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Abstract

This article demonstrates that the robust scatter matrix estimator ĈN ∈ CN×N
of a multivariate elliptical population x1, . . . , xn ∈ CN originally proposed by
Maronna in 1976, and defined as the solution (when existent) of an implicit
equation, behaves similar to a well-known random matrix model in the limiting
regime where the population N and sample n sizes grow at the same speed.
We show precisely that ĈN ∈ CN×N is defined for all n large with probability
one and that, under some light hypotheses, ‖ĈN − ŜN‖ → 0 almost surely
in spectral norm, where ŜN follows a classical random matrix model. As a
corollary, the limiting eigenvalue distribution of ĈN is derived. This analysis
finds applications in the fields of statistical inference and signal processing.

Keywords: random matrix theory, robust estimation, elliptical distribution.

1. Introduction and problem statement

The recent advances in the spectral analysis of large dimensional random ma-
trices, and particularly of matrices of the sample covariance type, have triggered
a new wave of interest for (sometimes old) problems in statistical inference and
signal processing, which were usually treated under the assumption of a small
population size versus a large sample dimension and are now explored assum-
ing similar population and sample sizes. For instance, new source detection
schemes have been proposed (Cardoso et al., 2008; Bianchi et al., 2011; Nadler,
2010) based on the works on the extreme eigenvalues of large Wishart matri-
ces (Tracy and Widom, 1996; El Karoui, 2007; Baik et al., 2005; Bai and Yao,
2008; Baik and Silverstein, 2006; Couillet and Hachem, 2013b). New subspace
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methods in large array processing have also been derived (Mestre and Lagu-
nas, 2008; Loubaton and Vallet, 2010; Hachem et al., 2013) that outperform the
original MUSIC algorithm (Schmidt, 1986) by exploiting statistical inference
methods on large random matrices (Mestre, 2008; Couillet et al., 2011b; Vallet
et al., 2012). Most of these signal processing methods fundamentally rely on the
structure of the sample covariance matrix 1

n

∑n
i=1 xix

∗
i formed from indepen-

dent or linearly dependent (say zero mean) population vectors x1, . . . , xn ∈ CN ,
the asymptotic spectral properties of which are now well understood (Marc̆enko
and Pastur, 1967; Silverstein and Bai, 1995; Silverstein and Choi, 1995; Baik and
Silverstein, 2006; El Karoui, 2007; Mestre, 2008). The field of signal processing
however covers a much wider scope than that of sample covariance matrices.
Of interest here are the robust scatter matrix estimation techniques (a subclass
of M-estimation (Van der Vaart, 2000, Chapter 5)) that allow for a better –
more robust – empirical approximation of population covariance (or scatter)
matrices whenever (i) the probability distribution of the population vectors xi
is heavy-tailed (or is at least far from Gaussian) or (ii) a small proportion of
the samples xi presents an outlier behavior (i.e., follows an unknown distribu-
tion, quite different from the distribution of most samples) (Huber, 1964, 1981;
Maronna et al., 2006).

While classical sample covariance matrices exhibit a rather simple depen-
dence structure (as they are merely the sum of independent or linearly depen-
dent rank-one matrices), robust scatter matrix estimators are usually of a much
more complex form which does not allow for standard random matrix analy-
sis. This work specifically considers a widely spread model of robust scatter
estimator, proposed in (Maronna, 1976), which contains as special cases the
maximum-likelihood estimator of the scatter matrix for elliptically distributed
population vectors, and which is well-behaved and mostly understood in the
classical regime where n → ∞ while N is fixed. It is in particular shown in
(Maronna, 1976) that under some conditions the estimator is well-defined as
the unique solution of a fixed-point equation and that the robust estimator con-
verges almost surely (a.s.) to a deterministic matrix (which can be the scatter
matrix for elliptical distribution of xi under correct parametrization). In this
article, we revisit the study of Maronna’s estimator for elliptically distributed
samples using a probabilistic approach (as opposed to the statistical approach
used classically in robust estimation theory) under the assumption that n and
N are both large and of the same order of magnitude. This work follows after
(Couillet et al., 2013) where the simpler case of vector samples xi with indepen-
dent entries was explored. The intuition for the proof of the main results follows
in particular from the proof of the main theorem in (Couillet et al., 2013).

Studying robust scatter estimators in the large random matrix regime, i.e., as
N,n grow large at the same speed, has important consequences in understanding
many signal processing algorithms exploiting these estimators (Pascal et al.,
2008a,b). It also allows one to derive improved methods for source detection
and parameter estimation as in (Cardoso et al., 2008; Bianchi et al., 2011; Mestre
and Lagunas, 2008; Loubaton and Vallet, 2010; Hachem et al., 2013) for sample
covariance matrix-based estimators. Adaptations (and improvements) of these
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results to robust estimation are currently under investigation.

Before discussing our main results, we first introduce the notations and as-
sumptions taken in this article. We let x1, . . . , xn ∈ CN be n random vectors
defined by xi =

√
τiANyi, where τ1, . . . , τn ∈ R+ and y1, . . . , yn ∈ CN̄ are ran-

dom and AN ∈ CN×N̄ is deterministic. We denote cN , N/n and c̄N , N̄/N
and shall consider the following growth regime.

Assumption 1. For each N , cN < 1, c̄N ≥ 1 and

c− < lim inf
n

cN ≤ lim sup
n

cN < c+

where 0 < c− < c+ < 1.

The robust estimator under consideration in this article is Maronna’s M-
estimator ĈN defined, when it exists, as a (possibly unique) solution to the
equation in Z ∈ CN×N

Z =
1

n

n∑
i=1

u

(
1

N
x∗iZ

−1xi

)
xix
∗
i (1)

where u satisfies the following properties:

(i) u : [0,∞)→ (0,∞) is nonnegative continuous and non-increasing

(ii) φ : x 7→ xu(x) is increasing and bounded with limx→∞ φ(x) , φ∞ > 1

(iii) φ∞ < c−1
+ .

Note that (ii) is stronger than Maronna’s original assumption (Maronna,
1976, Condition (C) p. 53) as φ cannot be constant on any open interval. The
assumption (iii) is also not classical in robust estimation but obviously compliant
with the large n assumption made in classical works (for which c+ = 0). The
importance of both assumptions will appear clearly in the proof of the main
results.

The statistical hypotheses on x1, . . . , xn are detailed below.

Assumption 2. The vectors xi =
√
τiANyi, i ∈ {1, . . . , n}, satisfy the follow-

ing hypotheses:

1. the (random) empirical measure νn = 1
n

∑n
i=1 δτi satisfies

∫
τνn(dτ)

a.s.−→ 1

2. there exist ε < 1− φ−1
∞ < 1− c+ and m > 0 such that, for all large n a.s.

νn([0,m)) < ε

3. defining CN , ANA
∗
N , CN � 0 and lim supN ‖CN‖ <∞

4. y1, . . . , yn ∈ CN̄ are independent unitarily invariant complex (or orthogo-
nally invariant real) zero-mean vectors with, for each i, ‖yi‖2 = N̄ , and
are independent of τ1, . . . , τn.
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Item 1 is merely a normalization condition which, along with Item 3, ensures
the proper scaling and asymptotic boundedness of the model parameters. Note
in particular that Item 1 ensures a.s. tightness of {νn}∞n=1, i.e., for each ε > 0,
there exists M > 0 such that, with probability one, νn([M,∞)) < ε for all n.
Item 2 mainly ensures that no heavy mass of τi concentrates close to zero; this
will ensure the existence of a solution to (1) and avoid technical problems when
a solution to (1) exists (and is therefore invertible) but has many eigenvalues
close to zero.

Note that Item 4 could be equivalently stated as yi =
√
N̄ ỹi
‖ỹi‖ with ỹi ∈ CN̄

standard complex Gaussian (or standard real Gaussian). This remark will be
used throughout the proofs of the main results which rely in part on random
matrix identities for matrices with independent entries.

All these conditions are met in particular if the τi are independent and iden-
tically distributed (i.i.d.) with common unit mean distribution ν (in which case∫
xνn(dx)

a.s.−→ 1 by the strong law of large numbers) such that ν({0}) = 0. If
in addition N = N̄ , then x1, . . . , xn are i.i.d. zero-mean complex (or real) ellip-
tically distributed with full rank (Ollila et al., 2012, Theorem 3). In particular,
if 2Nτ1 is chi-squared distributed with 2N degrees of freedom, x1 is complex
zero mean Gaussian. If 1/τ1 is chi-squared distributed with arbitrary degrees of
freedom, x1 is instead zero mean complex Student distributed (see (Ollila et al.,
2012) for further discussions and recent results on elliptical distributions).

For simplicity of exposition, most of the article, and in particular the proofs
of the main results, will assume the case of complex xi; the results remain
however valid in the case of real random variables.

Assumption 3. For each a > b > 0, a.s.

lim sup
t→∞

lim supn νn((t,∞))

φ(at)− φ(bt)
= 0.

Assumption 3 controls the relative speed of the tail of νn versus the flattening
speed of φ(x) as x→∞. Practical examples satisfying Assumption 3 are:

• There exists M > 0 such that, for all n, max1≤i≤n τi < M a.s. In this
case, νn((t,∞)) = 0 a.s. for t > M while φ(at) − φ(bt) 6= 0 since φ is
increasing.

• For u(t) = (1 + α)/(α + t) for some α > 0, it is easily seen that it is
sufficient that lim supn νn((t,∞)) = o(1/t) a.s. for Assumption 3 to hold.
In particular, if the τi are i.i.d. with distribution ν, lim supn νn((t,∞)) =
ν((t,∞)) a.s. (for all t continuity points of ν) and, by Markov inequality,
it suffices that

∫
x1+εν(dx) <∞ for some ε > 0.

The main contribution of this article is twofold: we first present a result on
existence and uniqueness of ĈN as a solution to (1) (Theorem 1) and then study
the limiting spectral behavior of ĈN as N,n→∞ (Theorem 2). With respect to
existence and uniqueness, we recall that for N̄ = N (Maronna, 1976, Theorem 1)
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ensures the existence and uniqueness of a solution to (1) under the statistical
hypothesis that each N -subset of x1, . . . , xn spans CN and that φ∞ > n/(n−N).
While the first condition is met with probability one for continuous distributions
of xi, the second condition is restrictive under Assumption 1 as it imposes
φ∞ > 1/(1 − c−) which brings a loss in robustness for c− close to one.1 Our
first result is a probabilistic alternative to (Maronna, 1976, Theorem 1) which
states that for all large n, a.s.,2 (1) has a unique solution. This result uses
the probability conditions on x1, . . . , xn and also uses φ∞ < c−1

+ which, as
opposed to (Maronna, 1976, Theorem 1), enforces more robust estimators. The
uniqueness part of the result also imposes that φ be strictly increasing, while
(Maronna, 1976, Theorem 1) allows φ(x) = φ∞ for all large x.

As for the large dimensional behavior of ĈN , in the fixed N large n regime
and for i.i.d. τi, it is of the form ĈN

a.s.−→ VN where VN is the unique solution
to VN = E[u( 1

N x
∗
1V
−1
N x1)x1x

∗
1] (Maronna, 1976, Theorem 5). When the xi are

i.i.d. elliptically distributed and u is such that ĈN is the maximum-likelihood
estimator for CN , then VN = CN , leading to a consistent estimator for CN . In
the random matrix regime of interest here, we show that ĈN does not converge
in any classical sense to a deterministic matrix but satisfies ‖Ĉn − ŜN‖

a.s.−→ 0
in spectral norm, where ŜN follows a random matrix model studied in (Zhang,
2006; Paul and Silverstein, 2009; Couillet and Hachem, 2013a). As such, the
spectral behavior of ĈN is easily analyzed from that of ŜN for N,n large.

In the next section, we introduce some new notations that simplify the analy-
sis of ĈN and provide an insight on the derivation of our main result, Theorem 2.

Generic notations: We denote λ1(X) ≤ . . . ≤ λN (X) the ordered eigenvalues
of any Hermitian (or symmetric) matrix X. The superscript (·)∗ designates
transpose conjugate (if complex) for vectors or matrices. The norm ‖ · ‖ is the
spectral norm for matrices and the Euclidean norm for vectors. The cardinality
of a finite discrete set Ω is denoted by |Ω|. Almost sure convergence is written
a.s.−→. We use the set notation C+ = {z ∈ C,=[z] > 0}. The Hermitian (or
symmetric) matrix order relations are denoted A � B for A − B nonnegative
definite and A � B for A − B positive definite. The Dirac measure at point
x ∈ R is denoted by δx.

2. Preliminaries

First note from the expression of ĈN as a (hypothetical) solution to (1) that

we can assume CN = IN by studying C
− 1

2

N ĈNC
− 1

2

N in place of ĈN . Therefore,

1As commented in (Maronna, 1976), small values of φ∞ induce increased robustness to the
expense of accuracy.

2As is common in random matrix theory, the probability space under consideration is that
engendered by the growing sequences {x1, . . . , xn}∞n=1, with N,n satisfying Assumption 1, so
that an event En holds true “for all large n, a.s.” whenever, with probability one, there exists
n0 for which En is true for all n ≥ n0, this n0 possibly depending on the sequence.
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here and in all the major proofs in the article, without generality restriction, we
place ourselves under the assumption CN = ANA

∗
N = IN .

Our objective is to prove that ĈN is a well behaved solution of (1) (for
all large n, a.s.) and to study the spectral properties of ĈN as N,n grow
large. However, the structure of dependence between the rank-one matrices
u( 1

N x
∗
i Ĉ
−1
N xi)xix

∗
i , i = 1, . . . , n, makes the large dimensional analysis of ĈN

via standard random matrix methods impossible (see e.g., (Pastur and Ŝerbina,
2011; Bai and Silverstein, 2009; Anderson et al., 2010)) as these methods fun-
damentally rely on the independence (or simple dependence) of the structuring
rank-one matrices. We propose here to show that, in the large N,n regime,
ĈN behaves similar to a matrix ŜN whose structure is more standard and eas-
ily analyzed through classical random matrix results. For this we first need to
rewrite the fundamental equation (1) in order to exhibit a sufficiently “weak”
dependence structure in the expression of ĈN . This rewriting is performed in
Section 2.1 below. This being done, we then prove that some weakly dependent
terms can be well approximated by independent ones in the large N,n regime.
Since the final result does not take an insightful form, we provide below in
Section 2.2 a hint on how to obtain it intuitively.

2.1. Rewriting (1)

We need to introduce some new notations that will simplify the coming
considerations. Write xi =

√
τiANyi ,

√
τizi and recall that CN = IN for the

moment (in particular, ‖zi‖ is of order
√
N for most zi). If ĈN is well-defined,

we denote Ĉ(i) , ĈN − 1
nu( 1

N x
∗
i Ĉ
−1
N xi)xix

∗
i .

Remark that Ĉ(i) depends on xi only through the terms u( 1
N x
∗
j Ĉ
−1
N xj),

j 6= i, in which the term ĈN is built on xi. But since xi is only one among
a growing number n of xj vectors, this dependence structure looks intuitively

“weak”. This informal weak dependence between xi and Ĉ(i), along with clas-
sical random matrix theory considerations, suggests that the quadratic forms
1
N z
∗
i Ĉ
−1
(i) zi, i = 1, . . . , n, are all well approximated by 1

N tr Ĉ−1
N (more precisely,

this would roughly be a consequence of Lemma 5 and Lemma 4 in the Appendix
if zi and Ĉ(i) were truly independent).

With this in mind, let us rewrite ĈN as a function of 1
N z
∗
i Ĉ
−1
(i) zi instead

of 1
N x
∗
i Ĉ
−1
N xi, i = 1, . . . , n. For this, let Z ∈ CN×N be positive definite such

that for each i, Z(i) , Z− 1
nu(τi

1
N z
∗
i Z
−1zi)τiziz

∗
i is positive definite. Using the

identity (A + τzz∗)−1z = A−1z/(1 + τz∗A−1z) for invertible A, vector z, and
positive scalar τ , observe that

1

N
z∗i Z

−1zi =

1
N z
∗
i Z
−1
(i) zi

1 + τiu
(
τi

1
N z
∗
i Z
−1zi

)
1
nz
∗
i Z
−1
(i) zi

.

Hence,

1

N
z∗i Z

−1
(i) zi

(
1− cNτiu

(
τi

1

N
z∗i Z

−1zi

)
1

N
z∗i Z

−1zi

)
=

1

N
z∗i Z

−1zi
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which, by the definition of φ, is

1

N
z∗i Z

−1
(i) zi

(
1− cNφ

(
τi

1

N
z∗i Z

−1zi

))
=

1

N
z∗i Z

−1zi.

Using Assumption 1 and φ∞ < c−1
+ , taking n large enough to have φ(x) ≤ φ∞ <

1/cN , this can be rewritten

1

N
z∗i Z

−1
(i) zi =

1
N z
∗
i Z
−1zi

1− cNφ
(
τi

1
N z
∗
i Z
−1zi

) . (2)

Now, since φ is increasing, g : [0,∞) → [0,∞), x 7→ x/(1 − cNφ(x)) is
increasing, nonnegative, and maps [0,∞) onto [0,∞). Thus, g is invertible with
inverse denoted g−1. In particular, from (2),

τi
1

N
z∗i Z

−1zi = g−1

(
τi

1

N
z∗i Z

−1
(i) zi

)
.

Call now v : [0,∞)→ [0,∞), x 7→ u◦g−1. Since g is increasing and nonnegative
and u is non-increasing, v is non-increasing and positive. Moreover, ψ : x 7→
xv(x) satisfies:

ψ(x) = xu(g−1(x)) = g(g−1(x))u(g−1(x)) =
φ(g−1(x))

1− cNφ(g−1(x))

which is increasing, nonnegative, and has limit ψN∞ , φ∞/(1−cNφ∞) as x→∞.
Hence, v and ψ keep the same properties as u and φ, respectively.

With these notations, to prove the existence and uniqueness of a solution to
(1), it is equivalent to prove that the equation in Z

Z =
1

n

n∑
i=1

τiv

(
τi

1

N
z∗i Z

−1
(i) zi

)
ziz
∗
i

has a unique positive definite solution. But for this, it is sufficient to prove the
uniqueness of d1, . . . , dn ≥ 0 satisfying the n equations:

dj =
1

N
z∗j

 1

n

∑
i 6=j

τiv (τidi) ziz
∗
i

−1

zj , 1 ≤ j ≤ n. (3)

Indeed, if these di are uniquely defined, then so is the matrix

ĈN =
1

n

n∑
i=1

τiv (τidi) ziz
∗
i (4)

with di = 1
N z
∗
i Ĉ
−1
(i) zi, Ĉ(i) = ĈN − 1

nu( 1
N x
∗
i Ĉ
−1
N xi)xix

∗
i (the existence follows

from taking the di solution to (3) and write ĈN as in (4), while uniqueness
follows from the fact that (4) cannot be written with a different set of di from
the uniqueness of the solution to (3)).

This is the approach that is pursued to prove Theorem 1, based on the results
from Yates (1995). Equation (4), which is equivalent to (1) (with ĈN in place
of Z), will be preferably used in the remainder of the article.
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2.2. Hint on the main result

Assume here that the di above are indeed unique for all large n so that ĈN
is well defined. We provide some intuition on the main result.

From the discussion in Section 2.1, we may expect the terms di to be all
close to 1

N tr Ĉ−1
N for N,n large enough. We may also expect 1

N tr Ĉ−1
N to have

a deterministic equivalent γN , i.e., there should exist a deterministic sequence
{γN}∞N=1 such that | 1

N tr Ĉ−1
N −γN |

a.s.−→ 0. Let us say that all this is true. Since
1
N tr Ĉ−1

N is the Stieltjes transform 1
N tr(ĈN − zIN )−1 of the empirical spectral

distribution of ĈN at point z = 0, and since ĈN is expected to be close to
1
n

∑
i τiv(τiγN )ziz

∗
i with now v(τiγN ) independent of z1, . . . , zn, from classical

random matrix works, e.g., (Silverstein and Bai, 1995), we would expect that
one such γN be given by (recall that CN = IN )

γN =

(
1

n

n∑
i=1

τiv(τiγN )

1 + cNτiv(τiγN )γN

)−1

if this fixed-point equation makes sense at all. This can be equivalently written
as

1 =
1

n

n∑
i=1

ψ(τiγN )

1 + cNψ(τiγN )
. (5)

We in fact prove in Section 3 that such a positive γN is well defined, unique,
and satisfies max1≤i≤n |di − γN |

a.s.−→ 0 (under correct assumptions). Proving
this result is the main difficulty of the article.

This convergence, along with (4), will then ensure that for all large n, a.s.∥∥∥ĈN − ŜN∥∥∥ a.s.−→ 0

where

ŜN =
1

n

n∑
i=1

v (τiγN ) τiziz
∗
i

with γN the unique positive solution to (5). It will then be immediate under
Assumption 2–3 to see that the result holds true also for CN 6= IN .

The major interest of this convergence in spectral norm is that ŜN is a
known and easily manipulable object, as opposed to ĈN . The result therefore
conveys a lot of information about ĈN among which the fact that its largest
and smallest eigenvalues are almost surely bounded and bounded away from
zero for all large n (which is not in general the case of 1

n

∑n
i=1 xix

∗
i for τi with

unbounded support).

3. Main results

We now make the statements of Section 2.2 rigorous. The first result ensures
the existence and uniqueness of a solution ĈN to (1) for n large enough.
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Theorem 1 (Existence and Uniqueness). Let Assumptions 1 and 2 hold,
with lim supN ‖CN‖ non necessarily bounded. Then, for all large n a.s., (1) has
a unique solution ĈN given by

ĈN = lim
t→∞
t∈N

Z(t)

where Z(0) � 0 is arbitrary and, for t ∈ N,

Z(t+1) =
1

n

n∑
i=1

u

(
1

N
x∗i

(
Z(t)

)−1

xi

)
xix
∗
i .

Having defined ĈN , the main result of the article provides a random matrix
equivalent to ĈN , much easier to study than ĈN itself.

Theorem 2 (Asymptotic Behavior). Let Assumptions 1–3 hold, and let ĈN
be given by Theorem 1 when uniquely defined as the solution of (1) or chosen
arbitrarily if not. Then ∥∥∥ĈN − ŜN∥∥∥ a.s.−→ 0

where

ŜN ,
1

n

n∑
i=1

v(τiγN )xix
∗
i

and γN is the unique positive solution of the equation in γ

1 =
1

n

n∑
i=1

ψ(τiγ)

1 + cNψ(τiγ)

with the functions v : x 7→ (u ◦ g−1)(x), ψ : x 7→ xv(x), and g : R+ → R+, x 7→
x/(1− cNφ(x)).

Note as an immediate corollary that if τi = 1 for each i, one falls essentially
back to the simpler setting of (Couillet et al., 2013). In this case, the defining
equation for γN reduces to ψ(γN ) = (1 − cN )−1; since ψ(x) = φ(g−1(x))/(1 −
cNφ(g−1(x))), this induces φ(g−1(γN )) = 1 or equivalently g−1(γN ) = φ−1(1).
From this, we then have v(γN ) = u(φ−1(1)) or more simply v(γN ) = 1/φ−1(1)
and we finally recover the result from (Couillet et al., 2013, Theorem 1-(II)).

The fact that ĈN is well approximated by ŜN , which follows a random matrix
model studied extensively in (Paul and Silverstein, 2009; Couillet and Hachem,
2013a), has important consequences. From a purely mathematical standpoint,
this provides a full characterization of the spectral behavior of ĈN for large
N,n (see in particular Corollary 1 below). For application purposes, this first
enables the performance analysis in the large N,n horizon of standard signal
processing methods already relying on ĈN (these methods were so far analyzed
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solely in the fixed N large n regime). A second, more important, consequence
for signal processing application is the possibility to fully exploit the structure
of ĈN for large N,n to improve existing robust schemes (see e.g., (Couillet and
McKay, 2013) for an example in array processing). Deriving such improved
methods is not the subject of the current article but may be directly accessible
from Theorem 2, while performance analysis of these methods may demand
supplementary treatment, such as central limit theorems for functionals of ĈN .
Note in passing that ŜN is not an observable matrix since γN and the τi’s are
not directly readable from the xi’s so that ŜN has a purely analytical purpose
and cannot be used as a substitute for ĈN in practice.

Corollary 1 (Spectrum). Let Assumptions 1–3 hold. Then

1

n

n∑
i=1

δλi(ĈN ) − µN
a.s.−→ 0 (6)

where the convergence is in the weak probability measure sense, with µN a prob-
ability measure with continuous density and Stieltjes transform mN (z) given,
for z ∈ C+, by

mN (z) = −1

z

1

N

N∑
i=1

1

1 + δ̃N (z)λi(CN )

where δ̃N (z) is the unique solution in C+ of the equations in δ̃

δ̃ = −1

z

1

n

n∑
i=1

ψ(τiγN )

γN + ψ(τiγN )δ

δ = −1

z

1

n

N∑
i=1

λi(CN )

1 + λi(CN )δ̃

and where γN is defined in Theorem 2. Besides, the support SN of µN is uni-
formly bounded. If CN = IN , mN (z) is the unique solution in C+ of the equation
in m

m =

(
−z + γ−1

N

1

n

n∑
i=1

ψ(τiγN )

1 + cγ−1
N ψ(τiγN )m

)−1

.

Also, for each N0 ∈ N and each closed set A ⊂ R with A∩
(⋃

N≥N0
SN
)

= ∅,∣∣∣∣{λi(ĈN )
}N
i=1
∩ A

∣∣∣∣ a.s.−→ 0 (7)

so that, in particular,

lim sup
N

‖ĈN‖ <∞. (8)
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Proof. Equation (6) is obtained from the results of (Zhang, 2006) with no-
tations similar to (Couillet and Hachem, 2013a). The characterization of µN
follows from (Couillet and Hachem, 2013a), where more information can be
found. The uniform boundedness of the support is a consequence of the bound-
edness of ψ and γN , Lemma 1 in Section 4. Finally, the results (7) and (8)
are an application of (Paul and Silverstein, 2009) along with lim supN ‖ŜN‖ ≤
v(0) lim supN ‖CN‖ lim supN ‖ 1

n

∑n
i=1 xix

∗
i ‖ < ∞ by Assumption 2–3 and (Bai

and Silverstein, 1998).

A consequence of Theorem 2 and Corollary 1 in the i.i.d. elliptical case is as
follows.

Corollary 2 (Elliptical case). Let Assumptions 1–3 hold and in addition, let
τi be i.i.d. with law ν and let cN → c. Then∥∥∥∥∥ĈN − 1

n

n∑
i=1

v(τiγ
∞)xix

∗
i

∥∥∥∥∥ a.s.−→ 0

where γ∞ is the unique positive solution to the equation in γ

1 =

∫
ψc(tγ)

1 + cψc(tγ)
ν(dt)

with ψc = limcN→c ψ. Moreover, if 1
n

∑n
i=1 δλi(CN ) → νC weakly, then

1

n

n∑
i=1

δλi(ĈN )

a.s.−→ µ

weakly with µ a probability measure with continuous density of bounded support
S, the Stieltjes transform m(z) of which is given for z ∈ C+ by

m(z) = −1

z

∫
1

1 + δ̃(z)t
νC(dt)

where δ̃(z) is the unique solution in C+ of the equations in δ̃

δ̃ = −1

z

∫
ψc(tγ

∞)

γ∞ + ψc(tγ∞)δ
ν(dt)

δ = − c
z

∫
t

1 + tδ̃
νC(dt).

Finally, for every closed set A ⊂ R with A ∩ S = ∅,∣∣∣∣{λi(ĈN )
}N
i=1
∩ A

∣∣∣∣ a.s.−→ 0.

Proof. We use the fact that γN
a.s.−→ γ∞ (γN defined in Theorem 2) which is

a consequence of ψ/(1 + cNψ) being monotonous and γN uniformly bounded,
Lemma 1. The rest unfolds from classical random matrix techniques.
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Figure 1: Histogram of the eigenvalues of ĈN for n = 2500, N = 500, CN =
diag(I125, 3I125, 10I250), τ1 with Γ(.5, 2)-distribution.
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Figure 2: Histogram of the eigenvalues of ŜN for n = 2500, N = 500, CN =
diag(I125, 3I125, 10I250), τ1 with Γ(.5, 2)-distribution.

Figures 1 and 2 depict the empirical histogram of the eigenvalues of ĈN
and ŜN , for N = 500 and n = 2500 with u(t) = (1 + α)/(t + α), α = 0.1,
CN = diag(I125, 3I125, 10I250), and τ1, . . . , τn i.i.d. with Γ(.5, 2) distribution.
In thick line is also depicted the density of µN in Corollary 1 which shows an
accurate match to the empirical spectrum as predicted by (6). As a compar-
ison, Figure 3 shows the empirical histogram of the eigenvalues of the sample
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Figure 3: Histogram of the eigenvalues of 1
n

∑n
i=1 xix

∗
i for n = 2500, N = 500, CN =

diag(I125, 3I125, 10I250), τ1 with Γ(.5, 2)-distribution.

covariance matrix 1
n

∑n
i=1 xix

∗
i under the same parametrization against the de-

terministic equivalent density for this model in thick line (Zhang, 2006). This
graph presents a large eigenvalue spectrum support, seemingly unboundedly
growing with N , which is indeed expected according to (Couillet and Hachem,
2013a, Proposition 3.4) as τ1 has unbounded support; this is to be compared
against the provably uniformly bounded spectrum of ĈN (owing again to (Couil-
let and Hachem, 2013a, Proposition 3.4) and the uniform boundedness of v(x)
and ‖CN‖). Also note the gain of separability in the spectrum of ĈN which
exhibits clearly three compacts subsets of eigenvalues, reminiscent of the three
masses in the eigenvalue distribution of CN , while 1

n

∑n
i=1 xix

∗
i exhibits a single

compact set of eigenvalues.
Both remarks have major consequences from detection and estimation pur-

poses in signal processing applications of robust estimation, where relevant sys-
tem information is often carried in the largest eigenvalues, ideally found suffi-
ciently far from the “noise” eigenvalues. As such, from a practical standpoint,
it is expected that robust estimators would allow for an improved separation
between information and noise in impulsive data setting. This behavior is in
fact confirmed in the companion article (Couillet, 2014) which extends Theo-
rem 2 to a practical information-plus-impulsive noise array processing setting
and shows outstanding performance improvements in detection and parameter
estimation. These applied considerations however fall beyond the scope of the
present article and shall no longer be discussed here.

In the next section, we present the proofs of Theorem 1 and Theorem 2.
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4. Proof of the main results

For the sake of definition, we take all variables to be complex here although
the arguments are also valid for real random variables.

4.1. Proof of Theorem 1

As mentioned in Section 2, we can assume without generality restriction
that CN = IN . Indeed, if ĈN is the unique solution to (1) assuming CN = IN ,

then, for any other choice of CN � 0, C
1
2

N ĈNC
1
2

N is the unique solution to
the corresponding model in (1). Hence, we only need to prove the result for
CN = IN .

Consider a growing sequence {x1, . . . , xn}∞n=1 according to Assumptions 1
and 2. Since |{τi = 0}| = nνn({0}) < n(1 − c+) for all large n a.s. (Assump-
tion 2–2), n − |{τi = 0}| > c+n > N + 1 which, along with z1, . . . , zn being
normalized Gaussian vectors, ensures that {x1, . . . , xj−1, xj+1, . . . , xn} spans
CN for all j for all large n a.s. As long as n is large enough, we can therefore
almost surely define h = (h1, . . . , hn) with hj : Rn+ → R+ given by

hj(q1, . . . , qn) =
1

N
z∗j

 1

n

∑
i 6=j

τiv (τiqi) ziz
∗
i

−1

zj .

As shown in Section 2.1, in order to show that ĈN is uniquely defined, it
suffices to show that there exists a unique q1, . . . , qn such that for each j,
qj = hj(q1, . . . , qn). For this, we show first that h satisfies the following proper-
ties with probability one:

(a) Nonnegativity: For each q1, . . . , qn ≥ 0 and each i, hi(q1, . . . , qn) > 0

(b) Monotonicity: For each q1 ≥ q′1, . . . , qn ≥ q′n and each i, hi(q1, . . . , qn) ≥
hi(q

′
1, . . . , q

′
n)

(c) Scalability: For each α > 1 and each i, αhi(q1, . . . , qn) > hi(αq1, . . . , αqn).

Item (a) is obvious since the matrix inverse is well defined for all n large and zi 6=
0 almost surely. Item (b) follows from the fact that, for two Hermitian matrices
A � B � 0, B−1 � A−1 � 0 ((Horn and Johnson, 1985, Corollary 7.7.4)), and
from v being non-increasing, entailing hi to be a non-decreasing function of each
qj . As for Item (c), it follows also from the previous matrix inverse relation and
from ψ being increasing, entailing in particular that, for α > 1, ψ(αqi) > ψ(qi)
if qi 6= 0 so that v(αqi) > v(qi)/α for qi ≥ 0.

According to Yates (Yates, 1995, Theorem 2), h is then a standard in-
terference function and, if there exists q1, . . . , qn such that for each i, qi >
hi(q1, . . . , qn) (feasibility condition), then there is a unique {q1, . . . , qn} satis-

fying qi = hi(q1, . . . , qn) for each i, which is given by qi = limt→∞ q
(t)
i with

q
(0)
i ≥ 0 arbitrary and, for t ≥ 0, q

(t+1)
i = hi(q

(t)
1 , . . . , q

(t)
n ) (which would then

14



conclude the proof). To obtain the feasibility condition, note that the func-

tion q 7→ 1
N z
∗
j

(
1
n

∑
i 6=j ψ(τiq)ziz

∗
i

)−1

zj is decreasing and, as q →∞, has limit

1−cNφ∞
φ∞

1
N z
∗
j

(
1
n

∑
i 6=j,τi 6=0 ziz

∗
i

)−1

zj . As {τi}ni=1 and {zi}ni=1 are independent

and lim supnN/|{τi 6= 0}| = lim sup cN/(1 − νn({0})) < 1 a.s. (Assumption 2
and Assumption 1), for all large n a.s., we fall within the hypotheses of Lemma 6
in the Appendix and we can then write,3

max
1≤j≤n

∣∣∣∣∣∣∣(1− νn({0})) 1

N
z∗j

 1

n

∑
τi 6=0

ziz
∗
i

−1

zj − 1

∣∣∣∣∣∣∣ a.s.−→ 0.

Assume first that τj 6= 0. Then, using the relation

1

N
z∗j

 1

n

∑
τi 6=0,i6=j

ziz
∗
i

−1

zj =

1
N z
∗
j

(
1
n

∑
τi 6=0 ziz

∗
i

)−1

zj

1− cN 1
N z
∗
j

(
1
n

∑
τi 6=0 ziz

∗
i

)−1

zj

and the fact that for all large n a.s. 1− νn({0}) > c+, we have

max
j,τj 6=0

∣∣∣∣∣∣∣
1

N
z∗j

 1

n

∑
τi 6=0,i6=j

ziz
∗
i

−1

zj −
1

1− νn({0})− cN

∣∣∣∣∣∣∣ a.s.−→ 0.

Therefore, using the fact that νN ({0}) < 1− φ−1
∞ for all n large a.s. (Assump-

tion 2–2), we have that for all j with τj 6= 0

1− cNφ∞
φ∞

1

N
z∗j

 1

n

∑
τi 6=0,i6=j

ziz
∗
i

−1

zj < 1. (9)

If instead τj = 0, then

max
j,τj=0

∣∣∣∣∣∣∣
1

N
z∗j

 1

n

∑
τi 6=0

ziz
∗
i

−1

zj −
1

1− νn({0})

∣∣∣∣∣∣∣ a.s.−→ 0.

and we find also the inequality (9) for all large n a.s. and for all j with τj = 0,
using once more νN ({0}) < 1− φ−1

∞ . As such, (9) is valid for all j ∈ {1, . . . , n}.

3To be more exact, since |{τi 6= 0}| is random with probability space T producing the τi’s,
Lemma 6 applies only on a subset of probability one of T . It then suffices to apply Tonelli’s
theorem (Billingsley, 1995) to ensure that Lemma 6 can be extended and still holds with
probability one on the product space producing the (τi, zi).
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We can then choose n large enough so that (9) holds for all j, after which,
taking q sufficiently large,

1

N
z∗j

 1

n

∑
i 6=j

ψ(τiq)ziz
∗
i

−1

zj < 1

which is equivalent to

1

N
z∗j

 1

n

∑
i 6=j

v(τiq)τiziz
∗
i

−1

zj < q

for all j, i.e., hj(q, . . . , q) < q. This ensures feasibility for all large n a.s. and
concludes the proof.

4.2. Proof of Theorem 2

Similar to the proof of Theorem 1, we can restrict ourselves to the assumption
that CN = IN . The generalization to CN satisfying Assumption 2-3) will follow
straightforwardly. We therefore take CN = IN in what follows.

We start the proof by introducing the following fundamental lemmas (note
that these lemmas in fact hold true irrespective of CN � 0).

Lemma 1. Let Assumption 1 hold and let h : [0,∞)→ [0,∞) be given by

h(γ) =

(
1

n

n∑
i=1

τiv(τiγ)

1 + cNτiv(τiγ)γ

)−1

=

 γ
(

1
n

∑n
i=1

ψ(τiγ)
1+cNψ(τiγ)

)−1

, γ > 0

1
v(0)

(
1
n

∑n
i=1 τi

)−1
, γ = 0.

Then, for all large n a.s., there exists a unique γN > 0 satisfying γN = h(γN ),
given by

γN = lim
t→∞

γ
(t)
N

with γ
(0)
N ≥ 0 arbitrary and, for t ≥ 0, γ

(t+1)
N = h(γ

(t)
N ). Moreover, with proba-

bility one,

γ− < lim inf
N

γN ≤ lim sup
N

γN < γ+

for some γ−, γ+ > 0 finite.

Proof. As in the proof of Theorem 1, we show that h (scalar-valued this time)
is a standard interference function. We show easily positivity, monotonicity and
scalability of h. Indeed, for γ ≥ 0, h(γ) > 0. For γ ≥ γ′ ≥ 0,

h(γ)− h(γ′)

h(γ)h(γ′)
=

1

n

n∑
i=1

τi (v(τiγ
′)− v(τiγ)) + (γ − γ′)cNτ2

i v(τiγ)v(τiγ
′)

(1 + cNτiv(τiγ)γ)(1 + cNτiv(τiγ′)γ′)
≥ 0
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which follows from v being nonnegative decreasing. Finally, for α > 1, αh(0) >
h(0) and for γ 6= 0,

h(αγ) = αγ

(
1

n

n∑
i=1

ψ(τiαγ)

1 + cNψ(τiαγ)

)−1

< αγ

(
1

n

n∑
i=1

ψ(τiγ)

1 + cNψ(τiγ)

)−1

= αh(γ)

which follows from γ 7→ ψ(τiγ)(1 + cNψ(τiγ))−1 being increasing as long as
τi 6= 0. It remains to prove the existence of a γ such that γ > h(γ), inducing
by (Yates, 1995, Theorem 2) the uniqueness of the fixed-point γN given by

γN = limt→∞ γ
(t)
N as stated in the theorem. For this, we use again the fact that

γ 7→ ψ(τiγ)(1 + cNψ(τiγ))−1 is increasing and that (Assumption 2–2), for all
large n a.s.

lim
γ→∞

1

n

n∑
i=1

ψ(τiγ)

1 + cNψ(τiγ)
=

(1− νn({0}))ψN∞
1 + cNψN∞

= (1− νn({0}))φ∞ > 1.

Therefore, there exists γ0 (a priori dependent on the set {τ1, . . . , τn}) such that,
for all γ > γ0, h(γ) < γ.

To prove uniform boundedness of γN , let ε > 0 and m > 0 be such that
(1− ε)φ∞ > 1 and νn((m,∞)) > 1− ε for all n large a.s. (always possible from
Assumption 2–2). Then, for all n large a.s.

1

n

n∑
i=1

ψ(τiγ)

1 + cNψ(τiγ)
> (1− ε) ψ(mγ)

1 + cNψ(mγ)
→ (1− ε)φ∞ > 1

as γ →∞. Similar to γ0 above, we can therefore choose γ+ large enough, now
independent of n large, such that, a.s. γ ≥ γ+ ⇒ γ > h(γ), implying γN < γ+

for these n large since γN = h(γN ). Also, h(0) > 1/(2v(0)) for all large n a.s.

since 1
n

∑n
i=1 τi

a.s.−→ 1 by Assumption 2. Hence, by the continuous growth of h,
we can take γ− = 1/(2v(0)) > 0 which is such that γ ≤ γ− ⇒ h(γ) ≥ h(0) > γ
for all large n a.s. This implies γN > γ− for all large n a.s., which concludes
the proof.

Remark 1. For further use, note that Lemma 1 can be refined as follows.
Let (η,Mη) be couples indexed by η with 0 < η < 1 and Mη > 0 such that
νn((Mη,∞)) < η for all large n a.s. (possible by tightness of νn). Then, for
sufficiently small η, the equation in γ

γ =

 1

n

∑
τi≤Mη

τiv(τiγ)

1 + cNτiv(τiγ)γ

−1

has a unique solution γηN for all large n a.s. and there exists γ−, γ+ > 0 such
that, for all η < η0 small, γ− < γηN < γ+ for all large n a.s.
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Proof. The uniqueness is clear as long as (1−η0)(1− lim supn νn({0}))φ∞ > 1

since then, exploiting the fact that limn
|{τi≤Mη}|

n > 1− η0 a.s.,

lim
γ→∞

1

n

∑
τi≤Mη

ψ(τiγ)

1 + cNψ(τiγ)
=
|{τi ≤Mη}|

n
(1− νn({0}))φ∞ > 1

for all n large a.s. and the proof follows from the proof of Lemma 1. For
uniform boundedness, taking Mη0

< Mη large enough (or equivalently η0 > η

small enough) such that lim infn
|{m<τi≤Mη}|

n > lim infn
|{m<τi≤Mη0

}|
n > 1 − ε

a.s. in the proof of Lemma 1 leads to the same upper bound result for all small
η < η0. As for the lower bound, we still have h(0) > 1/(2v(0)) for all large n
a.s. independently of η so the result is maintained.

Lemma 2. Let Assumption 1 hold and define γN as in Lemma 1. Then, as
n→∞,

max
1≤j≤n

∣∣∣∣∣∣∣
1

N
z∗j

 1

n

∑
i 6=j

τiv(τiγN )ziz
∗
i

−1

zj − γN

∣∣∣∣∣∣∣ a.s.−→ 0.

Proof. We first introduce some notations to simplify readability. First, we
will write zj =

√
N̄AN ỹj/‖ỹj‖ ,

√
N̄ z̃j/‖ỹj‖ with ỹj zero-mean IN̄ -covariance

Gaussian, hence z̃j is zero-mean IN -covariance Gaussian. With this notation, in
what follows, we denote A = 1

n

∑n
i=1 τiv(τiγN )ziz

∗
i , A(j) = A− 1

nτjv(τjγN )zjz
∗
j ,

Ã = 1
n

∑n
i=1 τiv(τiγN )z̃iz̃

∗
i and Ã(j) = Ã− 1

nτjv(τjγN )z̃j z̃
∗
j .

We first show that there exists η > 0 such that, for all large n a.s.

min
1≤j≤n

λ1

(
A(j)

)
> η (10)

(recall that λ1 stands for the smallest eigenvalue). For this, take 0 < ε < 1− c+
and m > 0 be such that νn((m,∞)) > 1−ε for all n large a.s. (Assumption 2–2).
Using the fact that xv(x) = ψ(x) is non-decreasing and that any subtraction of
a nonnegative definite matrix cannot increase the smallest eigenvalue, we have

min
1≤j≤n

λ1

(
A(j)

)
≥ min

1≤j≤n
λ1

 1

n

∑
i 6=j,τi≥m

ψ(τiγN )

γN
ziz
∗
i


≥ ψ(mγN )

γN
min

1≤j≤n
λ1

 1

n

∑
i 6=j,τi≥m

ziz
∗
i

 . (11)

Since νn((m,∞)) > 1− ε for all n large a.s.,

0 < c− < lim inf
n

N

|{τi ≥ m}|
≤ lim sup

n

N

|{τi ≥ m}|
<

c+
1− ε

< 1.
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From Lemma 6 in the Appendix (see footnote in the proof of Theorem 1 for
details), we can then write

min
1≤j≤n

λ1

(
A(j)

)
≥ ψ(mγN )

γN
νn((m,∞)) min

1≤j≤n
λ1

 1

|{τi ≥ m}|
∑

i 6=j,τi≥m

ziz
∗
i


>
ψ(mγN )

γN
(1− ε)η′

for some η′ > 0 which, along with the almost sure boundedness of γN (Lemma 1)
proves (10).

Now that (10) is acquired, let Eỹj denote the expectation with respect to
ỹj (i.e., conditionally on the sigma-field engendered by the ỹi, i 6= j, and the

τi) and κj , 1{λ1(A(j))>η} with η as defined in (10). From (Bai and Silverstein,

2009, Lemma B.26) (which applies here since z̃j and κ
1/p
j A−1

(j) are independent),

for p > 2,

Eỹj

[
κj

∣∣∣∣ 1

N
z̃∗jA

−1
(j) z̃j −

1

N
trA−1

(j)

∣∣∣∣p] ≤ κjKp

N
p
2

[(
ζ4
N

trA−2
(j)

) p
2

+
ζ2p

N
p
2

trA−p(j)

]

for ζ` any upper bound on E[|z̃ij |`] and Kp a constant dependent only on p.
From the definition of κj , we have κj‖A−1

(j)‖ < η−1, so that, using 1
N trB ≤ ‖B‖

for nonnegative definite B ∈ CN×N ,

Eỹj

[
κj

∣∣∣∣ 1

N
z̃∗jA

−1
(j) z̃j −

1

N
trA−1

(j)

∣∣∣∣p] ≤ Kp

ηpN
p
2

(
ζ
p
2
4 +

ζ2p

N
p
2−1

)
.

This bound being irrespective of all zi and τi, i 6= j, we can take the expectation
with respect to all yi, i 6= j, and all τi to obtain

E

[
κj

∣∣∣∣ 1

N
z̃∗jA

−1
(j) z̃j −

1

N
trA−1

(j)

∣∣∣∣p] = O
(

1

N
p
2

)
.

Taking p > 4 and applying the union bound, Markov inequality, and Borel
Cantelli lemma finally shows that

max
1≤j≤n

κj

∣∣∣∣ 1

N
z̃∗jA

−1
(j) z̃j −

1

N
trA−1

(j)

∣∣∣∣ a.s.−→ 0. (12)

With the same arguments on κj and with the same p as above, now remark
that

Eỹj

[
κj

∣∣∣∣ 1

N
z∗jA

−1
(j)zj −

1

N
z̃∗jA

−1
(j) z̃j

∣∣∣∣p] = Eỹj

[
κj

∣∣∣∣ 1

N
z∗jA

−1
(j)zj

(
1− ‖ỹj‖

2

N̄

)∣∣∣∣p]
≤ 1

ηp
Eỹj

[∣∣∣∣1− ‖ỹj‖2N̄

∣∣∣∣p] = O
(

1

Np/2

)
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since N̄ ≥ N , again by (Bai and Silverstein, 2009, Lemma B.26). Therefore, by
the union bound, Markov inequality, and Borel Cantelli lemma,

max
1≤j≤n

κj

∣∣∣∣ 1

N
z∗jA

−1
(j)zj −

1

N
z̃∗jA

−1
(j) z̃j

∣∣∣∣ a.s.−→ 0. (13)

Combining (12) and (13) along with the fact that min1≤j≤n κj
a.s.−→ 1 (from

(10)) finally gives

max
1≤j≤n

∣∣∣∣ 1

N
z∗jA

−1
(j)zj −

1

N
trA−1

(j)

∣∣∣∣ a.s.−→ 0.

By (10), A(j) = (A(j) − η
2 IN ) + η

2 IN with lim infn λ1(A(j) − η
2 IN ) > 0 a.s.,

so we are in the conditions of Lemma 4 and we have

max
1≤j≤n

∣∣∣∣ 1

N
trA−1

(j) −
1

N
trA−1

∣∣∣∣ a.s.−→ 0.

It remains to find a deterministic equivalent for 1
N trA−1. Similar to above,

note first that, for all large n a.s.∣∣∣∣ 1

N
trA−1 − 1

N
tr Ã−1

∣∣∣∣ ≤ 1

η2

ψ∞
γN

max
1≤j≤n

∣∣∣∣1− N̄−1‖ỹj‖2

N̄−1‖ỹj‖2

∣∣∣∣
∥∥∥∥∥ 1

n

n∑
i=1

z̃j z̃
∗
j

∥∥∥∥∥
where we used the definition and boundedness of ψ and standard matrix inver-
sion formulas. From (Bai and Silverstein, 1998), the right hand side converges
almost surely to zero, so that it is equivalent to consider zi or z̃i. Now, the
trace 1

N tr Ã−1 is exactly the Stieltjes transform m̂N (z) of the matrix Ã eval-

uated at point z = 0. Since λ1(Ã) ≥ λ1(Ã(1)) > η for all large n a.s. and

since τiv(τiγN ) = ψ(τiγN )γ−1
N is uniformly bounded across i and n (from the

boundedness of ψ and Lemma 1), from standard random matrix results (e.g.,
(Couillet et al., 2011a))4, we have

m̂N (0)−mN (0)
a.s.−→ 0

where mN (0) is the unique nonnegative solution to the equation in m (as long
as at least one τi is non-zero)

m =

(
1

n

n∑
i=1

τiv(τiγN )

1 + cNτiv(τiγN )m

)−1

.

4More precisely, (Couillet et al., 2011a) shows that m̂N (z)−mN (z)
a.s.−→ 0 for all points z

with =[z] > 0. Using λ1(Ã) > η for all large n a.s., the proof can be generalized to all z ∈ C
with positive distance to [η,∞) by turning the bounds in 1/|=[z]| into 1/d(z, [η,∞)) with d
denoting the Hausdorff distance, so for z = 0. The existence of mN (0) is in particular already
obtained in the generalization of the existence result of (Couillet et al., 2011a, Appendix A-
C), this time for z = 0. The proof of uniqueness of mN (0) can then be checked by standard
interference function arguments, where feasibility follows in particular from the right-hand
behaving as cNm < m from Assumption 1.
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Now, by definition, γN coincides with such a solution. By uniqueness of mN (0),
one must then have mN (0) = γN so that, gathering all results together,

max
1≤j≤n

∣∣∣∣ 1

N
z∗jA

−1
(j)zj − γN

∣∣∣∣ a.s.−→ 0

which completes the proof.

Remark 2. Similar to Remark 1, note that Lemma 2 can be further extended
to

max
1≤j≤n

∣∣∣∣∣∣∣
1

N
z∗j

 1

n

∑
τi≤Mη,i6=j

τiv(τiγ
η
N )ziz

∗
i

−1

zj − γηN

∣∣∣∣∣∣∣ a.s.−→ 0

for some η small enough, with Mη and γηN defined in Remark 1.

Proof. One shows boundedness of λ1( 1
n

∑
τi≤Mη,i6=j τiv(τiγ

η
N )ziz

∗
i ) simply by

taking η for which νn((m,Mη)) > 1 − ε for all large n a.s. in the proof of
Lemma 2. Then it suffices to adapt all derivations by substituting τi by zero if
τi > Mη. The result follows straightforwardly.

The two lemmas above are standard random matrix results on x1, . . . , xn,
independent of the structure of ĈN . The next lemma introduces a first result
on the matrix ĈN which will be fundamental in what follows. Recall that we
denoted di = 1

N z
∗
i Ĉ
−1
(i) zi, with Ĉ(i) = ĈN − 1

nv(τidi)τiziz
∗
i .

Lemma 3 (Boundedness of the di). There exist d+ > d− > 0 such that, for
all large n a.s.,

d− < lim inf
n

min
1≤i≤n

di ≤ lim sup
n

max
1≤i≤n

di < d+.

Proof. Let us denote dmax = max1≤i≤n di and dmin = min1≤i≤n di. Take
j ∈ {1, . . . , n} arbitrary and, for 0 < ε < 1 − φ−1

∞ < 1 − c+, take m > 0 such
that for all large n a.s. νn([m,∞)) > 1− ε (Assumption 2–2). Then, using the
fact that v is non-increasing while ψ is non-decreasing,

Ĉ(j) �
1

n

∑
i 6=j
τi≥m

τiv(τidi)ziz
∗
i =

1

n

∑
i 6=j
τi≥m

ψ(τidi)

di
ziz
∗
i �

1

n

∑
i 6=j
τi≥m

ψ(mdi)

di
ziz
∗
i

=
1

n

∑
i 6=j
τi≥m

mv(mdi)ziz
∗
i � mv(mdmax)

1

n

∑
i 6=j
τi≥m

ziz
∗
i . (14)

The right-hand side matrix is invertible for n large since |{τi ≥ m}| > nc+ > N
for all large n a.s. Therefore, choosing j to be such that dmax = 1

N z
∗
j Ĉ
−1
(j) zj ,

and using A � B � 0⇒ B−1 � A−1 for Hermitian A,B matrices,

dmax ≤
1

mv(mdmax)

1

N
z∗j

 1

n

∑
τi≥m,i 6=j

ziz
∗
i

−1

zj .
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This implies

ψ(mdmax) ≤ 1

N
z∗j

 1

n

∑
τi≥m,i 6=j

ziz
∗
i

−1

zj

which can be rewritten, from the definition of ψ,

φ(g−1(mdmax)) ≤
1
N z
∗
j

(
1
n

∑
τi≥m,i 6=j ziz

∗
i

)−1

zj

1 + cN
1
N z
∗
j

(
1
n

∑
τi≥m,i6=j ziz

∗
i

)−1

zj

. (15)

From Lemma 6 in the Appendix and the fact that νn([m,∞) = n−1|{τi ≥
m}| > 1− ε for all large n a.s., we then have for all large n a.s.

1

N
z∗j

 1

n

∑
i 6=j
τi≥m

ziz
∗
i


−1

zj =
1

νn([m,∞))

1

N
z∗j

 1

|{τi ≥ m}|
∑
i 6=j
τi≥m

ziz
∗
i


−1

zj

<
1

1− ε
1

1− cN
1−ε

=
1

1− cN − ε
.

Now, since t 7→ t/(1 + cN t) is increasing, for all large n a.s.

1
N z
∗
j

(
1
n

∑
i 6=j
τi≥m

ziz
∗
i

)−1

zj

1 + cN
1
N z
∗
j

(
1
n

∑
i6=j
τi≥m

ziz∗i

)−1

zj

<
1

1− cN − ε
1

1 + cN
1

1−cN−ε
=

1

1− ε
.

As ε < 1 − φ−1
∞ , (1 − ε)−1 < φ∞ so that, from the inequality above, we can

apply φ−1 on both sides of (15) to obtain, for all large n a.s.

g−1(mdmax) ≤ φ−1

(
1

1− ε

)
hence

dmax ≤
1

m
g

(
φ−1

(
1

1− ε

))
from which dmax is uniformly bounded for all large n a.s. by say d+.

To proceed to dmin, note similarly that we can write

Ĉ(j) �
1

n

∑
i 6=j
τi≤M

Mv(Mdmin)ziz
∗
i +

1

n

∑
i6=j
τi>M

τiv(τidi)ziz
∗
i

� 1

n

∑
i 6=j
τi≤M

Mv(Mdmin)ziz
∗
i + v(0)

1

n

∑
i 6=j
τi>M

τiziz
∗
i
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for any M > 0. Selecting j meeting the minimum for dj , we then have

dmin ≥
1

Mv(Mdmin)

1

N
z∗j

 1

n

∑
i6=j
τi≤M

ziz
∗
i +

v(0)

Mv(Mdmin)

1

n

∑
i 6=j
τi>M

τiziz
∗
i


−1

zj

which, for all large n a.s., satisfies

dmin ≥
1

Mv(Mdmin)

1

N
z∗j

 1

n

∑
i 6=j
τi≤M

ziz
∗
i +

v(0)

Mv(Md+)

1

n

∑
i 6=j
τi>M

τiziz
∗
i


−1

zj

or equivalently

ψ(Mdmin) ≥ 1

N
z∗j

 1

n

∑
i 6=j
τi≤M

ziz
∗
i +

v(0)

Mv(Md+)

1

n

∑
i 6=j
τi>M

τiziz
∗
i


−1

zj .

With the same arguments as in the proof of Lemma 2, note that, taking M
large enough

lim inf
n

inf
j
λ1

 1

n

∑
i6=j,τi≤M

ziz
∗
i

 > 0

almost surely (from Lemma 6 and since lim infn νn((M,∞)) → 1 a.s. as M →
∞). We can then apply Lemma 5 to obtain, along with Lemma 4, Markov
inequality, and Borel-Cantelli lemma arguments,

max
1≤j≤n

∣∣∣∣∣∣∣∣
1

N
z∗j

 1

n

∑
i 6=j
τi≤M

ziz
∗
i + EM


−1

zj −
1

N
tr

 1

n

∑
τi≤M

ziz
∗
i + EM

−1
∣∣∣∣∣∣∣∣

a.s.−→ 0

(16)

where we defined EM = v(0)
Mv(Md+)

1
n

∑
τi>M

τiziz
∗
i . Now, EM is of maximum

rank |{τi > M}|. Taking M large enough to ensure νn((M,∞)) = |{τi >
M}|/n < c−ε

′ for some ε′ > 0 arbitrary, we then have from |{τi > M}| appli-
cations of Lemma 4∣∣∣∣∣∣∣

1

N
tr

 1

n

∑
τi≤M

ziz
∗
i + EM

−1

− 1

N
tr

 1

n

∑
τi≤M

ziz
∗
i

−1
∣∣∣∣∣∣∣ ≤ ε′.
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This and (16) give for all large n a.s.

ψ(Mdmin) ≥ 1

N
z∗j

 1

n

∑
i6=j
τi≤M

ziz
∗
i


−1

zj + 2ε′

for all large n almost surely. From there, it suffices to proceed similar to the
boundedness proof for dmax starting from (15) with inequality signs reverted
and accounting for ε′ arbitrarily small. This shows finally that dmin is uniformly
bounded away from zero and this completes the proof.

Equipped with Lemmas 1, 2, and 3, we are now in position to develop the
core of the proof. For readability, we divide the proof in two parts. In the first
part, we will assume that τ1, . . . , τn have a uniformly bounded support. This
will greatly simplify the calculus and will allow for a better understanding of
the main arguments; in particular, the technical Assumption 3 will be irrelevant
in this part. Then in a second part, we relax the boundedness assumption and
fully exploit Assumption 3 in a more technical proof.

4.2.1. Bounded τi.

First assume τ1, . . . , τn ≤M a.s. for some M > 0. We follow here a similar
path as in (Couillet et al., 2013) but slightly more involved. Define

ei ,
v(τidi)

v(τiγN )
> 0 (17)

with γN the value given by Lemma 1 and with di still defined as di = 1
N z
∗
i Ĉ
−1
(i) zi.

Up to labeling change, we reorder the ei’s as e1 ≤ . . . ≤ en. Our goal is to show
that e1

a.s.−→ 1 and en
a.s.−→ 1 (hence max1≤i≤n |ei−1| a.s.−→ 0), which we will prove

by a contradiction argument.
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For any j = 1, . . . , n, we have

ej =
v
(
τj

1
N z
∗
j Ĉ
−1
(j) zj

)
v(τjγN )

=

v

(
τj

1
N z
∗
j

(
1
n

∑
i 6=j τiv(τidi)ziz

∗
i

)−1

zj

)
v(τjγN )

=

v

(
τj

1
N z
∗
j

(
1
n

∑
i 6=j τiv(τiγN )eiziz

∗
i

)−1

zj

)
v(τjγN )

(18)

≤
v

(
τj

1
N z
∗
j

(
1
n

∑
i 6=j τiv(τiγN )enziz

∗
i

)−1

zj

)
v(τjγN )

=

v

(
τj
en

1
N z
∗
j

(
1
n

∑
i6=j τiv(τiγN )ziz

∗
i

)−1

zj

)
v(τjγN )

(19)

where the inequality arises from v being non-increasing and from (Horn and
Johnson, 1985, Corollary 7.7.4). Similarly, for each j,

ej ≥
v

(
τj
e1

1
N z
∗
j

(
1
n

∑
i 6=j τiv(τiγN )ziz

∗
i

)−1

zj

)
v(τjγN )

. (20)

From Lemma 2, let now 0 < εn < γN , εn ↓ 0, be such that, for all large n
a.s. and for all j ≤ n,

γN − εn <
1

N
z∗j

 1

n

∑
i 6=j

τiv(τiγN )ziz
∗
i

−1

zj < γN + εn.

In particular, since v is non-increasing, taking j = n in (19) and applying
the left-hand inequality,

en <
v
(
e−1
n τn(γN − εn)

)
v(τnγN )

or equivalently

env(τnγN )

v
(
e−1
n τn(γN − εn)

) < 1. (21)

By the definition of ψ, this can be further rewritten(
1− εnγN−1

) ψ(τnγN )

ψ
(
e−1
n τnγN (1− εnγ−1

N )
) < 1. (22)
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Assume now that, for some ` > 0, en > 1 + ` infinitely often and let us
restrict the sequence en to those indexes for which en > 1 + `.

We distinguish two scenarios. First, assume that lim infn τn = 0. Then, by
the definition (17) and since both dn and γN are uniformly bounded (Lemma 1

and Lemma 3), on some subsequence {nj} satisfying limj τnj = 0, enj
a.s.−→ 1, in

contradiction with en > 1 + `.
We must then have lim infn τn > τ− for some τ− > 0 along with τn ≤ M

a.s. for some M > 0 (bounded τi assumption). Then, since γN is bounded
and bounded away from zero for all large n a.s., so is τnγN . Considering and
restricting ourselves to a further subsequence over which τnγN → x > 0 and
cN → c, we then have, with ψc(x) = limcN→c ψ(x) (recall that ψ depends on
cN through g),

lim
n

(
1− εnγN−1

) ψ(τnγN )

ψ
(
e−1
n τnγN (1− εnγ−1

N )
) ≥ ψc(x)

ψc((1 + `)−1x)
> 1 (23)

which contradicts (22). Gathering the results and reconsidering the initial se-
quence en (i.e., not a subsequence) we then have, for each ` > 0, en ≤ 1 + ` for
all large n a.s.

Symmetrically, we obtain that, for some εn ↓ 0 and for all large n a.s.

e1v(τ1γN )

v
(
e−1

1 τ1(γN + εn)
) > 1.

From this, we conclude similar to above that, for each ` > 0 small, e1 ≥ 1 − `,
for all large n a.s. so that, finally

max
1≤i≤n

|ei − 1| a.s.−→ 0

or, by uniform boundedness of the τi and γN ,

max
1≤i≤n

|v(τidi)− v(τiγN )| a.s.−→ 0.

Hence, letting ` > 0 and recalling that τiv(τiγN ) = ψ(τiγN )/γN , for all large n
a.s.

(1− `) 1

n

n∑
i=1

ψ(τiγN )

γN
ziz
∗
i �

1

n

n∑
i=1

v(τidi)τiziz
∗
i � (1 + `)

1

n

n∑
i=1

ψ(τiγN )

γN
ziz
∗
i .

(24)

Therefore, since γN > γ− and
∥∥ 1
n

∑n
i=1 ziz

∗
i

∥∥ < (1 +
√
c+)2 for all large n a.s.

(Bai and Silverstein, 1998),∥∥∥ĈN − ŜN∥∥∥ ≤ `(1 +
√
c+)2ψ∞

γ−

where ŜN = γ−1
N

1
n

∑n
i=1 ψ(τiγN )ziz

∗
i . Since ` is arbitrary, the difference tends

to zero a.s. as n → ∞, which concludes the proof for τi < M a.s. and for
CN = IN .
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If CN 6= IN is positive definite, remark simply that neither di nor γN are
affected in their values, so that the effect of CN first appears in (24) with
zi having CN 6= IN as a covariance matrix. But then, in this case, since
‖ 1
n

∑n
i=1 ziz

∗
i ‖ < (1 +

√
c+)2 lim supN ‖CN‖ < ∞ (Assumption 2), the last ar-

guments still hold true and the result is also proved for these CN .

Note the importance of the assumption on φ being increasing and not simply
non-decreasing (as in (Maronna, 1976)) to ensure that (23) is a strict inequality.
If this were to be replaced by “≥ 1”, no contradiction with (22) could be evoked.
There does not seem to be any easy way to work this limitation around. Similar
reasons explain why Tyler robust estimator discussed in Section 5 cannot be
analyzed in the same way as Maronna estimator. All the same, when τ1, . . . , τn
have unbounded support with growing n, the left-hand side of (23) may equal
one provided lim supn τn =∞, which is not excluded. For this reason, a specific
treatment is necessary where the set of {τi}ni=1 is split into a large bounded set
of τi and a small set of large τi. This is the approach followed in the second
part of the proof below.

4.2.2. Unbounded τi.

We now relax the boundedness assumption on the support of the distribution
of τ1 and use Assumption 3 instead.

Since {νn}∞n=1 is tight, we can exhibit pairs (η,Mη) with η ↓ 0 as Mη ↑ ∞
such that, for all large n a.s. νn((Mη,∞)) < η. Let us fix such a pair (η,Mη)
with η small and restrict ourselves to a subsequence where νn((Mη,∞)) < η for
all n. Denote Cη = {i, τi ≤Mη} with cardinality |Cη|/n = 1− νn((Mη,∞)).

We follow the same steps as in the previous proof but differentiating between
indices in Cη and indices in Ccη. Also we denote

eηi ,
v(τidi)

v(τiγ
η
N )

where γηN is the unique positive solution to the equation in γ

1 =
1

n

∑
i∈Cη

ψ(τiγ)

1 + cNψ(τiγ)
.

Recall first from Remark 1 that the conclusions of Lemma 1 are still valid
and importantly in what follows, that γ− < γηN < γ+ for some γ−, γ+ > 0, for
all large N irrespective of η < η0 for some η0 small. This uniform control of
γηN with respect to η plays a key role here. For the moment, we do not make
explicit the sufficiently small value of η0 that is needed in the following; all what
will matter if that we can always choose η arbitrarily small from here.

Let j ∈ Cη and denote ψ∞ any upper bound on ψN∞ for all N . Then, similar
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to (18), with eη
1̄

= mini∈Cη{e
η
i } and eηn̄ = maxi∈Cη{e

η
i },

eηj =

v

(
τj

1
N z
∗
j

(
1
n

∑
i∈Cη
i 6=j

τiv(τiγ
η
N )eηi ziz

∗
i + 1

n

∑
i∈Ccη τiv(τidi)ziz

∗
i

)−1

zj

)
v(τjγ

η
N )

≤
v

(
τj

1
N z
∗
j

(
1
n

∑
i∈Cη
i 6=j

τiv(τiγ
η
N )eηn̄ziz

∗
i + 1

n
ψ∞
d−

∑
i∈Ccη

ziz
∗
i

)−1

zj

)
v(τjγ

η
N )

=

v

(
τj
eηn̄

1
N z
∗
j

(
1
n

∑
i∈Cη
i 6=j

τiv(τiγ
η
N )ziz

∗
i + 1

n
ψ∞
eηn̄d−

∑
i∈Ccη

ziz
∗
i

)−1

zj

)
v(τjγ

η
N )

where the first inequality uses di > d− for all large n a.s (Lemma 3). Since

eηn̄ = v(τn̄dn̄)
v(τn̄γ

η
N )

= ψ(τn̄dn̄)
ψ(τn̄γ

η
N )

γηN
dn̄

, with the bounds derived previously (Remark 1 and

Lemma 3), eηn̄ is almost surely bounded and bounded away from zero for all
large n a.s., irrespective of η small enough (if lim infn τn̄ = 0, the first equality
ensures lim infn e

η
n̄ > 0 while if lim supn τn̄ = ∞, the second equality ensures

lim supn e
η
n̄ <∞). Thus, in particular, eηn̄ > e− for some e− > 0 for all large n

a.s. From this observation, for all large n a.s.

eηj ≤
v

(
τj
eηn̄

1
N z
∗
j

(
1
n

∑
i∈Cη
i 6=j

τiv(τiγ
η
N )ziz

∗
i + 1

n
ψ∞
d−e−

∑
i∈Ccη

ziz
∗
i

)−1

zj

)
v(τjγ

η
N )

=

v

(
τj
eηn̄

[
1
N z
∗
j

(
1
n

∑
i∈Cη
i 6=j

τiv(τiγ
η
N )ziz

∗
i

)−1

zj + wj,n

])
v(τjγ

η
N )

(25)

where we defined

wj,n ,
1

N
z∗j
(
Aη,(j) +Bη

)−1
zj −

1

N
z∗jA

−1
η,(j)zj

with

Aη,(j) ,
1

n

∑
i∈Cη
i 6=j

τiv(τiγ
η
N )ziz

∗
i , Bη ,

1

n

ψ∞
d−e−

∑
i∈Ccη

ziz
∗
i .

Note thatA−1
η,(j) is well defined asAη,(j) is invertible for all large n a.s. provided η

is small enough. Similar to the proof of Lemma 3, note first that, for some κ > 0
and for all j ∈ Cη, λ1(Aη,(j)) > κ > 0 for all large n a.s. Indeed, with the same
derivation as (14), for any m > 0 satisfying νn([m,Mη]) > c+ for all n a.s. (this
may require Mη large enough), λ1(Aη,(j)) ≥ mv(mγ+)λ1( 1

n

∑
τi∈[m,Mη ],i6=j ziz

∗
i )
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away from zero for all large n a.s., independently of η small enough (Lemma 6).
Then, since Bη is of maximum rank |Ccη| = νn((Mη,∞)), the successive applica-
tions of Lemma 5 and Lemma 4 (see the similar steps in the proof of Lemma 3)
lead to

max
j∈Cη
|wnj | ≤ Kνn((Mη,∞)) (26)

for some K > 0 constant, independent of η.
Now that wj,n is controlled for all j ∈ Cη, we can proceed similar to the

proof in the bounded τi case. First, for any fixed η > 0 small enough, Remark 2
ensures that there exists a sequence εηn ↓ 0, such that a.s.

max
j∈Cη

∣∣∣∣∣∣∣
1

N
z∗j

 1

n

∑
i∈Cη,i6=j

τiv(τiγ
η
N )ziz

∗
i

−1

zj − γηN

∣∣∣∣∣∣∣ ≤ εηn. (27)

Combining (25), (26), and (28), we then have for all large n a.s. and for all
j ∈ Cη

eηj ≤
v
(
τj
eηn̄

(γηN − εηn −Kνn((Mη,∞)))
)

v(τjγ
η
N )

(28)

which, for j = n̄, is

eηn̄ ≤
v
(
τn̄
eηn̄

(γηN − εηn −Kνn((Mη,∞)))
)

v(τn̄γ
η
N )

.

Using the definition of ψ, this reads equivalently(
1− εηn +Kνn((Mη,∞))

γηN

)
ψ(τn̄γ

η
N )

ψ
(

(eηn̄)−1τn̄γ
η
N

(
1− εηn+Kνn((Mη,∞))

γηN

)) < 1

which implies, from the growth of ψ,(
1− εηn +Kνn((Mη,∞))

γηN

)
ψ(τn̄γ

η
N )

ψ ((eηn̄)−1τn̄γ
η
N )

< 1.

Adding
εηn+Kνn((Mη,∞))

γηN
− 1 on both sides, this further reads(

1− εηn +Kνn((Mη,∞))

γηN

)
ψ(τn̄γ

η
N )− ψ

(
(eηn̄)−1τn̄γ

η
N

)
ψ ((eηn̄)−1τn̄γ

η
N )

<
εηn +Kνn((Mη,∞))

γηN
.

or equivalently, if η is taken small enough (recalling that γηN > γ− uniformly on
η small),

ψ(τn̄γ
η
N )− ψ

(
(eηn̄)−1τn̄γ

η
N

)
εηn +Kνn((Mη,∞))

<
ψ
(
(eηn̄)−1τn̄γ

η
N

)
γηN

(
1− εηn+Kνn((Mη,∞))

γηN

) < 2ψ∞
γ−

(29)
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where the right-most bound holds for all large n a.s. provided η is chosen small
enough.

Assume lim supn e
η
n̄ > 1+` for some ` > 0. Then one must have lim infn τn̄ >

τ− for (28) to remain valid, with τ− > 0 independent of η small since γ− <
γηN < γ+ for all n large a.s., both bounds being independent of η. Since τn̄γ

η
N

belongs to [τ−γ−,Mηγ+] for all large N a.s., taking the limit of (29) over some
converging subsequence over which τn̄γ

η
N → xη ∈ [τ−γ−,Mηγ+], cN → c, and

νn((Mη,∞)) converges, ensures that

ψc(x
η)− ψc

(
1

1+`x
η
)

limn νn((Mη,∞))
≤ K ′ (30)

for K ′ > 0 independent of η, with ψc = limcN→c ψ.
We now operate on η. If lim supη→0 x

η < ∞, the left-hand side in (30)
diverges to ∞ as η → 0 so that, starting with an η sufficiently small and taking
the limit over n on the subsequence under consideration raises a contradiction.
If instead lim supη→0 x

η =∞, then, since xη ≤Mηγ+,

ψc(x
η)− ψc

(
1

1+`x
η
)

limn νn((Mη,∞))
≥
ψc(x

η)− ψc
(

1
1+`x

η
)

limn νn(( x
η

γ+
,∞))

.

Call yη = g−1(xη). Recalling that ψc(t) = φ(g−1(t))(1− cφ(g−1(t)))−1, we get

ψc(x
η)− ψc

(
1

1 + `
xη
)

=
φ(yη)− φ

(
g−1

[
1

1+`g(yη)
])

(1− cφ(yη))(1− cφ(g−1[ 1
1+`g(yη)]))

.

Now, letting κ > 0 small, for all large t, g(t) < t(1−cφ∞)−1(1+κ) and similarly
g−1(t) < t(1− cφ∞)(1 + κ). Hence, letting κ small enough, for all large yη, we
have, say,

φ

(
g−1

[
1

1 + `
g(yη)

])
< φ

(
1

1 + 1
2`
yη
)
.

Moreover, using 0 < 1 − cφ(t) < 1, we have (1 − cφ(t))−1 > 1. Using these
results now gives, for all large yη,

ψc(x
η)− ψc

(
1

1+`x
η
)

limn νn(( x
η

γ+
,∞))

>
φ(yη)− φ

(
1

1+ 1
2 `
yη
)

limn νn(( yη

γ+(1−cφ(yη)) ,∞))

>
φ(yη)− φ

(
1

1+ 1
2 `
yη
)

limn νn(( y
η

γ+
,∞))

.

Since yη →∞ as xη →∞, from Assumption 3, the right-hand side must go to
∞ as xη → ∞, or equivalently as η → 0. Therefore, taking η sufficiently small
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from the beginning and then bringing n large on the subsequence under study
leads to a contradiction. Consequently, we must have lim supn e

η
n̄ ≤ 1 + ` a.s.

A similar reasoning shows that lim infn e
η
1̄
≥ 1− ` a.s., for any given ` > 0. We

conclude that

max
j∈Cη

∣∣eηj − 1
∣∣ a.s.−→ 0.

We now have to deal with eηj for j ∈ Ccη. For such a j,

dj =
1

N
z∗j

 1

n

∑
i∈Cη

τiv(τiγ
η
N )eηi ziz

∗
i +

1

n

∑
i∈Ccη,i6=j

ψ(τidi)

di
ziz
∗
i

−1

zj .

But then, from the same reasoning as with the wj,n above (using in particular

the uniform boundedness of di) and from maxi∈Cη |e
η
i − 1| a.s.−→ 0, we have

max
j∈Ccη

∣∣∣∣∣∣∣dj −
1

N
z∗j

 1

n

∑
i∈Cη

τiv(τiγ
η
N )ziz

∗
i

−1

zj

∣∣∣∣∣∣∣ < Kνn((Mη,∞)) < Kη

for some K > 0 independent of η, which further implies from Remark 2 that for
all large n a.s. and for all j ∈ Ccη,

γηN −Kη ≤ dj ≤ γ
η
N +Kη.

Using the definition eηj =
ψ(τjdj)
ψ(τjγ

η
N )

γηN
dj

, the uniform bounds on γηn, and the con-

tinuous growth of ψ shows finally that, a.s.

lim sup
n

max
j∈Ccη

{∣∣eηj − 1
∣∣} ≤ η′

for some η′ > 0 with η′ → 0 as η → 0.
Gathering the results for j ∈ Cη and j ∈ Ccη, we therefore conclude that, for

each ` > 0, there exists η > 0 small enough such that a.s.

1− ` < lim inf
n

min
1≤i≤n

eηi ≤ lim sup
n

max
1≤i≤n

eηi < 1 + `.

For such η small, we then have, by definition of eηi and from τiv(τiγ
η
N ) =

ψ(τiγ
η
N )/γηN ,

(1− `) 1

n

n∑
i=1

ψ(τiγ
η
N )

γηN
ziz
∗
i �

1

n

n∑
i=1

v(τidi)τiziz
∗
i � (1 + `)

1

n

n∑
i=1

ψ(τiγ
η
N )

γηN
ziz
∗
i .

(31)

It now remains to show that, for each ε > 0, there exists η > 0 for which
|γηN − γN | < ε for all n large a.s. For this, observe that, by definition of γN and
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γηN ,

1 =
1

n

∑
i∈Cη

ψ(τiγ
η
N )

1 + cNψ(τiγ
η
N )

=
1

n

n∑
i=1

ψ(τiγN )

1 + cNψ(τiγN )

so that, since ψ/(1 + cNψ) is increasing, we obtain γN ≤ γηN and

1

n

∑
i∈Ccη

ψ(τiγN )

1 + cNψ(τiγN )
=

1

n

∑
i∈Cη

ψ(τiγ
η
N )− ψ(τiγN )

(1 + cNψ(τiγN ))(1 + cNψ(τiγ
η
N ))
≥ 0.

Take an interval [m,M ], M < Mη (chosen once for all, independently of Mη

large), with νn([m,M ]) > κ > 0 for all large n a.s. (possible from Assumption 2–
2). Then we can further write

1

n

∑
i∈Ccη

ψ(τiγN )

1 + cNψ(τiγN )
≥ 1

(1 + c+ψ∞)2

1

n

∑
τi∈[m,M ]

(ψ(τiγ
η
N )− ψ(τiγN ))

≥ κ

2(1 + c+ψ∞)2
min

x∈[m,M ]
(ψ(xγηN )− ψ(xγN ))

with the second inequality valid for all large n a.s. Now, for sufficiently small η,
the left-hand side can be made arbitrarily small. Since γN and γηN are uniformly
bounded and bounded away from zero (irrespective of η small), if |γηN−γN | were
uniformly away from zero for all η small, so would be the right-hand side, which
is in contradiction with our previous statement. Therefore, for each ε > 0, one
can choose η so that |γN − γηN | < ε for all n large a.s.

Now, by uniform continuity of ψ on bounded intervals along with the fact
that ψ(x) ↑ ψ∞, from (31), taking η small enough, for all large n a.s.

(1− `)2 1

n

n∑
i=1

ψ (τiγN )

γN
ziz
∗
i � ĈN � (1 + `)2 1

n

n∑
i=1

ψ (τiγN )

γN
ziz
∗
i (32)

which therefore implies, with the same arguments as in the case τi bounded,
that ‖ĈN − ŜN‖

a.s.−→ 0, when CN = IN . The arguments of the case τi bounded
still hold for CN 6= IN satisfying Assumption 2-3). This completes the proof.

5. Conclusion

This article introduces a large dimensional analysis for robust estimators
of scatter matrices of the Maronna-type from elliptically distributed samples.
We specifically showed that, under mild assumptions, the Maronna estimator
behaves similar to a classical sample covariance matrix model as both the pop-
ulation and sample sizes grow large. This study opens new roads in the analysis
of signal processing methods based on robust scatter matrix estimation. In a
similar manner as in (Maronna, 1976, Theorem 6), it is believed that second or-
der statistics for well behaved functionals of ĈN can be further analyzed, which
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would provide more information on the asymptotic fluctuations of ĈN−ŜN . The
mathematical treatment developed in the proofs of our present results however
shows some strong limitations for hypothetical extensions to other robust scatter
matrix estimates. In particular, the important Tyler robust estimator (Tyler,
1987; Pascal et al., 2008a), given by the unique solution (up to a scale factor)
to (1) for u(x) = 1/x, cannot be analyzed from the present method which relies
essentially on φ(x) = xu(x) being increasing. Although extensive simulations
suggest that similar conclusions hold for Tyler estimator, there is to this day no
approach to tackle this problem.

Appendix A. Some Lemmas

Lemma 4 (Rank-one perturbation). (Silverstein and Bai, 1995, Lemma 2.6)
Let v ∈ CN , A,B ∈ CN×N nonnegative definite, and x > 0. Then∣∣∣trB (A+ vv∗ + xIN )

−1 − trB (A+ xIN )
−1
∣∣∣ ≤ x−1‖B‖.

Lemma 5 (Trace lemma). (Bai and Silverstein, 2009, Lemma B.26) Let A ∈
CN×N be non-random and y = [y1, . . . , yN ]T ∈ CN be a vector of independent
entries with E[yi] = 0, E[|yi|2] = 1, and E[|yi|`] ≤ ζ` for all ` ≤ 2p, with p ≥ 2.
Then,

E [|y∗Ay − trA|p] ≤ Cp
(

(ζ4 trAA∗)
p
2 + ζ2p tr(AA∗)

p
2

)
for Cp a constant depending on p only.

Lemma 6. Let z1, . . . , zn ∈ CN be independent unitarily invariant vectors with
‖zi‖2 = N . Then, if 0 < lim infnN/n ≤ lim supnN/n < 1,

max
1≤j≤n

∣∣∣∣∣∣ 1

N
z∗j

(
1

n

n∑
i=1

ziz
∗
i

)−1

zj − 1

∣∣∣∣∣∣ a.s.−→ 0

or equivalently

max
1≤j≤n

∣∣∣∣∣∣∣
1

N
z∗j

 1

n

n∑
i 6=j

ziz
∗
i

−1

zj −
1

1− N
n

∣∣∣∣∣∣∣ a.s.−→ 0.

Moreover, there exists ε > 0 such that, for all large n a.s.

λ1

(
1

n

n∑
i=1

ziz
∗
i

)
≥ min

1≤j≤n

λ1

 1

n

∑
1≤i≤n
i 6=j

ziz
∗
i


 > ε.
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Proof. For readability, we denote F = 1
n

∑n
i=1 ziz

∗
i , F(j) = F − 1

nzjz
∗
j , F̃ =

1
n

∑n
i=1 z̃iz̃

∗
i , and F̃(j) = F̃− 1

n z̃j z̃
∗
j , where we recall the relation zi =

√
N̄ z̃i/‖ỹi‖

for z̃i zero mean IN -covariance Gaussian and ỹi zero mean IN̄ -covariance Gaus-
sian (non-independent). From the proof of (Couillet et al., 2013, Lemma 2), we
have:

max
1≤j≤n

∣∣∣∣ 1

N
z̃∗j F̃

−1z̃j − 1

∣∣∣∣ a.s.−→ 0

and, there exists ε > 0 such that, for all large n a.s.

λ1(F̃ ) ≥ min
1≤j≤n

λ1(F̃(j)) > ε. (A.1)

Now,

min
1≤j≤n

λ1(F(j)) ≥
min1≤j≤n λ1(F̃(j))

max1≤j≤n N̄−1‖ỹj‖2

Since max1≤j≤nN
−1‖z̃j‖2

a.s.−→ 1 a.s. from standard probability results, we have
that for all large n a.s.

λ1 (F ) ≥ min
1≤j≤n

λ1(F(j)) > ε/2

which already gives the second part of the lemma. Using only the outer inequal-
ity of (A.1), we now have, for all large n a.s.

max
1≤j≤n

∣∣∣∣ 1

N
z̃∗jF

−1z̃j −
1

N
z̃∗j F̃

−1z̃j

∣∣∣∣ = max
1≤j≤n

∣∣∣∣ 1

N
z̃∗jF

−1
(
F̃ − F

)
F̃−1z̃j

∣∣∣∣
≤ max

1≤j≤n

{
1

n

n∑
k=1

∣∣∣∣1− N̄

‖ỹk‖2

∣∣∣∣ ∣∣∣∣ 1

N
z̃∗j F̃

−1z̃k

∣∣∣∣2
}

≤ max
1≤k≤n

∣∣∣∣1− N̄

‖ỹk‖2

∣∣∣∣ 1

N

(
max

1≤k≤n
‖z̃k‖

)2
4

ε2

a.s.−→ 0.

Finally, for all large n a.s.

max
1≤j≤n

∣∣∣∣ 1

N
z̃∗jF

−1z̃j −
1

N
z∗jF

−1zj

∣∣∣∣ = max
1≤j≤n

{∣∣∣∣ 1

N
z̃∗jF

−1z̃j

∣∣∣∣ ∣∣∣∣1− N̄

‖ỹk‖2

∣∣∣∣}
≤ 2

ε
max

1≤k≤n

∣∣∣∣1− N̄

‖ỹk‖2

∣∣∣∣ max
1≤j≤n

1

N
‖z̃j‖2

a.s.−→ 0.

The proof is concluded by putting these results together.
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