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Abstract—In this paper, an exact closed-form expression for
the Spatial Correlation Function (SCF) is derived for the stan-
dardized three-dimensional (3D) multiple-input multiple-output
(MIMO) channel. This novel SCF is developed for a uniform
linear array of antennas with non-isotropic antenna patterns.
The proposed method resorts to the spherical harmonic expan-
sion (SHE) of plane waves and the trigonometric expansion
of Legendre and associated Legendre polynomials to obtain
a closed-form expression for the SCF for arbitrary angular
distributions and antenna patterns. The resulting expression
depends on the underlying angular distributions and antenna
patterns through the Fourier Series (FS) coefficients of power
azimuth and elevation spectrums. The novelty of the proposed
method lies in the SCF being valid for any 3D propagation
environment. Numerical results validate the proposed analytical
expression and study the impact of angular spreads on the
correlation. The derived SCF will help evaluate the performance
of correlated 3D MIMO channels in the future.

I. INTRODUCTION

Multiple-input multiple-output (MIMO) systems have re-

mained a subject of interest in wireless communications over

the past decade due to the significant gains they offer in terms

of capacity by exploiting the multipath richness of the channel.

Pioneer work in this area by Telatar [1] and Foschini [2]

realized that capacity can potentially scale linearly with the

number of antennas. These MIMO systems were designed

to support antenna configurations capable of adaptation in

azimuth only. To further enhance the system performance,

researchers and industrials are now exploiting the channel’s

degrees of freedom in the elevation as well. Encouraged by

the initial implementations of this technology [3], the 3GPP

has been working on defining future mobile communication

standards that allow for elevation beamforming [4]. However

in realistic propagation environments, the promised gains are

not realized due to the spatial correlation present in the MIMO

channel. Deriving and simulating this correlation is therefore

essential to predict the performance of MIMO systems.

The need to investigate the impact of spatial correlation on

the performance of MIMO systems is acknowledged and well-

known among researchers. However, the spatial correlation
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models proposed in literature occasionally ignore the elevation

dimension and antenna patterns which can cause the simulated

results to be misleading. Most of these models are derived for

a particular distribution of the Angle of Departure (AoD) and

Angle of Arrival (AoA) such as uniform, Gaussian, Von Mises

or Laplacian. In [5], approximate closed-form expressions

for spatial correlation coefficients were derived for clustered

MIMO channel assuming Laplacian azimuth AoA distribution.

The proposed method makes small angle spread approximation

and offers significant gains in terms of computational cost.

In [6], the authors derived exact closed-form expressions for

the spatial correlation between receive antenna elements for

cosine, Gaussian and Von Mises azimuth AoA distributions.

The use of Von Mises was shown to simplify the expressions

and the impact of mutual coupling on correlation was studied.

The notion of spatial correlation in three-dimensional (3D)

environments has been addressed in some works. The authors

in [7] showed that elevation plays a crucial role in determining

the Spatial Correlation Function (SCF). The derivation is based

on the spherical harmonic expansion (SHE) of plane waves and

assumes the distribution of AoA to be 3D Von Mises-Fisher.

The effect of non-isotropic antenna patterns was studied using

numerical techniques. The analysis in [8] uses SHE to compute

generalized expressions for the correlation. Although the tools

presented are handy, the proposed method requires certain

assumptions to be made on the propagation environment. Even

a simple assumption of angles being uniformly distributed

resulted in integrals involving Legendre polynomials that could

not be expressed in a closed-form. Such assumptions neither

aptly represent realistic propagation environments nor make

the proposed method truly generic in nature. To the best of

authors’ knowledge, a SCF that works for the 3D channel

without making assumptions on the underlying angular distri-

butions and antenna patterns has not been developed before.

In this paper, we propose a novel method for obtaining a

closed-form expression for the SCF for 3D MIMO channels

that can be used for any arbitrary choice of antenna patterns

and distribution of azimuth and elevation AoD and AoA. The

SCF is derived for channel models proposed in standards like

3GPP SCM [9], WINNER+ [10] and ITU [11]. To get an

analytically tractable closed-form solution, the SHE of plane

waves and properties of Legendre and associated Legendre

polynomials are exploited. A uniform linear array of antennas

is considered. Power azimuth spectrum (PAS) and power



[H]su =

N∑
n=1

αn

√
gt(φn, θn, θtilt) exp (ik(s− 1)dt sinφn sin θn)

√
gr(ϕn, ϑn) exp (ik(u− 1)dr sinϕn sinϑn) (1)

elevation spectrum (PES) are explicitly defined and their rela-

tionships with the respective angular distributions highlighted.

The final expression of SCF depends on the channel and

antenna parameters through the Fourier Series (FS) coefficients

of PAS and PES. The researchers and industrials interested in

using our method to obtain the correlation coefficients need to

provide only the FS coefficients of the PAS and PES they are

using for the evaluation of their work, which can generally be

obtained easily for popular angular distributions. The proposed

SCF is validated via simulations using angular distributions

and antenna patterns specified in the standards and is seen to

coincide with the Monte-Carlo simulated results.

The rest of the paper is organized as follows. The 3D

standardized channel model, PAS and PES are discussed in

Section II. The proposed SCF is derived in section III. Section

IV provides simulation results that validate the proposed

function and section V concludes the paper.

II. CHANNEL MODEL AND POWER SPECTRUMS

Encouraged by the potential of elevation beamforming

to enhance system performance, many standardized channel

models have emerged to define the next generation 3D chan-

nels. We base the evaluation of our work on these models while

making some realistic assumptions on the channel parameters.

A. Standardized 3D Channel Model

The mobile communication standards like SCM [9], ITU

[11], WINNER [10] follow a system level, stochastic channel

modeling approach wherein, the propagation paths are de-

scribed through statistical parameters, like delay, amplitude,

AoA and AoD. The extensions of these 2D models to the 3D

case have started to emerge recently [10], [4].

The antenna configuration we consider is shown in Fig. 1.

There are NBS and NMS antenna ports at the base station (BS)

and mobile station (MS) respectively. Each antenna port com-

prises of M vertically stacked antenna elements that determine

the effective antenna port pattern. The antenna ports are placed

at fixed positions along êy , with the elements in each port

aligned along êz . The transmit (Tx) signal is fed to all elements

with corresponding weights wm(θtilt),m = 1, . . . ,M , in

order to achieve the desired directivity. The MS sees each

antenna port as a single antenna because all the elements carry

the same signal. For this antenna configuration, the channel

coefficient between BS antenna port s and MS antenna port u
is given by (1) [10], [12], where φn and θn are the azimuth and

elevation AoD of the nth path respectively, ϕn and ϑn are the

azimuth and elevation AoA of the nth path respectively, θtilt
is the tilt angle, which plays a crucial role in elevation beam-

forming strategies and αn is the complex amplitude of the nth

path. The complex amplitudes are assumed to be i.i.d zero

Fig. 1. Antenna configuration.

mean, 1
N variance Normal RVs. Also

√
gt(φn, θn, θtilt) and√

gr(ϕn, ϑn) are the global patterns of Tx and Rx antennas

respectively where gt(φn, θn, θtilt) ≈ gt,H(φn)gt,V (θn, θtilt)
and gr(ϕn, ϑn) ≈ gr,H(ϕn)gr,V (ϑn). gt,H(φ), gr,H(ϕ) are the

horizontal antenna patterns and gt,V (θ, θtilt), gr,V (ϑ) are the

vertical antenna patterns. dt and dr are the separations between

Tx antenna ports and Rx antenna ports respectively and k is

the wave number that equals 2π
λ , where λ is the wavelength

of the carrier frequency. Also the entries [12],

[at(φ, θ)]s = exp (ik(s− 1)dt sinφ sin θ) and (2)

[ar(ϕ, ϑ)]u = exp (ik(u− 1)dr sinϕ sinϑ) (3)

are the array responses of sth Tx and uth Rx antennas respec-

tively. Fig. 2 shows the 3D channel model being considered.

B. Power Azimuth and Elevation Spectrums

PAS and PES are important statistical properties of wireless

channels and will play an important role in deriving the

SCF. They provide a measure of the power distribution upon

the azimuth AoD and AoA and elevation AoD and AoA

respectively. Observing that the integral of the product of

Fig. 2. 3D channel model.



Pn(cosγ) = Pn(cos θ1)Pn(cos θ2) + 2

n∑
m=1

(n−m)!

(n+m)!
Pm
n (cos θ1)P

m
n (cos θ2) cos[m(φ1 − φ2)] (10)

exp

(
i
2π

λ
dt(s− s′) sinφ sin θ

)
=

∞∑
n=0

in(2n+ 1)jn

(
2π

λ
dt|s− s′|

)
Pn(sinφ sin θ) (14)

azimuth angular power density function and the horizontal

antenna pattern yields the expected power in the azimuth

plane, we define PAS at the transmitter as follows,

PASt(φ) = gt,H(φ)pφ(φ), (4)

where the angular power density function pφ(φ)=fφ(φ), the

probability density function of azimuth angle. Therefore,∫ π

−π

pφ(φ)dφ = 1. (5)

Similarly PES at the Tx side is defined as,

PESt(θ, θtilt) = gt,V (θ, θtilt)pθ(θ). (6)

The elevation angular power density function, pθ(θ)=
fθ(θ)
sin(θ) ,

which implies [13],∫ 2π

0

pθ(θ) sin(θ)dθ = 1. (7)

The same definitions and conditions can be extended to PASr

and PESr. Note that the limits taken in (7) are (0,2π) instead

of (0,π), which is the range over which θ is defined. This

extension in limits, which would later assist in expressing SCF

in terms of the FS coefficients of PES, entails that we define

fθ(θ) to be approximately 0 from π to 2π. This is generally

true because the elevation angular density spectrum used in

standards decays exponentially with θ.

III. PROPOSED SPATIAL CORRELATION FUNCTION AND

RELATIONSHIP WITH FS COEFFICIENTS OF PAS AND PES

In this section, we make use of the SHE of plane waves

and properties of Legendre and associated Legendre polyno-

mials to derive a generalized analytical expression for the

SCF. Before delving into the derivation, we note that in a

3D propagation environment, the array responses of Tx and

Rx antennas can be expanded using spherical decomposition

of plane waves. Using the Jacobi-Anger expansion, a plane

electromagnetic wave can be represented by a superposition

of spherical waves as [14],

eikx.v̂ =

∞∑
n=0

in(2n+ 1)jn(k||x||)Pn (x̂.v̂) , x ∈ R
3, (8)

where v̂ is a unit vector in the direction of wave propagation,

x is a vector in R
3, jn is the spherical Bessel function of order

n and Pn is the Legendre polynomial function of order n.

We also state here the Legendre addition theorem for

spherical harmonics [14], [15] which will be employed later

in the derivation of the SCF. If γ is defined such that,

cos γ = cos θ1 cos θ2 + sin θ1 sin θ2 cos(φ1 − φ2), (9)

where (θ1, φ1) and (θ2, φ2) are the spherical coordinates of

the vectors v̂ and x respectively in (8), then the Legendre

polynomial of argument cos(γ) is given by (10), where Pm
n

are the associated Legendre polynomials.

A. Expansion of SCF

These results will now be employed to derive a closed-form

expression for the SCF. To this end, we observe from (1) that

for i.i.d zero mean, 1
N variance, α’s, the spatial correlation

between the channels constituted by any pair of Tx and Rx

antenna ports can be expressed as a product of the correlation

between Tx antenna ports and the correlation between Rx

antenna ports as,

SCF = E[HsuHH
s′u′ ] = ρt(s− s′)ρr(u− u′), (11)

where,

ρt(s− s′) = E

[
gt(φ, θ, θtilt) exp

(
i
2π

λ
dt(s− s′) sinφ sin θ

)]
,

(12)

ρr(u− u′) = E

[
gr(ϕ, ϑ) exp

(
i
2π

λ
dr(u− u′) sinϕ sinϑ

)]
.

(13)

We derive the closed-form expression for the correlation be-

tween Tx antenna ports given in (12). The same approach can

be extended to the correlation between Rx antenna ports and

the product of the two would yield the closed-form expression

for the SCF for the standardized 3D MIMO channel.

The SHE result for plane waves in (8) yields alternate

expressions for the array responses of Tx and Rx antennas.

The Tx array response in (2) can be expanded as a sum of

spherical waves as shown in (14). From Fig. 1, the spherical

coordinates (θ1, φ1) of the wave vector are (θ, φ), and the

spherical coordinates (θ2, φ2) of the vector along dt(s − s′)
are (π2 ,

π
2 ). Combining the addition theorem in (10) with (14),

such that cos γ=sinφ sin θ and using this expansion of the

array response in the expression of correlation between Tx

antenna ports given in (12) leads to (15). We now use some

properties of Legendre and associated Legendre polynomials

to expand (15) in a systematic way that would later help us in

expressing it in terms of FS coefficients of PAS and PES. A

sketch of the proof is provided here for reader’s convenience.

There are several interesting properties of Legendre polyno-

mials, some of which stated below will be exploited now to



ρt(s− s′) = E

[
gt(φ, θ, θtilt)

∞∑
n=0

in(2n+ 1)jn

(
2π

λ
dt|s− s′|

)(
Pn(cos θ)Pn(0)

+ 2
n∑

m=1

(n−m)!

(n+m)!
Pm
n (cos θ)Pm

n (0) cos
(
m
(
φ− π

2

)))]
(15)

ρt(s− s′) = E[gt(φ, θ, θtilt)]j0 (βt|s− s′|) +
∞∑

n=1

(−1)n(4n+ 1)j2n (βt|s− s′|)P2n(0)E[P2n(cos θ)gt,V (θ, θtilt)]E[gt,H(φ)]

+
∞∑

n=1

4(−1)nj2n (βt|s− s′|)
(

n∑
m=1

(−1)mP̄ 2m
2n (0)E[P̄ 2m

2n (cos θ)gt,V (θ, θtilt)]E[cos(2mφ)gt,H(φ)]

)
(19)

+
∞∑

n=1

4i(−1)nj2n−1 (βt|s− s′|)
(

n∑
m=1

(−1)mP̄ 2m−1
2n−1 (0)E[P̄ 2m−1

2n−1 (cos θ)gt,V (θ, θtilt)]E[sin((2m− 1)φ)gt,H(φ)]

)

get a closed-form expression for the SCF.

Pn(0) = 0, n = 1, 3, 5, . . . (16)

Pm
n (0) = 0, n+m = 1, 3, 5, . . . (17)

P0(x) = 1. (18)

Before further analysis of the SCF, we define

P̄m
n (x)=

√
(n+ 1

2 )
(n−m)!
(n+m)!P

m
n (x) and denote 2π

λ dt as βt.

Now using the decomposition of antenna patterns in azimuth

and elevation i.e. gt(φ, θ, θtilt) ≈ gt,H(φ)gt,V (θ, θtilt), and

the properties just described, we expand (15) and take the

deterministic terms out of the expectation operator. After

some trigonometric manipulations, we get (19). The same

approach would yield a similar expression for ρr(u−u′) with

gt(φ, θ, θtilt) replaced by gr(ϕ, ϑ) and the AoDs replaced by

AoAs. The expansion looks alarming at first sight but it will

now be shown to yield an interesting closed-form expression

that works for any arbitrary choice of antenna patterns and

angular distributions.

B. Closed-form Expression of SCF using FS Coefficients of
PAS and PES

The expansion in (19) exhibits several difficulties in deriving

a closed-form expression for the SCF. The random variables,

AoD and AoA, with respect to which the expectations need

to be computed appear as the arguments of Legendre and

associated Legendre polynomials. We need a general represen-

tation of these polynomials in terms of their arguments that

can be used to facilitate the development of the expectation

terms. For this purpose, we use the trigonometric expansions

of these polynomials that were presented in [16]. They express

Legendre and associated Legendre polynomials with even and

odd orders as a linear combination of cosines and sines as,

P2n(cosx) = p2n + 2

n∑
k=1

pn−kpn+k cos(2kx),(20)

P̄ 2m
2n (cosx) =

n∑
k=0

c2m2n,2k cos(2kx), (21)

P̄ 2m−1
2n−1 (cosx) =

n∑
k=1

d2m−1
2n−1,2k−1 sin((2k − 1)x). (22)

The coefficients pn, c
2m
2n,2k and d2m−1

2n−1,2k−1 are generated using

the recursion relations provided in [16] (equations 2.8, 3.1-

3.5). Using the relations given in (20)-(22), the expectations

in (19) can be expressed analytically as a linear combination

of the FS coefficients of PAS and PES. This is made more

explicit by defining the FS coefficients of PAS and PES given

in (4) and (6) respectively as,

aφ(m) =
1

π

∫ π

−π

PASt(φ) cos(mφ)dφ, (23)

bφ(m) =
1

π

∫ π

−π

PASt(φ) sin(mφ)dφ, (24)

aθ(k) =
1

π

∫ 2π

0

PESt(θ, θtilt) cos(kθ)dθ, (25)

bθ(k) =
1

π

∫ 2π

0

PESt(θ, θtilt) sin(kθ)dθ. (26)

With all these tools in hand, we now present in (27) and

(28) the analytical expressions for the correlation between Tx

antenna ports and Rx antenna ports respectively in terms of the

FS coefficients of PAS and PES. The product of the two yields

the SCF as given in (11). The infinite summation over n can

be truncated to a small finite number, N0, of terms such that

the truncation error has a bound that decreases exponentially

as shown in [17]. As few as 15 terms are needed to calculate

the correlation with significant accuracy. The expressions show

how this unprecedented function requires only the FS coeffi-

cients of PAS and PES as per the propagation environment and

antenna configuration to return the correlation coefficients.

IV. NUMERICAL RESULTS

In this section, we provide simulation results to verify our

proposed SCF for different angular distributions. Since this

paper largely focuses on the guidelines provided in the mobile

communication standards used globally, so we validate our



ρt(s− s′) = π2aφ(0)bθ(1)j0 (βt|s− s′|) +
∞∑

n=1

(−1)n(4n+ 1)j2n (βt|s− s′|)P2n(0)π
2

n∑
k=−n

pn−kpn+k
1

2
[bθ(2k + 1)

− bθ(2k − 1)]aφ(0) +

∞∑
n=1

4(−1)nj2n (βt|s− s′|)
(

n∑
m=1

(−1)mP̄ 2m
2n (0)π2

n∑
k=0

c2m2n,2k
1

2
[bθ(2k + 1)− bθ(2k − 1)]aφ(2m)

)

+
∞∑

n=1

4i(−1)nj2n−1 (βt|s− s′|)
(

n∑
m=1

(−1)mP̄ 2m−1
2n−1 (0)π2

n∑
k=1

d2m−1
2n−1,2k−1

1

2
[aθ(2k − 2)− aθ(2k)]bφ(2m− 1)

)
(27)

ρr(u− u′) = π2aϕ(0)bϑ(1)j0 (βr|u− u′|) +
∞∑

n=1

(−1)n(4n+ 1)j2n (βr|u− u′|)P2n(0)π
2

n∑
k=−n

pn−kpn+k
1

2
[bϑ(2k + 1)

− bϑ(2k − 1)]aϕ(0) +

∞∑
n=1

4(−1)nj2n (βr|u− u′|)
(

n∑
m=1

(−1)mP̄ 2m
2n (0)π2

n∑
k=0

c2m2n,2k
1

2
[bϑ(2k + 1)− bϑ(2k − 1)]aϕ(2m)

)

+
∞∑

n=1

4i(−1)nj2n−1 (βr|u− u′|)
(

n∑
m=1

(−1)mP̄ 2m−1
2n−1 (0)π2

n∑
k=1

d2m−1
2n−1,2k−1

1

2
[aϑ(2k − 2)− aϑ(2k)]bϕ(2m− 1)

)
(28)

model using the angular distributions and antenna patterns

specified in the standards. In the standards, elevation AoD

and AoA are drawn from Laplacian density spectrum with

parameters, mean θ0 and spread σ [10], [18]. Also azimuth

AoD and AOA are drawn from the Wrapped Gaussian (WG)

density spectrum [11], [10], that can be approximated by Von

Mises (VM) distribution [19], [6] as follows,

WG(μ, σ2) = VM(μ, κ), σ2 = 2[log I0(κ)− log I1(κ)] (29)

where In(x) is the modified Bessel function of order n, μ is

the mean AoD/AoA and 1
κ is a measure of dispersion in the

azimuth. This equivalence is illustrated in Fig. 3 for different

choices of σ and κ. To enable an abstraction of the role played

by antenna elements, ITU approximates the combined pattern

gt(φ, θ, θtilt) of each port by a narrow beam as [11],

−min{−(gt,H(φ) + gt,V (θ, θtilt)), 20}dB, (30)

where gt,H(φ) and gt,V (θ, θtilt) can be approximated as,

gt,H(φ) = −12

(
φ

φ3dB

)2

dB, (31)
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Fig. 3. Equivalence of the Wrapped Gaussian and Von Mises distributions.
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Fig. 4. Correlation between Tx antenna ports using Laplacian elevation and
VM azimuth angular distributions and antenna patterns from standards.
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Fig. 5. Correlation between Tx antenna ports using uniform azimuth angular
distribution and antenna patterns from standards.

gt,V (θ, θtilt) = −12

(
θ − θtilt
θ3dB

)2

dB. (32)

We set N0 = 15, θtilt = 95o, θ3dB = 15o, φ3dB = 70o,

σs = 7o, θ0 = 90o, κs = 5 and μ = 2π
3 . A thousand indepen-

dent Monte-Carlo realizations of the channel are generated

to compute (12) for comparison with the theoretical result.

The antennas are assumed to be omnidirectional in azimuth to
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simplify the computation of FS coefficients of PAS for VM

density. The vertical antenna pattern in (32) is considered.

The result is shown in Fig. 4. As expected, the correlation

decreases as the distance between antenna ports increases and

the theoretical result from (27) coincides with the Monte-Carlo

simulated correlation. The results are further validated using

uniform azimuth angular distribution and the horizontal pattern

in (31). Fig. 5 illustrates the excellent agreement between our

derived and Monte-Carlo simulated result and establishes the

credibility of the proposed function. Fig. 6 investigates the

effect of azimuth angular spread on the correlation between Tx

antenna ports using angular distributions from the standards. A

decrease in the parameter κ for VM distribution corresponds

to an increase in the azimuth angular spread that leads to lower

values of correlation. An increase in elevation angular spread

σ also results in lower values of correlation as illustrated in

Fig. 7. In fact, small local angular spreads can cause antennas

to become highly correlated in the azimuth and elevation.

V. CONCLUSION

In this paper, we characterized the spatial correlation present

in a 3D MIMO channel. The conventional SCFs do not take

into account the effect of elevation and antenna patterns,

which renders them unsuitable for the evaluation of future

correlated 3D MIMO channels, currently being outlined in the

next generation of standards. We derived the proposed SCF

using SHE of plane waves and properties of Legendre and

associated Legendre polynomials. This generalized function

depends on the antenna patterns and angular densities through

the FS coefficients of PAS and PES, which play an important

role in characterizing the correlation. The interested users just

need to provide these FS coefficients for any choice of angular

distributions to obtain the correlation coefficients. Numerical

results show an excellent agreement between the theoretical

and simulated results. Therefore, our closed-form expression

for the generalized SCF can be effectively used to evaluate the

system performance of correlated 3D MIMO channels.
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