to the CSI
acquisition process, is the CSI probing (acquisition) cost. We
consider a TDD mode where receivers (users) send training
sequences in the uplink so that the transmitter can estimate
their channels. Since this scheme uses orthogonal sequences,
their lengths are proportional to the number of active users in
the system. In other words, after acquiring the CSI of L users,
the rate is multiplied by 1 − Lθ, where θ is the fraction (of

the slot) that takes the CSI acquisition of one user [6]. From
the above, it can be seen that choosing the number of pairs L
is important to investigate. If L is high, it means that we have
more users to probe and then less time for data transmission.
This problem was studied in [7] by optimizing the transmission
rate which is function of the overhead caused by the probing
process for an analog feedback strategy.

The context here is different from the aforementioned work.
We assume prefect local CSI at the transmitters, but each
of which needs to send its local knowledge to all other
transmitters over finite capacity backhaul links. Then, the
interference alignment solution is computed independently at
each transmitting node.

The remainder of this paper is organized as follows. In
Section II, the system model is described. Section III analyzes
the performance of the system when the IA technique is
used and when a quantization scheme is performed over
the backhaul links of finite capacity. Therein, we derive the
transmission rate of the system, then we define and solve
an optimization problem which seeks to maximize this rate
with respect to the number of pairs and bits. Finally, we give
numerical results in Section IV and conclude in Section V.

Notation: Boldface uppercase symbols (i.e., A) represent
matrices whereas lowercases (i.e., a) are used for vectors.; (.)

∗

denotes the conjugate transpose of a vector or matrix; ’I’ is
used for square identity matrix; | . | denotes the absolute value;
‖ . ‖ represents the norm of second degree; CN (a,A) is a
complex Gaussian random vector with mean a and covariance
matrix A.

II. SYSTEM MODEL

In this section, we present the MIMO interference network
under consideration, where we apply the IA technique over
finite capacity backhaul links. We review the concept of IA
and we propose a CSI sharing scheme to reduce the amount
of information exchange required to achieve IA.

A. MIMO Interference Channel Model

Consider the L-user MIMO interference network illustrated
in Fig. 1 in which each transmitter (TX ) is equipped with Nt
antennas and each receiver (RX ) has Nr antennas. Transmitter
k has dk(≤ min(Nt, Nr)) data streams to send to its intended
receiver (user) k.
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Figure 1: L-User MIMO interference network.

Under this system model, the received signal at user k can
be expressed as follows:

yk =

L∑
i=1

√
γkiP

di
Hki

di∑
j=1

vjix
j
i + zk , (1)

in which Hki ∈ CNr×Nt is the channel matrix between TX
i and RX k with independent and identically distributed zero
mean and unit variance Gaussian elements, γki represents
the path loss of channel Hki, P is the total power at each
transmitter equally allocated among its streams, xji denotes
the jth data stream from transmitter i, vji ∈ CNt×1 is
the corresponding precoding vector of unit norm and zk is
the additive white Gaussian noise distributed according to
CN (0, σ2INr ). We denote by αki the fraction γkiP

di
, for all

k, i in {1, ..., L}.
We assume a TDD transmission where time is slotted and

where a transmitter can acquire the channel state information
of a receiver by probing, which consumes a fraction θ of a
slot. Probing more users takes more time, and hence leaves a
smaller fraction of resources for actual data transmission. As
alluded earlier, if L users (i.e. it means we have L active
transmitter-receiver pairs) are probed, then the actual rate
becomes (1−Lθ)R, where R is the transmission rate without
considering the probing cost.

B. Application of Interference Alignment Technique

For the sake of simplicity, we restrict ourselves to a per-
stream zero-forcing receiver. Specifically, Receiver k uses the
combiner vector umk ∈ CNr×1 of unit norm to detect the m-th
stream from transmitter k, such as

x̂mk = (umk )
∗
yk

=

desired signal︷ ︸︸ ︷√
αkk (umk )

∗
Hkkv

m
k x

m
k +

inter-stream interference (ISI)︷ ︸︸ ︷
√
αkk

dk∑
j=1
j 6=m

(umk )
∗
Hkkv

j
kx

j
k

+

inter-user interference (IUI)︷ ︸︸ ︷
L∑
i=1
i6=k

√
αki

di∑
j=1

(umk )
∗
Hkiv

j
ix
j
i +

noise︷ ︸︸ ︷
(umk )

∗
zk . (2)

As can be seen in (2), two sources of interferences (ISI
and IUI) affect the detection at each receiver. To manage this
problem, we use the IA technique which consists on designing
the set of precoder and combiner vectors such that [5]:

(umk )
∗
Hkiv

j
i = 0, ∀(k,m) 6= (i, j). (3)

We admit that each receiver obtains a perfect knowledge of
the combiner vector designed at its paired transmitter.
In the ideal case where we have perfect global CSI at all the
transmitters and for an achievable degree of freedom vector
d = [d1, ..., dL], ILI and ISI can be canceled completely
at the receivers since the conditions for perfect alignment
are satisfied. The CSI sharing mechanism over the limited
backhaul is detailed in the following.

C. CSIT Sharing Over Finite Capacity Backhaul Links

As mentioned before, global CSI is required in order to
solve the interference alignment problem given in (3). We
assume that the transmitters have a perfect knowledge of their
local CSI, meaning that the i-th transmitter estimates perfectly
the channels Hki, for k = 1, ..., L. However, the local CSI
(excluding the direct links) of other transmitters are obtained
via backhaul links of limited capacity.

Transmitter k-1 Transmitter k Transmitter k+1

Figure 2: CSIT sharing over backhaul links.

We focus on the scenario shown in Fig. 2 where each TX
receives all the required CSI and independently designs the
IA vectors [4]. But, since the backhaul links that connect
transmitters to each other are of limited capacity, a codebook-
based quantization is adopted to reduce the huge amount of
information exchange.
In detail, let hki represents the vectorization of the channel
matrix Hki and suppose that all the transmitters share a
predetermined codebook CB of size 2B . Transmitter i selects
the index no of the optimal codeword in CB according to:

no = arg max1≤n≤2B

∣∣∣h̃∗kiĥnki∣∣∣2 , where h̃ki = hki
‖hki‖ and B

is the number of bits used to quantize Hki.
After quantizing all the matrices of its local CSI, trans-

mitter i sends the corresponding optimal indexes to all other
transmitters which share the same codebook, allowing these
transmitters to reconstruct the quantized local knowledge of
transmitter i. Using the model in [5], we define the quantiza-

tion error as eki = 1− |ĥ
∗
kihki|2
‖hki‖2

. The cumulative distribution
function (CDF) of eki is then given by: Pr(eki ≤ ε) = 2BεQ

for 0 ≤ ε ≤ 2−
B
Q , where Q = NtNr − 1.

III. SYSTEM PERFORMANCE ANALYSIS

In this section, we analyze the performance for IA in a
MIMO interference network with backhaul links of limited



capacity. We first derive the total transmission rate under the
considered system. Then, we provide an optimization problem
with its corresponding solution for maximizing this rate.

A. Transmission Rate Under Finite Capacity Backhaul Links
As shown in the previous section, the IA vectors are

designed based on the available CSI knowledge which is
obtained after the transmitting nodes share their perfect local
knowledge between each other. It results that the IA technique
is capable to completely cancel the ISI since local CSI is
perfectly known, but not the ILI due to the quantization
process which leads to imperfect global CSI at the transmitting
nodes. Under such conditions, the signal to interference plus
noise ratio (SINR) for stream m at receiver k is be given by:

ζmk =
αkk

∣∣(ûmk )
∗
Hkkv̂

m
k

∣∣2
σ2 +

L∑
i=1
i 6=k

αki
di∑
j=1

∣∣∣(ûmk )
∗
Hkiv̂

j
i

∣∣∣2 (4)

where v̂mk and ûmk are the precoding and combining vectors,
respectively, designed based on the available CSI described in
the previous section. We denote by Imk the interference term
that appears in the denominator of (4).

Imk =

L∑
i=1
i6=k

αki

di∑
j=1

∣∣∣(ûmk )
∗
Hkiv̂

j
i

∣∣∣2 =

L∑
i=1
i 6=k

αki

di∑
j=1

∣∣∣hkism,jk,i

∣∣∣2

=

L∑
i=1
i6=k

αki ‖hki‖2
di∑
j=1

∣∣∣(h̃ki)∗sm,jk,i

∣∣∣2 , (5)

where wki is a unit norm vector isotropically distributed in
the null space of ĥki, s

m,j
k,i = v̂ji ⊗ (ûmk )∗ (⊗ is the Kronecker

product) and h̃ki is the normalized vector of channel hki.
Following the model used in [5], the channel direction

h̃ki can be written as follows: h̃ki =
√

1− ekiĥki +√
ekiwki, where ĥki is the channel quantization vector

of hki and wki is independent of eki, with wki (of
unit norm) isotropically distributed in the null space of

ĥki. The product
∣∣∣(h̃ki)∗sm,jk,i

∣∣∣2 can then be expressed as∣∣∣(h̃ki)∗sm,jk,i

∣∣∣2 =
∣∣∣√1− eki(ĥki)∗sm,jk,i +

√
eki(wki)

∗sm,jk,i

∣∣∣2 =

eki

∣∣∣(wki)
∗sm,jk,i

∣∣∣2. Therefore, Imk can be rewritten as:

Imk =

L∑
i=1
i 6=k

αki ‖hki‖2 eki
di∑
j=1

∣∣∣(wki)
∗sm,jk,i

∣∣∣2 . (6)

Transmission Rate : Based on [8], we define the transmis-
sion rate (throughput) achieved as the probability to get an
SINR greater than a given threshold τ . In practice, this can
be interpreted by the fact that if the SINR is lower than a
certain value, then the transmitted signal can not be decoded
correctly. Thus, we can write the throughput that corresponds
to stream m of pair k as:

Rmk = Pr(ζmk ≥ τ) (7)

Proposition 1. The transmission rate corresponding to stream
m at user k can be given by

Rmk = e
− σ2ταkk MGFImk (−t), (8)

where t = τ
αkk

and MGFImk is the moment generating function
of the random variable Imk .

Proof. The proof is provided in Appendix A.

The above proposition provides a general formula for the
transmission rate under the considered system, which depends
on the MGF expression of Imk . This latter expression is given
in the following proposition.

Proposition 2. The expression MGFImk (−t) is given by

MGFImk (−t)

=

L∏
i=1
i 6=k

(
αkitdi
δ

+ 1)−Q 2F1(bi, Q; ai + bi;
1

1 + δ
αkitdi

), (9)

where 2F1 is the hypergeometric function, δ = 2
B
Q ,

ai = (Q+1)di
Q − 1

Q and bi = (Q− 1)ai.

Proof. Refer to Appendix B for the proof.

Let R denote the total transmission rate of the system which
can be calculated by taking the sum of all transmission rates
over all streams and pairs, such as:

R =

L∑
k=1

dk∑
m=1

Rmk =

L∑
k=1

dk∑
m=1

e
− σ2ταkk MGFImk (−t). (10)

The above result does not consider the cost of probing that,
as mentioned in Section II, will reduce the transmission rate
by a factor 1−Lθ, where θ is the fraction of time to probe one
user. Under all the above considerations, the total transmission
rate can be given by the following proposition.

Proposition 3. If we consider the probing cost, the total
transmission rate Rp can be rewritten as:

Rp = (1− Lθ)
L∑
k=1

dk∑
m=1

[
e
− σ2ταkk

L∏
i=1
i 6=k

(
αkiτdi

αkk2
B
Q

+ 1)−Q

× 2F1(bi, Q; ai + bi;
1

1 + αkk2
B
Q

αkiτdi

)

]
. (11)

Proof. Proposition 3 is proved by combining the probing cost,
the expression in (10) and the result of Proposition 2 .

B. Throughput Maximization

The total transmission rate in (11) is a function of several
parameters. Among these parameters, we focus on the number
of bits B and the number of pairs L. We analyze the system
performance by maximizing the expression of the transmission
rate in (16), function of L and B, under the constraint of finite
(total) capacity C of backhaul links. But, as it can be seen



in (11), solving this problem for the general case is of high
complexity. Therefore, before proceeding in the analysis, we
make the following assumptions: (i) all the transmitters have
the same number of streams d and (ii) all the direct links and
all the cross links have equal path loss γ1 and γ2, respectively.
Under these assumptions, we can rewrite (11) as

Rp = (1− Lθ)
L∑
k=1

d∑
m=1

[
e−

σ2τ
α1

L∏
i=1
i 6=k

(
α2τd

α12
B
Q

+ 1)−Q

× 2F1(b,Q; a+ b;
1

1 + α12
B
Q

α2τd

)

]
= (1− Lθ)Lde−

σ2τ
α1

×

(
α2τd

α12
B
Q

+ 1)−Q 2F1(b,Q; a+ b;
1

1 + α12
B
Q

α2τd

)

L−1

.

(12)

where α1 = γ1P
d and α2 = γ2P

d .
Now, we can define the optimization problem as follows:

maximize
B,L

Rp(B,L) (13)

subject to L(L− 1)2B ≤ C, (14)

where L(L − 1)2B is the total number of bits exchanged on
the backhaul links of limited capacity C. This expression is
obtained from the fact that we have L transmitters, each of
which shares L− 1 channels to L− 1 other transmitters.

Remark 1. To ensure the feasibility of the interference align-
ment problem, one additional condition (given in [9]) to
consider is that Nt +Nr ≥ d(L+ 1), which puts a limitation
on the maximum number of pairs.

We propose the following algorithm to solve the maximiza-
tion problem defined by (13) and (14).

Optimization algorithm
Fix the capacity C of backhaul links.
for B = 1 to NB do

for L = 1 to NL do
if condition (14) is not statisfied then

put Rp(B,L) = 0.
else

compute the transmission rate Rp(B,L) .
end if

end for
end for
Choose B and L which correspond to the max value of Rp.

Note that the value of NL should be chosen based on the
condition given in the remark before.

IV. NUMERICAL RESULTS

In this section we present the numerical results. We assume
a homogeneous system where the number of antennas Nt =
Nr = 15, d = 2, τ = 0.8 and γ1 = 1. We take NB = 30
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Figure 3: The transmission rate Rp for different combinations of
number of bits and number of pairs. the factor θ = 0.01.
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Figure 4: Optimal number of pairs L for different values of the
capacity. The factor θ = {0.01, 0.03, 0.06}.

which is the maximum number of bits that we can use for
the quantization process, and NL = 14 which satisfies the
condition given in the previous section. In addition, we use
10 log10( Pσ2 ) to represent the SNR in dB.

Fig. 3 plots the transmission rate of the system in (12) for
different combinations of the number of bits B and the number
of pairs L, when θ = 0.01, γ2 = 0.1 and SNR = 10 dB. As
can be seen from this figure, for a fixed B, the transmission
rate Rp is very sensitive to the variation of the number of pairs
L. However, for a fixed L, the function Rp is less sensitive to
the variation of the number of bits B.

Now, we consider the same path loss γ2 as before and we
use the algorithm given in Section III to obtain the optimal
values of B and L that maximize the rate Rp for different
values of the total capacity C and the fraction θ.

Fig. 4 displays the variation of the optimal number of pairs
L as a function of the capacity C, for different values of θ.
The more we increase the capacity, the more we relax the
constraint in (19), then the possibility that the optimal value
of L increases is higher. Moreover, if the fraction θ is low
(i.e. low probing cost), the optimal number of pairs can reach
higher values which will raise the system rate. For instance,
for θ = 0.01, the number of pairs L reaches 7 pairs at its
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maximum instead of 5 for θ = 0.06.
Fig. 5 shows the variation of the optimal number of bits B

as a function of the capacity C. For the same θ, B increases
until it reaches the maximal value 30. If we fix the value of C,
we can see that B takes larger values for higher θ. This can
be explained by the fact that the transmission of the system is
more sensitive to L than to B.

Fig. 6 plots the variation of the maximum transmission rate
as function of the SNR for different values of θ and the
capacity C. For large values of θ, L is low which explains
the decrease of the rate. For the same θ, if we increase C we
get larger margins for L and B, and then better rates.

Fig. 7 and 8 represent the variation of the optimal number
of pairs and the maximum transmission rate, respectively, in
function of the path loss coefficient γ2. While increasing γ2,
the optimal number of pairs and the maximum rate decrease,
because we pass from a low interfering scenario to a highly
interfering one.

V. CONCLUSION

In this paper, we consider a TDD system with L-user
interference channel under the IA technique. The TDD strategy
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Figure 7: The variation of the optimal number of transmitter-receiver
pairs in function of the path loss coefficient γ2.
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Figure 8: The variation of the maximum transmission rate in function
of the path loss coefficient γ2.

constrains the maximal number of pairs we can choose. Given
the requirement of IA to share CSI between transmitters
over backhaul links of finite capacity, we use a quantization
scheme to reduce the amount of information to exchange.
The throughput of the system is derived and it depends on
the number of quantization bits and the number L of pairs.
We have investigated the effect of each of these parameters
on the variation of the throughput of the system. We have
also proposed an algorithm to maximize the transmission rate
function of L and B, for a given capacity C. It is shown that
this rate is more sensitive to the variation of L and less to B,
and that this sensitivity depends on the fraction θ of the slot
reserved for probing.
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APPENDIX

A. Transmission Rate Calculation.

Using (7), the transmission rate that corresponds to stream
m of pair k is given by Rmk = Pr(ζmk ≥ τ). In the expression
of ζmk given in (4), we denote g as g = αkk

∣∣(ûmk )
∗
Hkkv̂

m
k

∣∣2 .
The random variable

∣∣(ûmk )
∗
Hkkv̂

m
k

∣∣2 has an exponential dis-
tribution with parameter 1 (see [10]), then g has an exponential
distribution with parameter 1

αkk
. Thus, the SINR expression

ζmk can be represented as ζmk = g
Imk +σ2 .

The transmission rate in (7) can be re-expressed as:

Rmk = Pr(ζmk ≥ τ)

= Pr(
g

Imk + σ2
≥ τ) = Pr(g ≥ τImk + τσ2)

=

∫
CCDFg(τImk + τσ2)f(Imk )dImk , (15)

where CCDFg(x) = e
− x
αkk is the complementary cumulative

distribution function of random variable g, and f(Imk ) is the
probability density function of Imk . Thus, we get

Rmk =

∫
CCDFg(τImk + τσ2)f(Imk )dImk

=

∫
e
− (τImk +τσ2)

αkk f(Imk )dImk

= e
− σ2ταkk MGFImk (− τ

αkk
). (16)

B. Derivation of the Moment generating function of Imk .

From (5), Imk =
L∑
i=1
i6=k

αki ‖hki‖2 eki
di∑
j=1

∣∣∣(wki)
∗sm,jk,i

∣∣∣2.

Since wki and sm,jk,i are independent and identically distributed

(i.i.d.) isotropic vectors in the null space of ĥki,
∣∣∣(wki)

∗sm,jk,i

∣∣∣2
is i.i.d. β(1, Q−1) distributed for all i, where Q = NtNr−1.
di∑
j=1

∣∣∣(wki)
∗sm,jk,i

∣∣∣2 is the sum of i.i.d. Beta variables, which

can be approximated to another Beta distribution [11]. Thus,

we have
di∑
j=1

∣∣∣(wki)
∗sm,jk,i

∣∣∣2 ∼ diβ(ai, bi), in which ai =

(Q+1)di
Q − 1

Q and bi = (Q− 1)ai.
According to the theory adopted in [12], eki ‖hki‖2 has
Γ(Q, 2

B
Q ) as distribution, where 2

B
Q is the inverse scale

parameter. Let δ = 2
B
Q . It follows that Imk =

L∑
i=1i 6=k

ρkiXiYi,

where ρki = αkidi, Xi ∼ Γ(Q, δ) and Yi ∼ β(ai, bi). Note
that Q and δ are the shape and rate parameters, respectively.
XiYi is the product of a Gamma and Beta random variables.
Then, the pdf of Zi = XiYi (for zi > 0) is given by [13]
fZi(zi) = δQΓ(bi)

Γ(Q)B(ai,bi)
zQ−1
i e−δziΨ(bi, 1+Q−ai; δzi), where

Ψ is the Kummer function defined in [13].
Now, we calculate the MGF of Zi at −t:

MGFZi(−t) =

+∞∫
−∞

e−tzifZi(zi)dzi

= κ

+∞∫
0

zQ−1
i e−tzi−δziΨ(bi, 1 +Q− ai; δzi)dzi

(i)
= κ

Γ(Q)Γ(ai)

δQΓ(ai + bi)

(
t

δ
+ 1

)−Q
2F1(bi, Q; ai + bi;

1

1 + δ
t

)

(ii)
=

(
t

δ
+ 1

)−Q
2F1(bi, Q; ai + bi;

1

1 + δ
t

), (17)

where κ = δQΓ(bi)
Γ(Q)B(ai,bi)

.
The equality (i) is obtained using the relation from [14]. The
equality (ii) holds since the Beta function B(a, b) = Γ(a)Γ(b)

Γ(a+b) .

We can write Imk =
L∑

i=1,i6=k
ρkiZi, which is the sum of

weighed random variables Zi with ρki as weights.
The MGF of Imk at −t is then given by:

MGFImk (−t) =

L∏
i=1
i 6=k

MGFZi(−tρki) =

L∏
i=1
i6=k

(
αkidit

δ
+ 1)−Q 2F1(bi,K; ai + bi;

1

1 + δ
αkidit

). (18)

The desired result follows from (18).


