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Robust spiked random matrices
and a robust G-MUSIC estimatorI

Romain Couilleta

aTelecommunication department, Supélec, Gif sur Yvette, France

Abstract

A class of robust estimators of scatter applied to information-plus-impulsive
noise samples is studied, where the sample information matrix is assumed of
low rank; this generalizes the study (Couillet et al., 2013b) to spiked random
matrix models. It is precisely shown that, as opposed to sample covariance ma-
trices which may have asymptotically unbounded (eigen-)spectrum due to the
sample impulsiveness, the robust estimator of scatter has bounded spectrum
and may contain isolated eigenvalues which we fully characterize. We show
that, if found beyond a certain detectability threshold, these eigenvalues allow
one to perform statistical inference on the eigenvalues and eigenvectors of the
information matrix. We use this result to derive new eigenvalue and eigenvector
estimation procedures, which we apply in practice to the popular array pro-
cessing problem of angle of arrival estimation. This gives birth to an improved
algorithm based on the MUSIC method, which we refer to as robust G-MUSIC.

Keywords: random matrix theory, robust estimation, spiked models, MUSIC.

1. Introduction

The mathematical advances in the field of random matrix theory have re-
cently allowed for the improvement of sometimes old statistical estimation meth-
ods when the data have population size N is commensurable with the sample
size n, therefore disrupting the traditional assumption n � N . One of the
recent contributions of random matrix theory lies in the introduction of meth-
ods to retrieve information contained in low rank perturbations of large ma-
trices with independent entries, which are referred to as spiked models. The
initial study of such models (Baik and Silverstein, 2006) for matrices of the
type ŜN = 1

n (IN + A)XX∗(IN + A∗), where X ∈ CN×n has independent and
identically distributed (i.i.d.) zero mean, unit variance, and finite fourth mo-
ment entries and A has fixed rank L, has shown that, as N,n → ∞ with
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N/n → c ∈ (0,∞), ŜN may exhibit up to L isolated eigenvalues strictly
away from the bounded support of the limiting empirical distribution µ of
Ŝ◦N = 1

nXX
∗, while the other eigenvalues of ŜN get densely compacted in the

support of µ. This result has triggered multiple works on various low rank
perturbation models for Gram, Wigner, or general square random matrices
(Benaych-Georges and Rao, 2011; Paul, 2007; Benaych-Georges et al., 2010)
with similar conclusions. Of particular interest to us here is the information-
plus-noise model ŜN = 1

n (X + A)(X + A)∗ introduced in (Benaych-Georges
and Rao, 2011) which is closer to our present model. Other generalizations

explored the direction of turning X into the more general XT
1
2 model for

T = diag(τ1, . . . , τn) � 0, such that 1
n

∑n
i=1 δτi → ν weakly, where ν has

bounded support Supp(ν) and maxi{dist(τi,Supp(ν))} → 0 (Chapon et al.,
2012). In this scenario again, thanks to the fundamental assumption that no τi
can escape Supp(ν) asymptotically, only finitely many eigenvalues of ŜN can be
found away from the support of the limiting spectral distribution of 1

nXTX
∗,

and these eigenvalues are intimately linked to A.
The major interest of the spiked models in practice is twofold. First, if the

(non observable) perturbation matrix A constitutes the relevant information
to the system observer, then the observable isolated eigenvalues and associated
eigenvectors of ŜN contain information about A. These isolated eigenvalues and
eigenvectors are therefore important objects to characterize. Moreover, since
ŜN has the same limiting spectrum as that of simple random matrix models,
this characterization is usually quite easy and leads to tractable expressions
and computationally efficient algorithms. This led to notable contributions to
statistical inference and in particular to detection and estimation techniques for
signal processing (Mestre, 2008a; Nadler, 2010; Hachem et al., 2013; Couillet
and Hachem, 2012).

However, from the discussion of the first paragraph, these works have a few
severe practical limitations in that: (i) the support of the limiting spectral dis-
tribution of ŜN must be bounded for isolated eigenvalues to be detectable and
exploitable and (ii) no eigenvalue of Ŝ◦N (the unperturbed model) can be iso-

lated, to avoid risking a confusion between isolated eigenvalues of ŜN arising
from A and isolated eigenvalues of ŜN intrinsically linked to Ŝ◦N . This there-
fore rules out the possibility to straightforwardly extend these techniques in
practice to impulsive noise models XT

1
2 where T = diag(τ1, . . . , τn) with either

τi i.i.d. arising from a distribution with unbounded support or τi = 1 for all
but a few indices i. In the former case, the support of the limiting spectrum
of Ŝ◦N is unbounded (Couillet and Hachem, 2013, Proposition 3.4), therefore
precluding information detection, while in the latter spurious eigenvalues in the
spectrum of ŜN may arise that are also found in Ŝ◦N and therefore constitute
false information (note that this case can be seen as one where low rank pertur-
bations are present both in the population and in the sample directions which
cannot be discriminated). Such impulsive models are nonetheless fundamental
in many applications such as statistical finance or radar array processing, where
impulsive samples are classically met.
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Traditional statistical techniques to accommodate for impulsive samples fall
in the realm of robust estimation (Maronna et al., 2006), the study of which has
long remained limited to the assumption n� N . Recently though, in a series of
articles (Couillet et al., 2013a,b; Couillet and McKay, 2013), the author of the
present article and his coauthors provided a random matrix analysis of robust
estimation, i.e., assuming N,n→∞ and N/n→ c ∈ (0, 1), which revealed that
robust sample estimates Ĉ◦N of scatter (or covariance) matrices can be fairly
easily analyzed through simpler equivalent random matrix models. In (Couillet
et al., 2013b), a noise-only setting of the present article is considered, i.e., with
A = 0, for which it is precisely shown that robust estimators of scatter can be
assimilated as special models of the type of Ŝ◦N .1 Besides, it importantly appears

that the limiting spectrum distribution of Ĉ◦N always has bounded support,
irrespective of the impulsiveness of the samples. Also, it is proved (although not
mentioned explicitly) that, asymptotically, isolated eigenvalues of Ĉ◦N (arising
from isolated τi) can be found but that none of the eigenvalues can exceed a
fixed finite value.

In the present work, we extend the model studied in (Couillet et al., 2013b)
by introducing a finite rank perturbation A to the robust estimator of scale Ĉ◦N ,

the resulting matrix being denoted ĈN . As opposed to non-robust models, it
shall appear (quite surprisingly on the onset) that ĈN now allows for finitely
many isolated eigenvalues to appear beyond the aforementioned fixed finite value
(referred from now on to as the detection threshold), these eigenvalues being
related to A. This holds even if 1

n

∑n
i=1 δτi has unbounded support in the large

n regime. As such, any isolated eigenvalue of ĈN found below the detection
threshold may carry information about A or may merely be an outlier due to an
isolated τi (as in the non-robust context) but any eigenvalue found beyond the
detection threshold necessarily carries information about A. This has important
consequences in practice as now low rank perturbations in the sample direction
are appropriately harnessed by the robust estimator while the (more relevant)
low rank perturbations in the population direction can be properly estimated.
We shall introduce an application of these results to array processing by provid-
ing two novel estimators for the power and steering direction of signals sources
captured by a large sensor array under impulsive noise.

Our contribution thus lies on both theoretical and practical grounds. We
first introduce in Theorem 1 the generalization of (Couillet et al., 2013b) to
the perturbed model ĈN which we precisely define in Section 2. The main
results are then contained in Section 3. In this section, Theorem 2 provides
the localization of the eigenvalues of ĈN in the large system regime along with
associated population eigenvalue and eigenvector estimators when the limiting
distribution for 1

n

∑n
i=1 δτi is known. This result is then extended in Theorem 3

thanks to a two-step estimator where the τi are directly estimated. A practical

1These models are special in that XTX∗ becomes now XTV X∗ for a diagonal matrix V
which makes V T bounded in norm. However, V contains non-observable information about
T , which makes Ŝ◦

N only observable through its approximation by Ĉ◦
N .
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application of these novel methods to the context of steering angle estimation for
array processing is then provided, leading to an improved algorithm referred to
as robust G-MUSIC. Simulation results in this context are then displayed that
confirm the improved performance of using robust schemes versus traditional
sample covariance matrix-based techniques. We finally close the article with
concluding remarks in Section 4.

Notations: Vectors and matrices are represented in lower- and upper-case
characters, respectively. Transpose and Hermitian transpose of X are denoted
respectively by XT and X∗. The norm ‖ · ‖ is the spectral norm for matrices

and the Euclidean norm for vectors. The matrix T
1
2 is the nonnegative definite

square root of the Hermitian nonnegative definite matrix T . The eigenvalues of
a Hermitian matrix X ∈ CN×N are denoted in order as λ1(X) ≥ . . . ≥ λN (X).
Hermitian matrix ordering is denoted X � Y , i.e., X−Y is nonnegative definite.
The support of a measure µ is denoted Supp(µ). Almost sure convergence will

be sometimes denoted “
a.s.−→”. The Dirac measure at x is denoted δx.

2. Model and Motivation

Let n ∈ N. For i ∈ {1, . . . , n}, we consider the following statistical model

yi =

L∑
l=1

√
plalsli +

√
τiwi (1)

with yi ∈ CN satisfying the following hypotheses.

Assumption 1. The vectors y1, . . . , yn ∈ CN satisfy the following conditions:

1. τ1, . . . , τn ∈ (0,∞) are random scalars such that νn , 1
n

∑n
i=1 δτi → ν

weakly, almost surely, where
∫
tν(dt) = 1;

2. w1, . . . , wn ∈ CN are random independent unitarily invariant
√
N -norm

vectors, independent of τ1, . . . , τn;

3. L ∈ N, p1 ≥ . . . ≥ pL ≥ 0 are deterministic and independent of N

4. a1, . . . , aL ∈ CN are deterministic or random and such that

A∗A
a.s.−→ diag(p1, . . . , pL)

as N →∞, with A , [
√
p1a1, . . . ,

√
pLaL] ∈ CN×L

5. s1,1, . . . , sLn ∈ C are independent with zero mean, unit variance, and uni-
formly bounded moments of all orders.

For further use, we shall define

Ai ,
[√
p1a1 . . .

√
pLaL

√
τiIN

]
∈ CN×(N+L).

In particular, AiA
∗
i = AA∗ + τiIN .
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Remark 1 (Application contexts). The system (1) can be adapted to mul-
tiple scenarios in which the sli model scalar signals or data originated from L
sources of respective powers p1, . . . , pL carried by the vectors a1, . . . , aL, while
the
√
τiwi model additive impulsive noise. Two examples are:

• wireless communication channels in which signals sli originating from L
transmitters are captured by an N -antenna receiver. The vectors al are
here random independent channels for which it is natural to assume that
a∗l al′ → δl−l′ (e.g., for independent al ∼ CN(0, IN/N));

• array processing in which L sources emit signals sli captured by an antenna
array through steering vectors al = a(θl) for a given a(θ) function and
angles of arrival θ1, . . . , θL ∈ [0, 2π). In the case of uniform linear arrays

with inter-antenna distance d, [a(θ)]j = N−
1
2 exp(2πıdj sin(θ)).

The noise impulsiveness is translated by the τi coefficients. The vectors
√
τiwi

are for instance i.i.d. elliptic random vectors if the τi are i.i.d. with absolutely
continuous measure ν̃n having a limit ν̃ (in which case, we easily verify that
νn → ν = ν̃ almost surely (a.s.)). This particularizes to additive white Gaussian
noise if 2Nτi is chi-square with 2N degrees of freedom (in this case, ν = δ1). Of
interest in this article is however the scenarios where ν has unbounded support,
e.g., when the τi are either random i.i.d. and heavy-tailed or contain a few
arbitrarily large outliers, which both correspond to impulsive noise scenarios.

Remark 2 (Technical comments). From a purely technical perspective, it is
easily seen from the proofs of our main results in Section 5 that some of the items
of Assumption 1 could have been relaxed. In particular, Item (4) could have been
relaxed into “all accumulation points of A∗A are similar to diag(q1, . . . , qL) for
given q1 ≥ . . . ≥ qL” as in e.g., (Chapon et al., 2012). Also, similar to (Couillet
et al., 2013b), the convergence of νn in Item (1) could be relaxed to the cost
of introducing a tightness condition on the sequence {νn}∞n=1 and to loose the
convergence of measure in the discussion following Theorem 1. For readability
and since Assumption 1 gathers most of the scenarios of interest, we restrict
ourselves to those (already quite general) hypotheses.

We now define the robust estimate of scatter ĈN . We start by denoting
u : [0,∞)→ (0,∞) any function satisfying the following hypotheses.

Assumption 2. The function u is characterized by

1. u is continuous, nonnegative, and non-increasing from [0,∞) onto (0, u(0)] ⊂
(0,∞);

2. for x ≥ 0, φ(x) , xu(x) is increasing and bounded with

φ∞ , lim
x→∞

φ(x) > 1

3. there exists m > 0 such that ν([0,m)) < 1− φ−1
∞ ;
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4. for all a > b > 0,

lim sup
t→∞

ν((t,∞))

φ(at)− φ(bt)
= 0.

These assumptions are the same as in Couillet et al. (2013b) which are therefore
not altered by the updated model (1).

The function u being given, we now define ĈN , when it exists, as the unique
solution to the fixed-point matrix-valued equation in Z:

Z =
1

n

n∑
i=1

u

(
1

N
y∗i Z

−1yi

)
yiy
∗
i .

For i ∈ {1, . . . , N}, we shall denote λ̂i , λi(ĈN ) and ûi ∈ CN the i-th largest
eigenvalue of ĈN and its associated eigenvector.

Due to its implicit formulation, the study of ĈN for every fixed N,n couple
is quite involved in general. As such, similar to (Couillet et al., 2013b), we shall
place ourselves in the regime where both N and n are large but with non trivial
ratio. Hence, we shall assume the following system growth regime.

Assumption 3. The integer N = N(n) is such that cn , N/n satisfies

lim
n→∞

cn = c ∈ (0, φ−1
∞ ).

Meanwhile, L remains constant independently of N,n.

Up to differences in the hypotheses of Assumption 2 and Assumption 3, and
a slight difference in notations, ĈN is exactly the robust estimator of scatter
proposed by Maronna in (Maronna, 1976). As a direct application of (Chitour
et al., 2014), under Assumption 1 and Assumption 2, ĈN is almost surely well
defined for each couple N,n with N < n. Also, from (Couillet et al., 2013b),
ĈN can be written (at least for all large n) in the technically more convenient
form (see discussions in (Couillet et al., 2013b))

ĈN =
1

n

n∑
i=1

v

(
1

N
y∗i Ĉ

−1
(i) yi

)
yiy
∗
i

where v : x 7→ u◦g−1, g : x 7→ x/(1−cnφ(x)), and Ĉ(i) = ĈN−u
(

1
N y
∗
i Ĉ
−1
N yi

)
yiy
∗
i .

We shall further denote ψ(x) = xv(x). It is easy to see that v is non-increasing
while ψ is increasing with limit ψ∞ = φ∞/(1− cnφ∞).

With these definitions in place, we are now in position to present our main
results.

3. Main Results

The first objective of the article is to study the spectrum of ĈN and in
particular its largest eigenvalues λ̂1 ≥ . . . ≥ λ̂L and associated eigenvectors
û1, . . . , ûL, in the large N,n regime. This study will in turn allow us to retrieve
information on p1, . . . , pL and a1, . . . , aL. As an application, a novel improved
angle estimator for array processing will then be provided.
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3.1. Localisation and estimation

Our first result is an extension of (Couillet et al., 2013b, Theorem 2) which
states that ĈN , the implicit structure of which makes it complicated to analyze,
can be appropriately replaced by a more practical random matrix ŜN , which is
much easier to study.

Theorem 1 (Asymptotic model equivalence). Let Assumptions 1, 2, and 3
hold. Then

‖ĈN − ŜN‖
a.s.−→ 0

where

ŜN ,
1

n

n∑
i=1

vc(τiγ)Aiw̄iw̄
∗
iA
∗
i

with γ the unique solution to

1 =

∫
ψc(tγ)

1 + cψc(tγ)
ν(dt)

vc and ψc the limits of v and ψ as cn → c, and w̄i = [s1i, . . . , sLi, wiri/
√
N ]T,

with ri ≥ 0 such that 2Nr2
i is a chi-square random variable with 2N degrees of

freedom, independent of wi.
2

Remark 3 (From robust estimator to sample covariance matrix). Note
that, if the function vc in the expression of ŜN were replaced by the constant 1
(and ri/

√
N set to one), ŜN would be the classical sample covariance matrix of

y1, . . . , yn. Although it is here highly non rigorous to let vc tend to 1 uniformly
in Theorem 1, this remark somewhat reveals the classical robust estimation in-
tuition according to which the larger φ∞ (as a consequence of u and vc being
close to 1) the less robust ĈN .

As a corollary of Theorem 1, we have

max
1≤i≤N

∣∣∣λ̂i − λi(ŜN )
∣∣∣ a.s.−→ 0 (2)

(which unfolds from applying (Horn and Johnson, 1985, Theorem 4.3.7)) and
therefore all eigenvalues of ĈN can be accurately controlled through the eigen-
values of ŜN .

2Note that wiri/
√
N as defined above is a standard Gaussian vector and therefore w̄i

has independent entries of zero mean and unit variance. In fact, the result can be equiva-
lently formulated with w̄i replaced by ¯̄wi , [s1i, . . . , sLi, wi]

T, but the former vector, having
independent entries, is of more interest statistically.

7



Let us assume for a moment that p1 = . . . = pL = 0. Then, from Theorem 1,
Assumption 1, and (Silverstein and Choi, 1995), µn , 1

N

∑N
i=1 δλ̂i → µ weakly,

a.s., where µ has a density on R with bounded support Supp(µ) ⊂ R+. Denote

S−µ , inf(Supp(µ))

S+
µ , sup(Supp(µ))

S+ ,
φ∞(1 +

√
c)2

γ(1− cφ∞)
.

Since τivc(τiγ) = γ−1ψc(τiγ) < γ−1ψc,∞ with ψc,∞ = φ∞/(1− cφ∞), we have

ŜN �
φ∞

γ(1− cφ∞)

1

n

n∑
i=1

wiw
∗
i

so that, according to (Marc̆enko and Pastur, 1967; Bai and Silverstein, 1998)

and (2), for each ε > 0, λ̂1 < S+ + ε for all large n a.s. Of course, S+ ≥ S+
µ . If

in addition max1≤i≤n{dist(τi,Supp(ν))} a.s.−→ 0, then from (Bai and Silverstein,

1998), we even have λ̂1
a.s.−→ S+

µ ; but this constraint is of little practical interest

so that in general one may have S+
µ < λ̂1 < S+ infinitely often.

Coming back to generic values for p1, . . . , pL, the idea of the results below
is that, for sufficiently large p1, . . . , pL, the eigenvalues λ̂1, . . . , λ̂L may exceed
S+ + ε and contain information to estimate p1, . . . , pL as well as bilinear forms
involving a1, . . . , aL. The exact location of the eigenvalues and the value of
these estimates shall be expressed as a function of the fundamental object δ(x),
defined for x ∈ R∗ \ [S−µ , S

+
µ ] as the unique real solution to

δ(x) = c

(
−x+

∫
tvc(tγ)

1 + δ(x)tvc(tγ)
ν(dt)

)−1

.

The function δ(x) is the restriction to R∗ \ [S−µ , S
+
µ ] of the Stieltjes transform of

cµ+ (1− c)δ0 and is, as such, increasing on (S+,∞) ⊂ (S+
µ ,∞); see (Silverstein

and Choi, 1995; Couillet and Hachem, 2013) and Section 5 for details. Therefore,
the following definition of p−, which will be referred to as the detectability
threshold, is licit

p− , lim
x↓S+

−c
(∫

δ(x)vc(tγ)

1 + δ(x)tvc(tγ)
ν(dt)

)−1

.

We shall further denote L , {j, pj > p−}.

We are now in position to provide our main results.

Theorem 2 (Robust estimation under known ν). Let Assumptions 1, 2,
and 3 hold. Denote uk the eigenvector associated with the k-th largest eigenvalue
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of AA∗ (in case of multiplicity, take any vector in the eigenspace with u1, . . . , uL
orthogonal) and û1, . . . , ûN the eigenvectors of ĈN respectively associated with

the eigenvalues λ̂1 ≥ . . . ≥ λ̂N . Then, we have the following three results.

0. Extreme eigenvalues. For each j ∈ L,

λ̂j
a.s.−→ Λj > S+

while lim supn λ̂|L|+1 ≤ S+ a.s., where Λj is the unique positive solution to

−c
(
δ(Λj)

∫
vc(τγ)

1 + δ(Λj)τvc(τγ)
ν(dτ)

)−1

= pj .

1. Power estimation. For each j ∈ L,

−c

(
δ(λ̂j)

∫
vc(τγ)

1 + δ(λ̂j)τvc(τγ)
ν(dτ)

)−1

a.s.−→ pj .

2. Bilinear form estimation. For each a, b ∈ CN with ‖a‖ = ‖b‖ = 1, and
j ∈ L ∑

k,pk=pj

a∗uku
∗
kb−

∑
k,pk=pj

wka
∗ûkû

∗
kb

a.s.−→ 0

where

wk =

∫
vc(tγ)(

1 + δ(λ̂k)tvc(tγ)
)2 ν(dt)

∫
vc(tγ)

1 + δ(λ̂k)tvc(tγ)
ν(dt)

1− 1

c

∫
δ(λ̂k)2t2vc(tγ)2(

1 + δ(λ̂k)tvc(tγ)
)2 ν(dt)


.

Item 0. in Theorem 2 provides a necessary and sufficient condition, i.e.,
pj > p−, for the existence of outlying eigenvalues in the spectrum of ĈN . In
turn, this provides a means to estimate each pj , j ∈ L, along with bilinear forms

involving aj , from λ̂j and ûj . It is important here to note that, although the
right-edge of the spectrum of µ is S+

µ , due to the little control on τi in practice
(in particular some of the τi may freely be arbitrarily large), isolated eigenvalues
may be found infinitely often beyond S+

µ which do not carry information. This
is why the (possibly pessimistic) choice of S+ as an eigenvalue discrimination
threshold was made. The major potency of the robust estimator ĈN is indeed
to be able to maintain these non informative eigenvalues below the known value
S+. As such, eigenvalues found above S+ must contain information about A (at
least with high probability) and this information can be retrieved, while isolated
eigenvalues found below S+ may arise from spurious values of τi, therefore
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containing no relevant information, or may contain relevant information but
that cannot be trusted.

Figure 1 and Figure 2 provide the histogram and limiting spectral distribu-
tion of ĈN and 1

nY Y
∗, Y = [y1, . . . , yn], respectively, for u(x) = (1+α)/(α+x),

α = 0.2, N = 200, n = 1000, τi i.i.d. equal in distribution to t2(β − 2)β−1 with
t a Student-t random scalar of parameter β = 100, and L = 2 with p1 = p2 = 1,
a1 = a(θ1), a2 = a(θ2), θ1 = 10◦, θ2 = 12◦, a(θ) being defined in Remark 1 (as
well as in Assumption 4 below). These curves confirm that, while the limiting
spectral measure of 1

nY Y
∗ is unbounded, that of ĈN is bounded. The numer-

ically evaluated values of S+
µ and S+ are reported in Figure 1. They reveal a

rather close proximity between both values. In terms of empirical eigenvalues,
note the particularly large gap between the isolated eigenvalues of ĈN and the
N−2 smallest ones, which may seem at first somewhat surprising for p1 = p2 = 1
since this setting induces a ratio 1 between the power carried by information
versus noise (indeed, A∗A ' I2 while E[τiwiw

∗
i ] = IN ); this in fact results from

the function u which, in attenuating the rare samples of large amplitudes, sig-
nificantly reduces the noise power but only weakly affects the information part
which has roughly constant amplitude across the samples. Also observe from
Figure 2 that, as predicted, the largest two eigenvalues of 1

nY Y
∗ do not isolate

from the majority of the eigenvalues.

0 0.2 0.4 0.6 0.8 1 1.2
0

2

4

6

8

S+

S+
µ Λ1

Eigenvalues

D
en

si
ty

Eigenvalues of ĈN

Limiting spectral measure µ

Figure 1: Histogram of the eigenvalues of ĈN against the limiting spectral measure, for
u(x) = (1 + α)/(α + x) with α = 0.2, L = 2, p1 = p2 = 1, N = 200, n = 1000, Student-t
impulsions.

Items 1. and 2. in Theorem 2 then provide a means to estimate p1, . . . , p|L|
and bilinear forms involving the eigenvectors of AA∗. In particular, if pk has
multiplicity one in diag(p1, . . . , pL), the summations in Item 2. are irrelevant and
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Figure 2: Histogram of the eigenvalues of 1
n
Y Y ∗ against the limiting spectral measure, L = 2,

p1 = p2 = 1, N = 200, n = 1000, Sudent-t impulsions.

we obtain an estimator for a∗uku
∗
kb. These however explicitly rely on ν which,

for practical purposes, might be of limited interest if the τi are statistically
unknown. It turns out, from a careful understanding of γ, that

γ − γ̂n
a.s.−→ 0

where

γ̂n ,
1

n

n∑
i=1

1

N
y∗i Ĉ

−1
(i) yi (3)

and Ĉ(i) = ĈN − 1
nu( 1

N y
∗
i Ĉ
−1
N yi)yiy

∗
i . Also, for any M > 0,

max
1≤j≤n
τj≤M

|τj − τ̂j |
a.s.−→ 0, max

1≤j≤n
τj>M

∣∣1− τ−1
j τ̂j

∣∣ a.s.−→ 0

where

τ̂i ,
1

γ̂n

1

N
y∗i Ĉ

−1
(i) yi. (4)

Details of these results are provided in Section 5. Letting ε > 0 small, for
x ∈ (S+ +ε,∞) and for all large n a.s., we then denote δ̂(x) the unique negative
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solution to3

δ̂(x) = cn

(
−x+

1

n

n∑
i=1

τ̂ivc(τ̂iγ̂n)

1 + δ̂(x)τ̂ivc(τ̂iγ̂n)

)−1

. (5)

From this, we then deduce the following alternative set of power and bilinear
form estimators.

Theorem 3 (Robust estimation for unknown ν). With the same notations

as in Theorem 2, and with γ̂n, τ̂i, and δ̂ defined in (3)–(5), we have the following
results.

1. Purely empirical power estimation. For each j ∈ L,

−

(
δ̂(λ̂j)

1

N

n∑
i=1

v(τ̂iγ̂n)

1 + δ̂(λ̂j)τ̂iv(τ̂iγ̂n)

)−1

a.s.−→ pj .

2. Purely empirical bilinear form estimation. For each a, b ∈ CN with ‖a‖ =
‖b‖ = 1, and each j ∈ L,∑

k,pk=pj

a∗uku
∗
kb−

∑
k,pk=pj

ŵka
∗ûkû

∗
kb

a.s.−→ 0

where

ŵk =

1

n

n∑
i=1

v(τ̂iγ̂n)(
1 + δ̂(λ̂k)τ̂iv(τ̂iγ̂n)

)2

1

n

n∑
i=1

v(τ̂iγ̂n)

1 + δ̂(λ̂k)τ̂iv(τ̂iγ̂n)

1− 1

N

n∑
i=1

δ̂(λ̂k)2τ2
i v(τ̂iγ̂n)2(

1 + δ̂(λ̂k)τ̂iv(τ̂iγ̂n)
)2


.

Theorem 3 provides a means to estimate powers and bilinear forms without
any statistical knowledge on the τi, which are individually estimated. It is
interesting to note that, since ν is only a limiting distribution, for practical
systems, there is a priori no advantage in using the knowledge of ν or not. In
particular, if n is not too large in practice or if ν has heavy tails, it is highly
probable that νn be quite distinct from ν, leading the estimators in Theorem 1
to be likely less accurate than the estimators in Theorem 2. Conversely, if N is
not too large, τ̂i may be a weak estimate for τi so that, if ν has much lighter
tails, the estimators of Theorem 1 may have a better advantage. Theoretical
performance comparison between both schemes would require to exhibit central
limit theorems for these quantities, which we discuss in Section 4 but goes here
beyond the scope of the present work.

3Remark here that, since τ̂i, similar to τi, may be found away from Supp(ν), δ̂(x) may not
be defined everywhere in (S+

µ , S
+) but is defined beyond S+ + ε for n large a.s.
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3.2. Application to angle estimation

An important application of Theorem 1 and Theorem 2 is found in the
context of array processing, briefly evoked in the second item of Remark 1, in
which ai = a(θi) for some θi ∈ [0, 2π). For theoretical convenience, we use the
classical linear array representation for ai as follows.

Assumption 4. For i ∈ {1, . . . , L}, ai = a(θi) with θ1, . . . , θL distinct and, for
d > 0 and θ ∈ [0, 2π),

a(θ) = N−
1
2 [exp(2πıdj sin(θ))]N−1

j=0 .

The objective in this specific model is to estimate θ1, . . . , θL from the observa-
tions y1, . . . , yn. In the regime n� N with non-impulsive noise, this is efficiently
performed by the traditional multiple signal classification (MUSIC) algorithm
from (Schmidt, 1986). Using the fact that the vectors a(θi), i ∈ {1, . . . , L}, are
orthogonal to the subspace spanned by the eigenvectors with eigenvalue 1 of
E[y1y

∗
1 ] = AA∗+ IN , the algorithm consists in retrieving the deepest minima of

the nonnegative localization function η̂ defined for θ ∈ [0, 2π) by

η̂(θ) = a(θ)∗Π 1
nY Y

∗a(θ)

where Π 1
nY Y

∗ is a projection matrix on the subspace associated with the N −L
smallest eigenvalues of 1

nY Y
∗. Indeed, as 1

nY Y
∗ is an almost surely consistent

estimate for E[y1y
∗
1 ] in the large n regime, η̂(θ)

a.s.−→ η(θ) where

η(θ) = a(θ)∗ΠE[y1y∗1 ]a(θ)

with here ΠE[y1y∗1 ] a projection matrix on the subspace associated with the

eigenvalue 1 in E[y1y
∗
1 ]; as such, η̂(θ)

a.s.−→ 0 for θ ∈ {θ1, . . . , θL} and to a positive
quantity otherwise. In (Mestre, 2008b), Mestre proved that this algorithm is
however inconsistent in the regime of Assumption 3. This led to (Mestre, 2008a)
in which an improved estimator (the G-MUSIC estimator) for θ1, . . . , θL was
designed, however for a more involved model than the spiked model (i.e., L
is assumed commensurable with N). In (Loubaton and Vallet, 2010), a spiked
model hypothesis was then assumed (i.e., with L small compared to N,n) which
unfolded into a more practical and more theoretically tractable spiked G-MUSIC
estimator. Similar to MUSIC, the latter consists in determining the deepest
minima of an alternative localization function η̂G(θ), which we shall define in a
moment.

Although improved with respect to MUSIC, both algorithms still rely on
exploiting the largest isolated eigenvalues of 1

nY Y
∗ and the asymptotic bound-

edness of the noise spectrum. From the discussions in Section 1 and after The-
orem 2, under the generic Assumption 1 with τi allowed to grow unbounded,
these methods are now unreliable and in fact inefficient. From Item 2. in both
Theorem 2 and Theorem 3, it is now possible to provide a consistent estimation
method based on two novel localization functions η̂RG and η̂emp

RG . The result-
ing algorithms are from now on referred to as robust G-MUSIC and empirical
robust G-MUSIC, respectively.
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Corollary 1 (Robust G-MUSIC). Let Assumptions 1–4 hold. Let 0 < κ <
mini,j |θi − θj | and denote Rκi = [θi − κ/2, θi + κ/2]. Also define η̂RG(θ) and
η̂emp

RG (θ) as

η̂RG(θ) = 1−
|L|∑
k=1

wka(θ)∗ûkûka(θ)

η̂emp
RG (θ) = 1−

|L|∑
k=1

ŵka(θ)∗ûkûka(θ)

where we used the notations from Theorems 2 and 3. Then, for each j ∈ L,

θ̂j
a.s.−→ θj

θ̂emp
j

a.s.−→ θj

where

θ̂j , argminθ∈Rκj {η̂RG(θ)}

θ̂emp
j , argminθ∈Rκj {η̂

emp
RG (θ)} .

With the same reasoning as in Remark 3, it is now easy to check that,
letting the vc or v functions be replaced by the constant 1 in the expressions
of wk and ŵk, respectively, we fall back on G-MUSIC schemes devised in e.g.,
(Loubaton and Vallet, 2010). In what follows, we then define η̂G(θ) and η̂emp

G (θ)
similarly to η̂RG(θ) and η̂emp

RG (θ) but with the functions vc and v replaced by the

constant 1 and with the couples (λ̂k, ûk) replaced by the k-th largest eigenvalue
and associated eigenvectors of 1

nY Y
∗. For a further comparison of the various

methods, we also denote by η̂R(θ) the robust counterpart to η̂(θ) defined by
η̂R(θ) = a(θ)∗ΠĈN

a(θ) with ΠĈN
a projection matrix on the subspace associated

with the N − L smallest eigenvalues of ĈN .
Simulation curves are provided below which compare the performance of the

various improved MUSIC techniques. Since the methods based on the extraction
of δ(λ̂i) may be void when this value does not exist, we blindly proceed by

solving the fixed-point equation defining δ(λ̂i) thanks to the standard fixed-
point algorithm until convergence or until a maximum number of iterations is
reached. This effect is in fact marginal as it is theoretically highly probable
that eigenvalues be found beyond S+

µ for each finite N,n. We also assume L =
{1, . . . , L} even if this does not hold, which in practice one cannot anticipate.
Voluntarily disrupting from the theoretical claims of Theorems 1–3 will allow for
an observation of problems arising when the assumptions are not fully satisfied.
In all simulation figures, we consider u(x) = (1 + α)(α + x)−1 with α = 0.2,
N = 20, n = 100, L = 2, θ1 = 10◦, θ2 = 12◦. The noise impulsions are of
two types: (i) single outlier impulsion for which τi = 1, i ∈ {1, . . . , n − 1}
and τn = 100, or (ii) Student impulsions for which τi = t2(β − 2)β−1 with t a
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Figure 3: Random realization of the localization functions for the various MUSIC estimators,
with N = 20, n = 100, two sources at 10◦ and 12◦, Student-t impulsions with parameter
β = 100, u(x) = (1 + α)/(α+ x) with α = 0.2. Powers p1 = p2 = 100.5 = 5 dB.

Student-t random variable with parameter β = 100 (the normalization ensures
E[τ1] = 1).

Figure 3 provides a single realization (but representative of the multiple re-
alizations we simulated) of the various localization functions η̂X and η̂emp

X for
θ in the vicinity of θ1, θ2, X being void, R, or RG. The scenario considered is
that of a Student-t noise and p1 = p2 = 1. The figure confirms the advantage
of the methods based on ĈN over 1

nY Y
∗ which unfolds from the proper ex-

treme eigenvalue isolation observed under the same setting in Figure 1 against
Figure 2. Due to N/n being non trivial, while the robust G-MUSIC methods
accurately discriminate both angles at their precise locations and with appropri-
ate localization function amplitude, the robust MUSIC approach discriminates
the two angles at erroneous locations and erroneous localization function ampli-
tude. Benefiting from the random matrix advantage, G-MUSIC in turn behaves
better in amplitude than MUSIC but cannot discriminate angles. Observe also
here that both empirical and non-empirical robust G-MUSIC approaches behave
extremely similar (both curves are visually superimposed), suggesting that with
β = 100 the samples from the Student-t distribution represent sufficiently well
the actual distribution of τ1v(τ1γ). This no longer holds for G-MUSIC versus
empirical G-MUSIC, in which case the approximation of νn by the distribution
ν of τ1 is not appropriate.

Figure 4 and Figure 5 provide the mean square error performance for the
first angle estimation E[|θ̂1 − θ1|2] as a function of the source powers p1 = p2;
the estimates are based for each estimator on retrieving the local minima of η̂X .
For fair comparison, the two deepest minima of the localization functions are
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extracted and θ̂1 is declared to be the estimated angle closest to θ1 (in particular,

if a unique minimum is found close to any θi, θ̂1 is attached to this minimum).
Figure 4 assumes the Student-t impulsion scenario of Figure 3, while Figure 5 is
concerned with the outlier impulsion model previously described. Both figures
further confirm the advantage brought by the robust G-MUSIC scheme with
asymptotic equivalence between empirical or non-empirical in the large source
power regime. We observe in particular the outstanding advantage of (robust
or not) G-MUSIC methods which perform well at high source power, while
standard methods saturate. Interestingly, from Figure 4, the G-MUSIC schemes
perform well in the high source power regime, which corresponds to scenarios in
which the noise impulsion amplitudes are often small enough compared to source
power to be assumed bounded and G-MUSIC is then consistent. Nonetheless,
G-MUSIC never closes the gap with robust G-MUSIC which is likely explained
by the much larger spacing between noise and information eigenvalues in the
spectrum of ĈN . The situation is different in Figure 5 where G-MUSIC almost
meets the performance of robust G-MUSIC at very high power, while performing
poorly below 20 dB. This is explained by the presence of a single additional
eigenvalue of amplitude around 100 (i.e., 20 dB) in the spectrum of 1

nY Y
∗ which

corrupts the G-MUSIC algorithm as long as this amplitude is larger than these
of the two informative eigenvalues due to the steering vectors (about p1).
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Figure 4: Means square error performance of the estimation of θ1 = 10◦, with N = 20,
n = 100, two sources at 10◦ and 12◦, Student-t impulsions with parameter β = 10, u(x) =
(1 + α)/(α+ x) with α = 0.2, p1 = p2.
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Figure 5: Means square error performance of the estimation of θ1 = 10◦, with N = 20,
n = 100, two sources at 10◦ and 12◦, sample outlier scenario τi = 1, i < n, τn = 100,
u(x) = (1 + α)/(α+ x) with α = 0.2, p1 = p2.

4. Concluding Remarks

Robust estimators of scatter were originally designed to provide improved
covariance (or scatter) matrix estimates of non-Gaussian zero mean random
vectors, consistent in the regime n → ∞, which are particularly suited to el-
liptical samples (Maronna, 1976; Tyler, 1987) or to accommodate for outliers
(Huber, 1964). Similar to the more classical sample covariance matrix, the large
n consistency however falls short when the population size N is large as well.
Random matrix methods allows one to restore consistency in this regime by
providing alternative estimation methods of spectral properties of the popula-
tion covariance or scatter matrices. This is the result of a two-step method: (i)
the analysis of the limiting spectrum of the covariance estimators ((Marc̆enko
and Pastur, 1967) for sample covariance matrices and (Couillet et al., 2013b)
for robust estimates of scatter) and (ii) the introduction of improved statistical
inference methods. For sample covariance matrices, Point (ii) is the result of
the works of Girko (Girko, 1987) and more recently Mestre (Mestre, 2008a).
The present article provides a first instance of Point (ii) for robust estimators of
scatter. The need here for a restriction to a spiked model (while (Girko, 1987;
Mestre, 2008a) treat more generic models) is intimately related to the struc-
ture of the approximation ŜN of ĈN which heavily depends on a non-observable
variable γ which may in general be itself an involved function of the parameters
to be estimated.

The interest of robust methods is to harness the effect of rare sample outliers,
the concatenation of which can be seen as a small rank perturbation matrix of
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the data sample matrix. A non obvious outcome of the present study is that,
while sample covariance matrices equally treat small rank sample and pop-
ulation perturbations by creating non distinguishable spikes in the spectrum,
robust estimates of scatter isolate sample versus population perturbations. This
makes it possible to specifically estimate information carried by population per-
turbations, which is one important consequence of Theorem 2. The practical
purpose of this discriminative advantage is obvious and was exemplified by the
introduction in Corollary 1 of an improved angle of arrival estimation method
which is resilient to sample outliers.

However, since robust estimators of scatter are non unique (Maronna’s es-
timators are defined through u and other estimators such as Tyler’s exist),
this naturally raises the question of an optimal estimator choice. These ques-
tions demand more advanced studies on second order statistics for given per-
formance metrics. Initial investigations are optimistic as they suggest that, on
top of ‖ĈN − ŜN‖

a.s.−→ 0, differences of linear spectrum functionals of the type∫
fdµĈN −

∫
fdµŜN , with µX the empirical spectral distribution of X and f

a continuous and bounded function, have much weaker fluctuations than each
integral around its mean; this indicates that fluctuations of functionals of ĈN
can be studied equivalently through the much more tractable fluctuations of
functionals of ŜN .

5. Proof of the main results

5.1. Notations

Throughout the proof, we shall use the following shortcut notations:

T = diag({τi}ni=1) ∈ Cn×n

V = diag({vc(τiγ}ni=1) ∈ Cn×n

S = [{sij}1≤i≤L,1≤j≤n] ∈ CL×n

W = [w1, . . . , wn] ∈ CN×n

W̃ = [w̃1, . . . , w̃n] ∈ CN×n

with w̃i = wiri/
√
N as in the statement of Theorem 1. We shall expand A

as the singular value decomposition A = UΩŪ∗ with U ∈ CN×L isometric,
Ω = diag(σ1, . . . , σL), σ1 ≥ . . . ≥ λL ≥ 0, and Ū ∈ CL×L unitary.

We also define

Ŝ◦N =
1

n

n∑
i=1

τivc(τiγ)w̃iw̃
∗
i =

1

n
W̃TV W̃ ∗

which corresponds to ŜN with p1 = . . . = pL = 0, i.e., with no perturbation,
and

Q◦z = (Ŝ◦N − zIN )−1 =

(
1

n
W̃TV W̃ ∗ − zIN

)−1
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the resolvent of Ŝ◦N .
For couples (η,Mη), η < 1, such that ν((0,Mη)) > 0 and ν((Mη,∞)) < η,

it will be necessary to define Tη the matrix T in which all values of τi greater
or equal to Mη are replaced by zeros, and similarly for Vη. Denote also γη the
unique solution to

1 =

∫
τ<Mη

ψc(τγ
η)ν(dτ)

1 + cψc(τγη)
. (6)

and ŜN,η the resulting ŜN matrix with all τi greater than Mη discarded and γ
replaced by γη.

Finally, we further define T(j) = diag({τi}i6=j) and similarly for V(j), S(j),

W̃(j), Ŝ(j) = ŜN,(j) the matrices with column or component j discarded, as well
as T(j),η the matrix Tη with row-and-column j discarded, and similarly V(j),η,

S(j),η, W̃(j),η, Ŝ(j),η the corresponding matrices with column or component j
discarded.

5.2. Overall proof strategy

The existence and uniqueness of ĈN as defined in the statement of Theorem 1
follows immediately from (?, Theorem 2.2) (which is more general than (Couillet
et al., 2013b, Theorem 1) established by the author in a previous article). One of
the key elements of the proof of convergence in Theorem 1 is to ensure that there
exists ε > 0 such that, for all large n a.s., all eigenvalues of {Ŝ(j), 1 ≤ j ≤ n}
(and also of {Ŝ(j),η, 1 ≤ j ≤ n} for given η small) are greater than ε. This is an

important condition to ensure that the quadratic forms 1
N w̃
∗
j Ŝ
−1
(j) w̃j , which play

a central role in the proof, are jointly controllable. In (Couillet et al., 2013b),

where the convergence ‖ĈN − ŜN‖
a.s.−→ 0 is obtained for p1 = . . . = pL = 0,

this unfolded readily from (Couillet et al., 2013a, Lemma 2) (i.e., (Couillet
et al., 2013a, Lemma 2) states that the matrices 1

nW̃(j)W̃
∗
(j) have their smallest

eigenvalue uniformly away from zero). Here, due to the existence of a small rank
matrix A, the approach from (Couillet et al., 2013a, Lemma 2) no longer holds as
Ŝ(j) may a priori exhibit finitely many isolated eigenvalues getting close to zero
as n→∞. We shall show that this is not possible. Precisely, we shall prove that
the large n spectrum of ŜN is similar to that of Ŝ◦N but possibly for finitely many
isolated eigenvalues, none of which can be asymptotically found close to zero.
We shall however characterize those eigenvalues of ŜN found beyond the right-
edge of the limiting spectrum of Ŝ◦N . Once this result is obtained, to complete
the proof of Theorem 1, it will then suffice to check that most spectral statistics
involved in the proof of (Couillet et al., 2013b, Theorem 2) are not affected
by the presence of the additional small rank matrix AS in the model. Since
most results need be proved jointly for the matrix sets {Ŝ(j), 1 ≤ j ≤ n} (or

{Ŝ(j),η, 1 ≤ j ≤ n}), high order moment bounds will be required to then apply
union bound along with Markov inequality techniques. As the proof in (Couillet
et al., 2013b) is rather long and technical and since the main contribution of
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the present article lies in Theorem 2, we only discuss in what follows the main
new technical elements that differ from (Couillet et al., 2013b).

When Theorem 1 is obtained, the proofs of Theorems 2 and 3 unfolds from
classical techniques for spiked random matrix models, using the approximation
ŜN for ĈN . The model ŜN considered here is closely related to the scenario of
(Chapon et al., 2012), but for the random non-Gaussian structure of the matrix
S; also, (Chapon et al., 2012) imposes maxi dist(τi,Supp(ν))→ 0 which we do
not enforce here.

5.3. Localization of the eigenvalues of ŜN and Ŝ(i)

We first study the localization of the eigenvalues of ŜN and {Ŝ(j),η, 1 ≤ j ≤
n}. The strategy being the same, we concentrate mostly on the study of ŜN
and then briefly generalize the approach to {Ŝ(j),η, 1 ≤ j ≤ n}.

By isolating the small rank perturbation terms, we first develop ŜN as

ŜN =
1

n

n∑
i=1

vc(τiγ)Aiw̄iw̄
∗
iA
∗
i (7)

= Ŝ◦N +
1

n
ASV S∗A∗ +

1

n
AST

1
2V W̃ ∗ +

1

n
W̃T

1
2V S∗A∗. (8)

Let λ ∈ R \ [ε, S+ + ε] for some ε > 0 small be an eigenvalue of ŜN . Note
that such a λ may not exist. However, from (Bai and Silverstein, 1998) and

since in particular lim supn ‖AA∗‖ <∞ and lim supn ‖T
1
2V ‖ <∞, the spectral

norm of each matrix above is asymptotically bounded almost surely and thus
lim supn λ <∞ a.s. Also, from (Couillet et al., 2013b) and from the discussion
prior to the statement of Theorem 1, for all large n a.s., λ is not an eigenvalue
of Ŝ◦N (for ε chosen small enough). Thus, by definition, λ is a solution of

det(ŜN −λIN ) = 0 while ‖(Ŝ◦N −λIN )−1‖ < M for some M > 0 independent of
n but increasing as ε → 0. As such, from the development above, for all large
n a.s.,

0 = det
(
Ŝ◦N − λIN + Γ

)
= det (Q◦λ)

−1
det
(
IN + (Q◦λ)

1
2 Γ(Q◦λ)

1
2

)
where Γ = 1

nASV S
∗A∗+ 1

nAST
1
2V W̃ ∗+ 1

nW̃T
1
2V S∗A∗ can be further written

Γ =
[
UΩ

1
2

1
nW̃T

1
2V S∗ŪΩ

1
2

] [Ω 1
2 Ū∗ 1

nW̃V W̃ ∗ŪΩ
1
2 IL

IL 0

] [
Ω

1
2U∗

Ω
1
2

1
n Ū
∗ST

1
2V W̃

]
.

(9)

Exploiting the small rank of S andA, and the formula det(I+AB) = det(I+BA)
for properly sized A,B matrices, this induces

0 = det (I2L + ΓL(λ))
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where

ΓL(λ) ,

[
Ω

1
2 Ū∗ 1

nW̃V W̃ ∗ŪΩ
1
2 IL

IL 0

] [
Ω

1
2U∗

Ω
1
2

1
n Ū
∗ST

1
2V W̃

]
Q◦λ
[
UΩ

1
2

1
nW̃T

1
2V S∗ŪΩ

1
2

]
.

We now need the following central lemmas.

Lemma 1. Let ε > 0 and Aε be the event ε < λN (Ŝ◦N ) < λ1(Ŝ◦N ) < S+ +ε. Let
also a, b ∈ CN be two vectors of unit norm. Then, for every z ∈ C ⊂ C\[ε, S++ε]
with C compact,

E

[∣∣∣∣ 1nS∗V S − 1

n
trV

∣∣∣∣p] ≤ KN− p2
E

[
1Aε

∣∣∣∣ 1nST 1
2V

1

n
W̃ ∗Q◦zW̃V T

1
2S∗ −

[
1

n
trV + z

1

n
trV Q̃◦z

]∣∣∣∣p] ≤ KN− p2
E

[
1Aε

∣∣∣∣a∗Q◦zb− a∗b 1

N
trQ◦z

∣∣∣∣p] ≤ KN− p2
E

[
1Aε

∥∥∥∥ 1

n
a∗Q◦zW̃T

1
2V S∗

∥∥∥∥p] ≤ KN− p2
where Q̃◦z = ( 1

nT
1
2V

1
2 W̃ ∗W̃V

1
2T

1
2 − zIN )−1 and K > 0 does not depend on z.

Proof. The first convergence is a mere application of (Bai and Silverstein,
2009, Lemma B.26). Similarly, noticing that

1

n
ST

1
2V

1

n
W̃ ∗Q◦zW̃V T

1
2S∗ =

1

n
SV

1
2

[
T

1
2V

1
2

1

n
W̃ ∗W̃V

1
2T

1
2 Q̃◦z

]
V

1
2S∗

=
1

n
SV S∗ + z

1

n
SQ̃◦zV

1
2S∗

the second result follows again by (Bai and Silverstein, 2009, Lemma B.26) and
the fact that lim supn ‖Q̃◦z‖ < 1/dist(C, [ε, S+ + ε]). Using the fact that W̃ is
Gaussian, the third result follows from the same proof as in (Loubaton and
Vallet, 2010, Lemma 3) using additionally [V T ]ii < ψ∞. Similarly, conditioning
first on S, which is independent of W̃ , we obtain by the same proof as in
(Loubaton and Vallet, 2010, Lemma 4) that

EW̃

[
1Aε

∣∣∣∣ 1na∗Q◦zW̃T
1
2V si

∣∣∣∣p] ≤ K‖n− 1
2 si‖pN−

p
2

where we denoted S∗ = [s1, . . . , sL] (the proof follows from exploiting the left-
unitary invariance of W̃ and applying the integration by parts and Poincaré–
Nash inequality method for unitary Haar matrices described in (Pastur and

Ŝerbina, 2011, Chapter 8)). Now, E[‖n− 1
2 si‖p] = O(1) by Hölder’s inequality,

and we obtain the last inequality.
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Lemma 2. For z ∈ C\ [S−µ , S
+
µ ], let δ(z) be the unique solution to the equation

δ(z) = c

(
−z +

∫
tvc(tγ)

1 + δ(z)tvc(tγ)
dν(t)

)−1

where we recall that γ is the unique positive solution to

1 =

∫
ψc(tγ)

1 + cψc(tγ)
dν(t).

Let now z ∈ C, with C a compact set of C \ [ε, S+
µ + ε] for some ε > 0 small

enough. Then, denoting Ψ◦z = (In + δ(z)V T )−1,

sup
z∈C

∣∣∣∣ 1

N
trQ◦z −

δ(z)

c

∣∣∣∣ a.s.−→ 0

sup
z∈C

∣∣∣∣ 1n trV + z
1

n
trV Q̃◦z − δ(z)

1

n
trV 2TΨ◦z

∣∣∣∣ a.s.−→ 0.

Proof. The almost sure convergences to zero of the terms inside the norms (i.e.,
for each z ∈ C) are classical, see e.g., (Silverstein and Bai, 1995). Considering
a countable sequence z1, z2, . . . of such z ∈ C having an accumulation point, by
the union bound, there exists a probability one set on which the convergence
is valid for each point of the sequence. Now, by (Couillet et al., 2013b), for all
large n a.s., Q◦z and Q̃◦z are analytic on C. Since δ(z) is also analytic on C, by
Vitali’s convergence theorem (Titchmarsh, 1939), the convergences are uniform
on C.

From (Couillet et al., 2013b) again, for ε > 0 small enough, the set Aε

introduced in Lemma 1 satisfies 1Aε
a.s.−→ 1. As such, using the Markov inequality

and the Borel Cantelli lemma, Lemma 1 for p > 2 ensures that all quantities in
absolute values in the statement of Lemma 1 converge to zero almost surely as
n→∞. Since the quantities involved are analytic on compact C ⊂ C\[ε, S++ε],
considering a countable sequence of z ∈ C having a limit point, it is clear by
Vitali’s convergence theorem (Titchmarsh, 1939) that these convergences are
uniform on C. Applying successively Lemma 1 for p > 2 and Lemma 2, we then
obtain, for C ⊂ C \ [ε, S+ + ε],

sup
z∈C

{∥∥∥∥ΓL(z)−
[
Ω 1
n trV IL
IL 0

] [
Ω δ(z)

c 0
0 Ωδ(z) 1

n trV 2TΨ◦z

]∥∥∥∥} a.s.−→ 0

or equivalently

sup
z∈C

{∥∥∥∥∥ΓL(z)−

[
Ω2 δ(z)

c
1
n trV Ωδ(z) 1

n trV 2TΨ◦z
Ω δ(z)

c 0

]∥∥∥∥∥
}

a.s.−→ 0. (10)

We may then particularize this result to z = λ which, for ε sufficiently small,
remains bounded away from [ε, S+ + ε] as n grows (but of course depends on
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n) to obtain ∥∥∥∥∥ΓL(λ)−

[
Ω2 δ(λ)

c
1
n trV Ωδ(λ) 1

n trV 2TΨ◦λ
Ω δ(λ)

c 0

]∥∥∥∥∥ a.s.−→ 0. (11)

For λ̄ ∈ R \ [ε, S+ + ε], let us now study the equation

det

(
I2L +

[
Ω2 δ(λ̄)

c
1
n trV Ωδ(λ̄) 1

n trV 2TΨ◦
λ̄

Ω δ(λ̄)
c 0

])
= 0. (12)

After development of the determinant, this equation is equivalent to

σ2
`

δ(λ̄)

c

(
1

n
trV − δ(λ̄)

1

n
trV 2TΨ◦λ̄

)
+ 1 = 0

for some ` ∈ {1, . . . , L}, or equivalently, using V − δ(λ̄)V 2TΨ◦
λ̄

= VΨ◦
λ̄

σ2
` δ(λ̄)

1

N

n∑
i=1

vc(τiγ)

1 + τivc(τiγ)δ(λ̄)
= 0.

In the limit n → ∞, using A∗A
a.s.−→ diag(p1, . . . , pL) and 1

n

∑n
i=1 δτi → ν a.s.,

any accumulation point Λ̄ ∈ (R \ (ε, S+ + ε)) ∪ {∞} of λ̄ must satisfy

1 + p`
1

c

∫
δ(Λ̄)vc(τγ)

1 + δ(Λ̄)τvc(τγ)
ν(dt) = 0. (13)

This unfolds from dominated convergence, using δ((S+,∞)) ⊂ (−(τ+v(τ+γ))−1, 0)
with τ+ ∈ (0,∞] the right-edge of the support of ν; in particular, if Supp(ν)
is unbounded, δ((S+,∞)) ⊂ (−γ/ψ∞, 0) (Couillet and Hachem, 2013). Let us
then consider the equation in the variable Λ ∈ (S+,∞)

−
(

1

c

∫
δ(Λ)vc(τγ)

1 + δ(Λ)τvc(τγ)
ν(dτ)

)−1

= p`. (14)

We know from (Couillet et al., 2013b) that, since ν([0,m)) < 1−φ−1
∞ for some

m > 0 (by Assumption 2), S−µ > 0. Also, as the Stieltjes transform of a measure
with support included in [S−µ , S

+
µ ] ⊂ [S−µ , S

+], δ is increasing on both [0, S−µ ) and
(S+,∞). Moreover, δ([0, S−µ )) ⊂ (0,∞) and δ((S+,∞)) ⊂ (−(τ+v(τ+γ))−1, 0).
Therefore, the left-hand side of (14) is negative for Λ ∈ [0, S−µ ) and the equation
has no solution in this set. It is now easily seen that the left-hand side of (14)
is increasing with Λ with limits infinity as Λ → ∞ and p− > 0 as Λ ↓ S+.
Therefore, if p− < p`, the above equation has a unique solution Λ` ∈ (S+,∞),
distinct for each distinct p`. Hence, λ̄→ Λ̄ = Λ`.

By the argument principal, for all n large a.s., the number of eigenvalues
of ŜN , i.e., the number of zeros of det(I2L + ΓL(λ)), in any open set V ⊂
R \ [ε, S+ + ε] is

1

2πı

∮
I

[det(I2L + ΓL(z))]′

det(I2L + ΓL(z))
dz
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with I a contour enclosing V. By the uniform convergence of (10) on V, the
analyticity of the quantities involved, and the fact that the involved determinant
is a polynomial of order at most 2L of its entries, this value asymptotically
corresponds to the number of solutions to (12) in V counted with multiplicity,
which in the limit are the Ωk ∈ V. Particularizing V to (−1, 2ε) for ε > 0 small
enough and then to any small open ball around Λ` for each ` such that p` > p−,
we then conclude that ŜN has asymptotically no eigenvalue in [0, ε] but that

λ`(ŜN )
a.s.−→ Λ` for all ` ∈ L, which is the expected result.

The precise localization of the eigenvalues of ŜN will be fundamental for the
proof of Theorems 2 and 3. To prove Theorem 1 though, we need to generalize
part of this result to the matrices Ŝ(j) and Ŝ(j),η defined at the beginning of
the section. Precisely, we need to show that there exists ε > 0 such that
min1≤j≤N{λN (Ŝ(j))} > ε for all large n a.s., and similarly for Ŝ(j),η.

Take j ∈ {1, . . . , n}. Replacing ŜN by Ŝ(j) in the proof above leads to the
same conclusions. Indeed, by a rank-one perturbation argument (Silverstein
and Bai, 1995, Lemma 2.6), for each ε > 0, for all large n a.s.

1

n
tr Q̃◦z −

1

n
tr

(
1

n
W̃(j)T(j)V(j)W̃(j) − zIN

)−1

≤ 1

n

1

dist(z, [ε, S+ + ε])

and therefore, up to replacing all matrices X by X(j) in their statements, Lem-

mas 1 and 2 hold identically (with δ(z) unchanged). Exploiting 1
n−1

∑
i6=j δτi →

ν a.s., the remainder of the proof unfolds all the same and we have in particular
that for all large n a.s. Ŝ(j) has no eigenvalue below some ε > 0.

We now prove that this result can be made uniform across j. Denote ΓL,(j)(z)
the matrix ΓL(z) with all matrices X replaced by X(j). Also rename Lem-
mas 1 and 2 respectively Lemma 1-(j) and Lemma 2-(j), and rename Aε by
Aε,(j) in the statement of Lemma 1-(j). Then, taking p > 4 in Lemma 1-(j), by
the union bound and the Markov inequality, for e > 0,

P

(
max

1≤j≤n
1Aε,(j)

∥∥∥∥∥ΓL,(j)(z)−

[
Ω2 δ(z)

c
1
n trV Ωδ(z) 1

n trV 2TΨ◦z
Ω δ(z)

c 0

]∥∥∥∥∥ > e

)

≤ 1

ep

n∑
j=1

E

[
1Aε,(j)

∥∥∥∥∥ΓL,(j)(z)−

[
Ω2 δ(z)

c
1
n trV Ωδ(z) 1

n trV 2TΨ◦z
Ω δ(z)

c 0

]∥∥∥∥∥
p]

= O(N1− p2 )

which is summable. By the Borel Cantelli lemma, the event in the probability
parentheses then converges a.s. to zero. Finally, from (Couillet et al., 2013a),

there exists ε > 0 such that 1∩nj=1Aε,(j)
a.s.−→ 1. We then conclude that, for each

z ∈ C ⊂ C \ [ε, S+
µ + ε] for some ε > 0,

sup
1≤j≤n

∥∥∥∥∥ΓL,(j)(z)−

[
Ω2 δ(z)

c
1
n trV Ωδ(z) 1

n trV 2TΨ◦z
Ω δ(z)

c 0

]∥∥∥∥∥ a.s.−→ 0
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Let now V ⊂ C \ [ε, S+
µ + ε] be a bounded open set containing [0, ε/2] and I be

its smooth boundary. Taking the determinant of each matrix inside the norm
and using again the analyticity of the functions involved, we now get that the
quantity

1

2πı

∮
I

[det(I2L + ΓL,(j)(z))]
′

det(I2L + ΓL,(j)(z))
dz

converges almost surely uniformly across j ∈ {1, . . . , n} to the number of eigen-
values of any of the Ŝ(j) within [0, ε/2]. But by the previous proof, this must

be zero. Hence, for all large n a.s., none of the ŜN,(j) has eigenvalues smaller
than ε/2, which is what we wanted.

Let now (η,Mη) be such that ν((0,Mη)) > 0 and ν((Mη,∞)) < η. We have

now 1
n

∑n
i=1 1τi≤Mηδτi

a.s.−→ νη , cην + (1 − cη)δ0 with cη = limn n
−1|{τi ≤

Mη}| = 1− η (which almost surely exists by the law of large numbers), so that
νη([0,m)) < η + (1 − η)(1 − φ−1

∞ ) for some m > 0 (Assumption 2). Taking η
small enough so that νη([0,m)) < 1 − φ−1

∞ , we are still under the assumptions
of (Couillet et al., 2013b, Theorem 2) and therefore we again have that for all
large n a.s. none of the matrices Ŝ(j),η has eigenvalues below a certain positive
value εη > 0.

These elements are sufficient to now turn to the proof of the main theorems.

5.4. Proof of Theorem 1

When p1 = . . . = pL = 0, Theorem 1 unfolds directly from (Couillet et al.,
2013b, Theorem 2). Indeed, in this scenario, the latter result states∥∥∥∥∥ĈN − 1

n

n∑
i=1

v(τiγN )wiw
∗
i

∥∥∥∥∥ a.s.−→ 0 (15)

with γN the unique positive solution to

1 =
1

n

n∑
i=1

ψ(τiγN )

1 + cnψ(τiγN )
.

Using 1
n

∑n
i=1 δτi

a.s.−→ ν, cn → c, along with the boundedness of ψ, we have that
any accumulation point γ ∈ [0,∞] of γN as n→∞ must satisfy

1 =

∫
ψc(τγ)ν(dτ)

1 + cψc(τγ)

the solution of which is easily shown to be unique in (0,∞) as the right-hand
side term is increasing in γ with limits zero as γ → 0 and ψ∞ > 1 as γ → ∞
(unless ν = δ0 which is excluded). Using the continuity and boundedness of v, it

then comes maxi |v(τiγN ) − vc(τiγ)| a.s.−→ 0. Now, wiw
∗
i = (wiw

∗
i r

2
i /N)/(r2

i /N)
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where in the numerator wiri/
√
N is Gaussian and where the denominator sat-

isfies maxi |r2
i /N − 1| a.s.−→ 0 (using classical probability bounds on the chi-

square distribution). With these results, along with (Bai and Silverstein, 1998)
which ensures that 1

nN

∑
i wiw

∗
i r

2
i has bounded spectral norm for all large n

a.s., (Couillet et al., 2013b, Theorem 2) implies∥∥∥∥∥ĈN − 1

nN

n∑
i=1

vc(τiγ)wiw
∗
i r

2
i

∥∥∥∥∥ a.s.−→ 0

which is the desired result for p1 = . . . = pL = 0.
The generalization to generic p1, . . . , pL follows from a careful control of the

elements of proof of (Couillet et al., 2013b, Theorem 2). We see that (Couillet
et al., 2013b, Lemma 1) and (Couillet et al., 2013b, Remark 1) are not affected by
p1, . . . , pL as these results only depend on τ1, . . . , τn. The fundamental lemma
(Couillet et al., 2013b, Lemma 2) (and its extension remark (Couillet et al.,
2013b, Remark 2)) as well as the lemma (Couillet et al., 2013b, Lemma 3)
however need be updated.

We shall not go into the details of every generalization which is painstaking
and in fact similar for each lemma. Instead, we detail the generalization of the
important remark (Couillet et al., 2013b, Remark 2) and merely give elements
for the other results. The remark (Couillet et al., 2013b, Remark 2) is now
updated as follows.

Lemma 3. Let (η,Mη) be couples indexed by η ∈ (0, 1) such that ν((0,Mη)) > 0
and ν((Mη,∞)) < η and define γη as the unique solution to (6). Also let M > 0
be arbitrary. Then, for all η small enough,

max
1≤j≤n
τj≤M

∣∣∣∣∣∣∣
1

N
y∗j

 1

n

∑
τi≤Mη,i6=j

v (τiγ
η) yiy

∗
i

−1

yj − τjγη

∣∣∣∣∣∣∣ a.s.−→ 0

max
1≤j≤n
τj>M

∣∣∣∣∣∣∣
1

τj

1

N
y∗j

 1

n

∑
τi≤Mη,i6=j

v (τiγ
η) yiy

∗
i

−1

yj − γη

∣∣∣∣∣∣∣ a.s.−→ 0. (16)

Proof. Note that, replacing the terms yi by τiwi in (16) gives exactly (Couillet
et al., 2013b, Remark 2). To ensure that the result holds, we then only need
verify that the terms involving AS become negligible.

For η sufficiently small, define

Š(j),η =
1

n

∑
τi≤Mη,i6=j

v (τiγ
η) yiy

∗
i =

1

n
(AS(j) +W(j))V(j),η(AS(j) +W(j))

∗.

Using the fact that max1≤i≤n{|ri/
√
N − 1|} a.s.−→ 0 and that all matrices in the

equality above have bounded norm almost surely by (Bai and Silverstein, 1998),

we then have sup1≤j≤n ‖Š(j),η − Ŝ(j),η‖
a.s.−→ 0. From the results in the previous
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section, we then conclude that there exists ε > 0 such that the eigenvalues of
Š(j),η for all j are all greater than ε for all large n almost surely. Now, recalling
that S = [s1, . . . , sn],

1

N
y∗j Š

−1
(j),ηyj =

1

N
s∗jA

∗Š−1
(j),ηAsj + 2<

[
√
τj

1

N
s∗jA

∗Š−1
(j),ηwj

]
+ τj

1

N
w∗j Š

−1
(j),ηwj .

By the trace lemma (Bai and Silverstein, 2009, Lemma B.26), denoting A the
probability set over which the eigenvalues of Š(j),η for all j are greater than ε,
for each p > 2,

E

[
1A

∣∣∣∣ 1

N
w̃∗j Š

−1
(j),ηw̃j −

1

N
tr Š−1

(j),η

∣∣∣∣p] ≤ KN− p2
where K only depends on ε (which is obtained by first conditioning on W̃(j)

then averaging over it). Taking p > 3 and using the union bound on n events,

the Markov inequality and the Borel Cantelli lemma, along with 1A
a.s.−→ 1 and

maxj{|r2
j/N − 1|} a.s.−→ 0, leads to

max
1≤j≤n

∣∣∣∣ 1

N
w∗j Š

−1
(j),ηwj −

1

N
tr Š−1

(j),η

∣∣∣∣ a.s.−→ 0.

Using the same result and the fact that 1
N trA∗Š−1

(j),ηA ≤ Kε
−1/N for all large

n a.s., we also have

max
1≤j≤n

∣∣∣∣ 1

N
s∗jA

∗Š−1
(j),ηAsj

∣∣∣∣ a.s.−→ 0.

Using both results and | 1
N s
∗
jA
∗Š−1

(j),ηwj |
2 ≤ 1

N s
∗
jA
∗Š−1

(j),ηAsj
1
Nw
∗
j Š
−1
(j),ηwj (Cauchy-

Schwarz inequality), we finally get

max
1≤j≤n

∣∣∣∣ 1

N
s∗jA

∗Š−1
(j),ηwj

∣∣∣∣ a.s.−→ 0.

All this then ensures that

max
1≤j≤n,τj≤M

∣∣∣∣ 1

N
y∗j Š

−1
(j),ηyj − τj

1

N
tr Š−1

(j),η

∣∣∣∣ a.s.−→ 0

max
1≤j≤n,τj>M

∣∣∣∣ 1

τj

1

N
y∗j Š

−1
(j),ηyj −

1

N
tr Š−1

(j),η

∣∣∣∣ a.s.−→ 0.

Since A has rank at most L, Š(j),η is an at most rank-2L + 1 perturbation

of 1
nWTηVηW

∗, i.e., the matrix obtained for p1 = . . . = pL = 0, by an additive
symmetric matrix. A (2L + 1)-fold application of the rank-one perturbation
lemma (Silverstein and Bai, 1995, Lemma 2.6) along with the facts that ‖W −
W̃‖ a.s.−→ 0 and that all eigenvalues of the matrices involved are uniformly away
from zero almost surely then ensures that

max
1≤j≤n

∣∣∣∣∣ 1

N
tr Š−1

(j),η −
1

N
tr

(
1

n
WTηVηW

∗
)−1

∣∣∣∣∣ a.s.−→ 0.
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But now, recalling (Couillet et al., 2013b, Remark 2), 1
N tr

(
1
nWTηVηW

∗)−1 a.s.−→
γη. Putting these results together finally leads to the requested result

max
1≤j≤n,τj≤M

∣∣∣∣ 1

N
y∗j Š

−1
(j),ηyj − τjγ

η

∣∣∣∣ a.s.−→ 0

max
1≤j≤n,τj>M

∣∣∣∣ 1

τj

1

N
y∗j Š

−1
(j),ηyj − γ

η

∣∣∣∣ a.s.−→ 0.

Note that the proof only exploits the boundedness away from zero of the
various matrices involved and not their bounded spectral norm. Therefore,
with the same derivations, we also generalize (Couillet et al., 2013b, Lemma 2)
as follows.

Lemma 4. For every M > 0, we have

max
1≤j≤n
τj≤M

∣∣∣∣∣∣∣
1

N
y∗j

 1

n

∑
i6=j

v (τiγ
η) yiy

∗
i

−1

yj − τjγ

∣∣∣∣∣∣∣ a.s.−→ 0

max
1≤j≤n
τj>M

∣∣∣∣∣∣∣
1

τj

1

N
y∗j

 1

n

∑
i6=j

v (τiγ
η) yiy

∗
i

−1

yj − γ

∣∣∣∣∣∣∣ a.s.−→ 0.

Define now di = 1
τi

1
N y
∗
i Ĉ
−1
(i) yi with Ĉ(i) = ĈN − 1

nu( 1
N y
∗
i Ĉ
−1
N yi)yiy

∗
i , from

which in passing we can write

ĈN =
1

n

n∑
i=1

v(τidi)yiy
∗
i =

1

n

n∑
i=1

v(τidi)Ai ¯̄wi ¯̄w∗iA
∗
i (17)

with ¯̄wi = [s1i, . . . , sLi, wi]
T. Then (Couillet et al., 2013b, Lemma 3) remains

valid and reads

Lemma 5. There exists d+ > d− > 0 such that, for all large n a.s.

di < lim inf
n

min
1≤i≤n

di ≤ lim sup
n

max
1≤i≤n

di < d+.

Proof. Taking m > 0 small enough and denoting dmax = maxj dj , Equation
(Couillet et al., 2013b, (14)) becomes here

Ĉ(j) � mv(mdmax)
1

n

∑
i 6=j
τi≥m

1

τi
(Asis

∗
iA
∗ + 2

√
τi< [w∗iAsi] + τiwiw

∗
i )

so that, taking j such that dj = dmax,

dmax ≤
1

mv(mdmax)

1

τj

1

N
y∗j

 1

n

∑
i6=j
τi≥m

Asis
∗
iA
∗ + 2

√
τi< [w∗iAsi] + τiwiw

∗
i

τi


−1

yj .
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If lim infn τj > 0 (with j always defined to be such that dj = dmax), with the
same arguments as in the proof of Lemma 3 (here the boundedness from above
of the τi is irrelevant) and recalling (Couillet et al., 2013b, Lemma 6), the right-
hand side term can be bounded by (mvc(mdmax)(1− c))−1(1 + ε) for arbitrarily
small ε > 0 by taking m small enough and n large enough. From there the proof
of (Couillet et al., 2013b, Lemma 3) for the boundedness of dmax remains valid. If
instead lim infn τj = 0, we restrict ourselves to a subsequence over which τj → 0.
Multiplying both sides of the equation above by τj , we get by a similar result
as Lemma 3 that τjdmax can be bounded by τj(mvc(mdmax)(1 − c))−1(1 + ε)
for arbitrarily small ε > 0 (again taking m small and n large), and the result
unfolds again.

To obtain the lower bound, in the proof of (Couillet et al., 2013b, Lemma 3),
denoting dmin = minj dj , one needs now write

Ĉ(j) �Mv(Mdmin)
1

n

∑
i6=j

m≤τi≤M

1

τi
(Asis

∗
iA
∗ + 2

√
τi< [w∗iAsi] + τiwiw

∗
i )

+ v(0)
1

n

∑
i 6=j

τi∈R\[m,M ]

(Asis
∗
iA
∗ + 2

√
τi< [w∗iAsi] + τiwiw

∗
i ) .

The controls established for the upper bound on dmax can be similarly used here
for dmin and the proof of (Couillet et al., 2013b, Lemma 3) for dmin unfolds then
similarly.

Equipped with these lemmas, the proof of Theorem 1 unfolds similar to the
proof of (Couillet et al., 2013b, Theorem 2) but for a particular care to be
taken for terms involving τ−1

j yj which need to be controlled if lim infn τj = 0.
This is easily performed as previously by either using approximations of dj or
of τjdj depending on whether lim infn τj > 0 or lim infn τj = 0, respectively.
Assumption 2, which reproduces the assumptions of (Couillet et al., 2013b), is
precisely used here. In particular, by the end of the proof, we obtain similar to
(Couillet et al., 2013b) the important convergence

max
1≤j≤n,τj<M

|τjdj − τjγ|
a.s.−→ 0

max
1≤j≤n,τj≥M

|dj − γ|
a.s.−→ 0 (18)

from which, expanding both ŜN and ĈN as in (8) (noting the similarity between
(7) and (17)) and exploiting the almost sure asymptotic boundedness in norm

of the various matrices then involved, we obtain ‖ĈN − ŜN‖
a.s.−→ 0 as desired.

5.5. Eigenvalues of ĈN and power estimation

From Theorem 1, ‖ĈN−ŜN‖
a.s.−→ 0 so that in particular max1≤i≤n |λi(ĈN )−

λi(ŜN )| a.s.−→ 0. This means that it suffices to study the individual eigenvalues of
ŜN in order to study the individual eigenvalues of ĈN . In particular, from the
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results of Section 5.3, we have that, for any small ε > 0, ĈN has asymptotically
no eigenvalue in [0, ε] almost surely, that λ̂|L|+i < S+ + ε for all large n a.s. for

each i ∈ {1, . . . , N − |L|} and that λ̂i
a.s.−→ Λi > S+ for each i ∈ L, where Λi is

as in the statement of Theorem 2, Item 0. Along with the continuity of δ and
δ((S+,∞)) ⊂ (−(τ+vc(τ+γ)), 0), we then get Theorem 2, Item 1.

5.6. Localization function estimation

Let a, b ∈ CN be two vectors of unit norm. Then, from the first part of
Theorem 2 and from Cauchy’s integral formula, for any k ∈ L and for all large
N a.s., ∑

1≤i≤L
pi=p`

a∗ûiû
∗
i b = − 1

2πı

∮
I`

a∗
(
ĈN − zIN

)−1

bdz (19)

for I` defined as above as a positively oriented contour around a sufficiently small
neighborhood of Λ`, where Λ` is the unique positive solution of the equation
in Λ (14) when pk = p`. Using ‖ĈN − ŜN‖

a.s.−→ 0 along with the uniform
boundedness of ‖(ŜN − zIN )−1‖ and ‖(ĈN − zIN )−1‖ on I` (for all n large), we
then have ∑

1≤i≤L
pi=p`

a∗ûiû
∗
i b+

1

2πı

∮
I`

a∗
(
ŜN − zIN

)−1

bdz
a.s.−→ 0

so that it suffices to determine the second left-hand side expression.
Let us develop the term a∗(ŜN−zIN )−1b. Proceeding similar to Section 5.3,

we find

a∗
(
ŜN − zIN

)−1

b = a∗
(
Ŝ◦N − zIN + Γ

)−1

b

with Γ defined in (9). Using Woodbury’s identity (A + BCB∗)−1 = A−1 −
A−1B(C−1 + B∗A−1B)−1B∗A−1 for invertible A,B, this becomes, with the
same notations as in the previous paragraph,

a∗
(
ŜN − zIN

)−1

b = a∗Q◦zb− a∗Q◦zG
(
H−1 +G∗Q◦zG

)−1
G∗Q◦zb (20)

where

G =
[
UΩ

1
2

1
nW̃T

1
2V S∗ŪΩ

1
2

]
H =

[
Ω

1
2 Ū∗ 1

nW̃V W̃ ∗ŪΩ
1
2 IL

IL 0

]
.

The matrix H is clearly invertible and we then find, using Lemma 1 and
Lemma 2 that, uniformly on z in a small neighborhood of Λ`,∥∥∥∥H−1 −

[
0 IL
IL −Ω 1

n trV

]∥∥∥∥ a.s.−→ 0

30



so that, again by Lemma 1 and Lemma 2,∥∥∥∥H−1 +G∗Q◦zG−
[
Ω δ(z)

c IL
IL −Ω 1

n trVΨ◦z

]∥∥∥∥ a.s.−→ 0. (21)

To ensure thatH−1+G∗Q◦zG is invertible for z ∈ I`, let us study the determinant
of the rightmost matrix. We have easily

det

([
Ω δ(z)

c IL
IL −Ω 1

n trVΨ◦z

])
= det

(
−Ω2 δ(z)

c

1

n
trVΨ◦z − IL

)
.

From the discussion around (14), the right-hand side term cancels exactly once
in a neighborhood of z = Λk for each k ∈ L. Now, for z ∈ C \ R, it is easily
seen that it has non-zero imaginary part. Therefore, since the convergence (21)
is uniform on a small neighborhood of Λ`, for all large n a.s., the determinant
of H−1 +G∗Q◦zG is uniformly away from zero on I` (up to taking n larger). We
can then freely take inverses in (21) and have, uniformly on I`,∥∥∥∥∥(H−1 +G∗Q◦zG)−1 −

[
Ω δ(z)

c IL
IL −Ω 1

n trVΨ◦z

]−1
∥∥∥∥∥ a.s.−→ 0.

To compute the inverse of the rightmost matrix, it is convenient to write[
Ω δ(z)

c IL
IL Ω 1

n trVΨ◦z

]
= P

{[
σk

δ(z)
c 1

1 −σk 1
n trVΨ◦z

]}L
k=1

P ∗

where {Ak}Lk=1 is a block-diagonal matrix with diagonal blocks A1, . . . , AL in
this order, and where P ∈ C2L×2L is the symmetric permutation matrix with
[P ]ij = δj−(L+i/2) for even i ≤ L and [P ]ij = δj−(i+1)/2 for odd i ≤ L. With
this notation, we have[
Ω δ(z)

c IL
IL Ω 1

n trVΨ◦z

]−1

= P

{
−1

δ(z)
c σ2

k
1
n trVΨ◦z + 1

[
−σk 1

n trVΨ◦z −1

−1 σk
δ(z)
c

]}L
k=1

P ∗.

Denoting U = [u1, . . . , uL] ∈ CN×L and Ū = [ū1, . . . , ūL] ∈ CL×L, we have

GP =
[√
σ1u1

√
σ1

1
nW̃T

1
2V S∗ū1 · · · √σLuL

√
σL

1
nW̃T

1
2V S∗ūL

]
.

From this remark, using again Lemma 1 and Lemma 2, we finally have

sup
z∈I`

∣∣∣∣∣a∗Q◦zG(H−1 +G∗Q◦zG)−1G∗Q◦zb−
L∑
k=1

a∗uku
∗
kb

δ(z)2

c2 σ2
k

1
n trVΨ◦z

δ(z)
c σ2

k
1
n trVΨ◦z + 1

∣∣∣∣∣ a.s.−→ 0.

Putting things together, using the results above which we recall are uniform
on I`, and also using the fact that Q◦z has no pole in I`, we finally have

∑
1≤i≤L
pi=p`

a∗ûiû
∗
i b−

L∑
k=1

1

2πı

∮
I`

a∗uku
∗
kb

δ(z)2

c2 σ2
k

1
n trVΨ◦z

δ(z)
c σ2

k
1
n trVΨ◦z + 1

dz
a.s.−→ 0

31



which, after taking the limits on the fraction in the integrand, gives

∑
1≤i≤L
pi=p`

a∗ûiû
∗
i b−

L∑
k=1

1

2πı

∮
I`

a∗uku
∗
kb

δ(z)2

c2 pk
∫ v(τγ)ν(dτ)

1+τv(τγ)δ(z)

δ(z)
c pk

∫ v(τγ)ν(dτ)
1+τv(τγ)δ(z) + 1

dz
a.s.−→ 0

For z ∈ (S+,∞), we already saw that δ(z) is negative while
∫ v(τγ)ν(dτ)

1+τv(τγ)δ(z) is

positive. For z non real, both quantities are non real, and therefore do no have

poles in I`. The only pole is then obtained for δ(z)
c pk

∫ v(τγ)ν(dτ)
1+τv(τγ)δ(z) + 1 = 0,

that is for z = Λ` as defined in the previous section. Using l’Hospital rule, the
residue of the right complex integral is then evaluated to be

Res(Λ`) = lim
z→Λ`

(z − Λ`)a
∗Π`b

δ(z)

c

∫ p`v(tγ)
1+tv(tγ)δ(z)ν(dt)∫ p`v(tγ)

1+tv(tγ)δ(z)ν(dt) + c
δ(z)

= lim
z→Λ`

a∗Π`b

δ(z)
c

∫ v(tγ)p`
1+tv(tγ)δ(z)ν(dt) + (z − Λ`)

d
dz

(
δ(z)
c

∫ p`v(tγ)
1+tv(tγ)δ(z)ν(dt)

)
−c δ

′(z)
δ(z)2 −

∫ tv(tγ)2p`δ′(z)
(1+tv(tγ)δ(z))2 ν(dt)

= a∗Π`b

(
c
δ′(Λ`)

δ(Λ`)2
+ p`δ

′(Λ`)

∫
τvc(τγ)2ν(dτ)

(1 + τvc(τγ)δ(Λ`))2

)−1

(22)

where Π` ,
∑
i,pi=p`

uiu
∗
i and the last equality uses δ(Λ`)

c p`
∫ v(τγ)ν(dτ)

1+τv(τγ)δ(Λ`)
=

−1. Recall now that

δ(Λ`) = c

(
−Λ` +

∫
τvc(τγ)

1 + δ(Λ`)τvc(τγ)
ν(dτ)

)−1

from which

δ′(Λ`) =
δ(Λ`)

2

c

(
1− δ(Λ`)

2

c

∫
τ2vc(τγ)2

(1 + δ(Λ`)τvc(τγ))2
ν(dτ)

)−1

> 0.

From the expression of p` in the previous paragraph and these values, we
then further find

Res(Λ`) = a∗Π`b

1−

∫ δ(Λ`)τvc(τγ)2ν(dτ)
(1+δ(Λ`)τvc(τγ))2∫ vc(τγ)ν(dτ)

1+δ(Λ`)τvc(τγ)

−1(
1− δ(Λ`)

2

c

∫
t2vc(τγ)2ν(dτ)

(1 + δ(Λ`)τvc(τγ))2

)

= a∗Π`b

∫ vc(τγ)ν(dτ)
1+δ(Λ`)τvc(τγ)

(
1− δ(Λ`)

2

c

∫ t2vc(τγ)2ν(dτ)
(1+δ(Λ`)τvc(τγ))2

)
∫ vc(τγ)ν(dτ)

(1+δ(Λ`)τvc(τγ))2

.

Inverting the relation

∑
1≤i≤L
pi=p`

a∗ûiû
∗
i b− a∗Π`b

∫ vc(τγ)ν(dτ)
1+δ(Λ`)τvc(τγ)

(
1− δ(Λ`)

2

c

∫ t2vc(τγ)2ν(dτ)
(1+δ(Λ`)τvc(τγ))2

)
∫ vc(τγ)ν(dτ)

(1+δ(Λ`)τvc(τγ))2

a.s.−→ 0

and using λ̂`
a.s.−→ Λ` for all ` ∈ L then completes the proof.
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5.7. Empirical estimators

To prove Theorem 3, one needs to ensure that the empirical estimators
introduced in the statement of the theorem are consistent with the estimators
introduced in Theorem 2.

Note first that γ− γ̂n
a.s.−→ 0 is a consequence of (18). Indeed, letting M > 0,

from (18),

1

n

∑
τj<M

τjdj − γ
1

n

∑
τj<M

τj
a.s.−→ 0.

Still from (18), we also have, a.s.

1

n

∑
τj≥M

τjdj − γ
1

n

∑
τj≥M

τj = o

 1

n

∑
τj≥M

τj

 .

But 1
n

∑
τj≥M τj

a.s.−→
∫

(M,∞)
tν(dt) ≤ 1 (say M is a continuity point of ν). Also,

1
n

∑
j τj

a.s.−→ 1. Putting the results together then gives γ− γ̂n
a.s.−→ 0. From this,

we now get, again with (18),

max
1≤j≤n,τj≤M

∣∣∣∣τjdjγ̂n
− τj

∣∣∣∣ a.s.−→ 0

max
1≤j≤n,τj>M

∣∣∣∣ djγ̂n − 1

∣∣∣∣ a.s.−→ 0

which is maxτj≤M |τj − τ̂j |
a.s.−→ 0 and maxτj>M |τ−1

j τ̂j − 1| a.s.−→ 0, as desired.

We now need to prove that δ̂(x)− δ(x)
a.s.−→ 0 uniformly on any bounded set

of (S+ + ε,∞). For this, recall first that both δ̂ and δ are Stieltjes transforms
of distributions with support contained in [0, S+] and, as such, are analytic in
(S+ + ε,∞) and uniformly bounded in any compact of (S+ + ε,∞). Taking the
difference and denoting ν̂n = 1

n

∑n
i=1 δτ̂i , we have

δ̂(x)− δ(x)

=

(
1− c

cn

)
δ̂(x) +

δ̂(x)δ(x)

cn

(∫
tvc(tγ)ν(dt)

1 + δ(x)tvc(tγ)
−
∫

tvc(tγ̂n)ν̂n(dt)

1 + δ̂(x)tvc(tγ̂n)

)

=

(
1− c

cn

)
δ̂(x) +

δ̂(x)δ(x)

cn

(
(δ̂(x)− δ(x))

∫
t2vc(tγ)vc(tγ̂n)ν(dt)

(1 + δ(x)tvc(tγ))(1 + δ̂(x)tvc(tγ̂n))

+

∫
t(vc(tγ)− vc(tγ̂n))ν(dt)

(1 + δ(x)tvc(tγ))(1 + δ̂(x)tvc(tγ̂n))
+

∫
tvc(tγ̂n)(ν̂n(dt)− ν(dt))

1 + δ̂(x)tvc(tγ̂n)

)
.

From uniform boundedness of tvc(tγ̂n) and tvc(tγ), and ν̂n((t,M))
a.s.−→ ν((t,M))

weakly and γ̂n
a.s.−→ γ, it is easily seen that the last two integrals on the right-

hand side can be made arbitrarily small (e.g., by isolating τi ≤ M and τi > M
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and letting M large enough in the previous convergence). Also, the first integral

on the right hand side is clearly bounded. Gathering the terms δ̂(x) − δ(x) on

the left-hand side and taking x large enough so to ensure δ̂(x)δ(x) is uniformly
smaller than one (recall that their limit is zero as x → ∞), we finally get that

δ̂(x)−δ(x) can be made arbitrarily small. This is valid for any given large x and
therefore on some sequence {x(i)} of (S+ +ε,∞) having an accumulation point,

δ̂(x(i))δ(x(i))
a.s.−→ 0. Since δ̂(x) − δ(x) is complex analytic in (S+ + ε,∞), by

Vitali’s convergence theorem, we therefore get that the convergence is uniform
over any bounded set of (S+ + ε,∞), which is what we wanted.

Since, for i ∈ L and for some ε,M > 0, λ̂i ∈ [S+ + ε,M ] for all large

n a.s., we therefore have that δ̂(λ̂i) − δ(λi)
a.s.−→ 0 for each i ∈ L. Using all

these convergence results, we then obtain, with the same line of arguments the
asymptotic consistence between the estimates in Item 1. and Item 2. of both
Theorems 2 and 3. This concludes the proof of Theorem 3.

5.8. Proof of Corollary 1

We are here in the same setting as (Hachem et al., 2013, Theorem 3), only
for our improved model. The proof is the same as in (Hachem et al., 2013) and
relies on showing the uniform convergence of η̂RG(θ)−η(θ) across θ, from which
the result unfolds. In our setting, the point-wise convergence easily follows from
Items 3. in both Theorem 2 and Theorem 3. Uniform convergence then hinges on
a regular discretization of the set [0, 2π) into N2 subsets and on (i) a Lipschitz
control of the differences η̂RG(θ) − η̂RG(θ′) for |θ − θ′| = O(N−2) and (ii) a
joint convergence of η̂RG(θ)− η(θ) over the N2 + 1 edges of the subsets. Point
(i) uses the defining properties of a(θ) from Assumption 4 similar to (Hachem
et al., 2013), while Point (ii) is obtained thanks to a classical union bound on
N2 events, the validity of which follows from considering sufficiently high order
moment bounds on the vanishing random quantities involved in η̂RG(θ)− η(θ).
In our setting, the latter moment bounds are obtained by selecting p large
enough in Lemma 1 of Section 5 (in a similar fashion as is performed for the
technical proof that minj λN (Ŝ(j)) > ε for all large n a.s. in Section 5). It is
easily seen that, this being ensured, the proof of Corollary 1 unfolds similar to
that of (Hachem et al., 2013, Theorem 3), which as a consequence we do not
further detail.
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