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Optimal Design of the Adaptive Normalized
Matched Filter Detector

Abla Kammoun, Romain Couillet, Fredéric Pascal, Mohat8&ch Alouini

Abstract—This article addresses improvements on the design latter scenario is often modeled by assuming that obsenati
of the adaptive normalized matched filter (ANMF) for radar  are drawn from complex elliptical symmetric distributions
detection. It is well-acknowledged that the estimation of he (CES), originally introduced by Kelker [7]. The inherent
noise-clutter covariance matrix is a fundamental step in adptive t ’ f th distributi ¢ d t y | obsi t
radar detection. In this paper, we consider regularized esmation ~ Natur€ or these aistributions 1o produce atypical o SeEma
methods which force by construction the eigenvalues of the Mmakes the task of estimating the covariance matrix much
scatter estimates to be greater than a positive regularizaan more challenging. To tackle this issue, a class of covaeianc
parameter p. This makes them more suitable for high dimensional estimators coined robust estimators of scatter matrices ha
problems with a limited number of secondary data samples tha been proposed by Huber, Hampel, and Marorita [8]-[10]

traditional sample covariance estimates. While an increas of d extended tiv by Ollila to th |
p seems to improve the conditioning of the estimate, it might and exitended more recently by lfa 1o the complex case

however cause it to significantly deviate from the true covaance [3], [4], [11]. Similar to the Gaussian case, the regulaioma
matrix. The setting of the optimal regularization parameter is a technique has been applied to the robust Tyler estimatdy [12

difficult question for which no convincing answers have thusfar  yielding the so-called regularized Tyler estimator (RT&ile
been provided. This constitutes the major motivation behil our o,y entional robust covariance methods are undefined éor to

work. More specifically, we consider the design of the ANMF f | b f les | than their di .
detector for two kinds of regularized estimators, namely tle ew samples (number of samples less than their dimensions),

regularized sample covariance matrix (RSCM), appropriatewhen ~the existence of the RTE as well as the convergence of the
the clutter follows a Gaussian distribution and the regulaized associated recursive algorithm are two major findings which

Tyler estimator (RTE) for non-Gaussian spherically invariant  have recently been established in several wolks [L3]-[16].

distributed clutters. The rationale behind this choice is hat the Unlike the RSCM, the RTE, as a derivative of the robust

RTE is efficient in mitigating the degradation caused by the Tvler timat . ilient to th f ti
presence of impulsive noises while inducing little loss wimethe ylers es |m§1 or,_ IS resl Ier_1 0 the presence _O _ou 1ers
noise is Gaussian. thereby making it more suitable to radar applications, for

Based on recent random matrix theory results studying the which experimental evidence rules out Gaussian models for
asymptotic fluctuations of the statistics of the ANMF deteadr  the clutter [17]-[20].
when the number of samples and their dimension grow together — ag f4¢ a5 regularized estimation methods are concerned, it i

to infinity, we propose a design for the regularization paraneter . . . .
that maximizes the detection probability under constant fase €SSential to determine a clever way of setting the reguition

alarm rates. Simulation results which support the efficieny of ~Parameter. This question has essentially been investigate
the proposed method are provided in order to illustrate the gin  [21], [22] for the RSCM and in[[15],[[23] for the RTE.

of the proposed optimal design over conventional settingsfdhe  Although yielding different expressions, these works htiee
regularization parameter. common denominator of being merely based on a distance
Index Terms—Regularized Tyler’'s estimator, Adaptive Normal- minimization between the RTE or the SCM and the true
ized Mached Filter, robust detection, Random Matrix Theory, covariance matrix. It is thus not clear whether these clsoice
Optimal design. will allow for good performances when applied to detection
problems. We consider in this work the design of the adaptive
|. INTRODUCTION normalized matched filter (ANMF) for radar detection. Rirst
The estimation of scatter matrices is of fundamental inintroduced by [[24] and analyzed in_[25]-]27], this scheme
portance for space-time adaptive processing (STAP) whialas shown to enjoy the interesting features of constang fals
underlies the design of radar systems [L], [2]. In radardetealarm property with respect to the clutter power and covasa
tion for instance, it is well-acknowledged that a sufficignt matrix. This detector is obtained by replacing in the stiatisf
accurate scatter matrix is key to enhancing the detectitre normalized matched filter (NMF) the covariance matrix by
performance (see [3].[4] and references therein). In otdera given estimate [26], which is computed based on secondary
support a possible deficiency in samples (number of samptista observations, i.en, signal free independent and identi-
less than their dimensions), regularized covariance matdally distributed (i.i.d.) observations. Of interest insthwork
estimation methods have been proposed [5]. One regularized the cases where the RSCM or the RTE are used in place
estimation method is given by the use of the regularized the unknown covariance matrix. We will consider first the
sample covariance matrix (RSCM). The RSCM fundamentalégenario where the detector operates over Gaussian ¢edela
originates from the diagonal loading approach which can lotutters and thus uses the RSCM as a replacement for the
traced back to the works of Abramovich and Carlsbh [Snknown covariance matrix, a scheme which will be referred
[6]. As a derivative of the sample covariance matrix (SCM}p as ANMF-RSCM. In order to come up with an appropriate
the RSCM inherits its main major limitation of exhibitingdesign for the ANMF detector, it is essential to characeeriz
poor performances when observations contain outlierss Thie behaviour of its corresponding false alarm and detectio
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probabilities. wherey € CV represents the vector received by an
Under the assumption of fixed dimensions, such a tadknensional array of sensoss stands for the noise clutter and
seems to be out of reach. This has led us to consider in [28]s a complex scalar modeling the unknown target amplitude.
the regime wherein the number of secondary data sampl® signal detection problem is phrased as the following
and their dimensions grow simultaneously to infinity, thgre binary hypothesis test:
allowing for the use of advanced tools from random matrix
theory. The asymptotic false alarm probability for the ANMF {
RTE was in particular derived iri_[28] (yet only as a mere
application example of the main mathematical result.)rtfeo  Several models for the clutter have been proposed. Among
to allow for an optimal choice of the regularization paramahem, we distinguish the class of CES random variates
ter, these results need to be augmented with an asymptetltich encompass most of the commonly encountered random
analysis of the detection probability. This constitutes tiiain - models, including the standard Gaussian distribution,Khe
contribution of our work. In particular, we extend the résul distribution, the Weibull distribution and many others.[3]
of [28] to the ANMF-RSCM detector by showing that itsCES distributed random variable is given by:
corresponding statistic flucutates as a Rayleigh disinhut 1
when no target is present and, additionally, establish ithat x = TC{ W
behaves like a Rice distributed random variable otherwise . " .
. o S Wherer is a positive scalar random variable called tbeture
Based on the asymptotic characterization of these disiits, , : o . :
! ) L Cy is the covariance matfixand w is an N-dimensional

we propose an optimal setting of the regularization paramet : L . :

- . . X vector independent of, zero-mean unitarily invariant with
that maximizes the asymptotic probability of detectionday .
given false alarm probability.

Hi: y=ap+x
Hy: y=x. (1)

R
norm ||Ww| = v/N. The quantityC3w is referred to as

In a second part, we consider the case where the clut?]&e‘:krl]e The desc;gn ofdan apEroprlate statflslilc tol tge al;ovg
is drawn from heavy tailed distributions. It is thus natwal NYPOthesis test depends on the amount of knowledge that Is

assume that the detector uses the RTE. since the RSCIvf;\\{é\ilable to the detector. If the clutter is Gaussian witbhwn

vulnerable to the presence of outliers and may provide pog}va_riance maf[ri>CN while o is unknowp, the Generglized
performances. This scheme will be coined ANMF-RTE. BY/Kelihood Ratio (GLRT) for the detection problem ifi] (1)

exploiting recent results on the asymptotic behavior of tHgSUItS in the following test statistic:

RTE estimator{[28],.[29], we prove that, up to a certain cleang \y*ijlp\
of variable, the ANMF-RTE is asymptotically equivalent to In = = =
the ANMF-RSCM when operating over Gaussian clutters. \/Y*CN yp*Cy'p

-(I;rgjszirgxiirlfgrfri\éor:cg; wr?iléocl;e?fattigg CI)R\’/'(I;IrE htga\r;tg?;%S%hich corresponds_ t(_) the square-root st_atistic_: of the ANMF
clutters. Finally, we prove through simulations the supéty detector. The statistid’y has been derived independently
IR ; g several works, thereby leading the corresponding datect
of our _des_lgn to some of the adhoc recent settings of to have many alternative names: the constant false alarm
regularl_zatlon paramgter t_hat have recently b_een IorOpOSEFAR) matched subspace detector (MSD)][30], the nor-
prhgag;isg doggyﬁzltggclIi(eeslﬁlt(smilﬁsp:g d;[:tei}n;?hhe %‘;‘;;L?ic alized matched filter (NMF)_[31], or the Linear Quadratic
. GLRT (LQ-GLRT) [32]. If the clutter is elliptically distribted,
probability qf the ANMF schem.es. : optimal detection procedures based on the GLRT principle
The remainder of the paper is organized as follows. In trl‘ ad to statistics that depend on the distribution of théutex

first section, we introduce the considered problem. Then, € Nevertheless, a complete knowledge of the statisticsef th

propose an optimal _de3|gn ap_proach for f[he ANMF'_RTE a%‘f]gnal and noise cannot be acquired in practice. A reasenabl
the ANMF-RSCM. Finally, we illustrate using simulationgth hypothesis, largely used in radar detection, is to assume th

gain of the proposed design method over conventional ISjettinonly p is known whilea and the statistics of the noise are ig-

of Iilhi rt(.egulétll_zhatmnhpartartnhgter. depict ¢ .nored. To handle this case, the usd®f whose optimality has
Ioweor:a?enzol df;c():uegle?tl;rs ali dprigfr&:evgein uepl(e:rc\f/fsz;nrx; d'fQ)nIy been shown in the Gaussian setting has been advocated
PP as a good detection technique. Such a choice has particularl

Iett_e rs. The nOtat_'?”{') stands for the_ transpose ConJUQatSeen motivated by the result df [24] showing the asymptotic
Whl|e.tr(.) and(.)~* are the trace and inverse operators. Th(?ptimality of Ty, when N becomes increasingly large, under
notation||.|| stands for the Euclidean norm for vectors and f

. a.s. . e setting of compound-Gaussian distributed cluttersmFr
spectral norm for matrices. The arrow~ designates almost

The statemeXit 2 vV def th the expression of y, it can be seen that the detector is only
sure convergence. The statement = elines the new required to knowCy up to a scale factor, which is much less
notation X as being equal td".

restrictive than the requirement of optimal detectiontetyies.
Since the covariance matrieC y is unknown in practice,
a popular approach consists in replacingZin the unknown
We consider the problem of detecting a complex signabvariance matrixCy by an estimate built on signal free i.i.d.
vectorp corrupted by an additive noise as:

Il. PROBLEM STATEMENT

INote that when the second order statistics exist, the scati#rix is equal
y = ap+x to the covariance matrix (up to a constant).



observations;, - - - , x,, termed secondary data. The resultef how should the regularization parametebe set naturally
ing detector is called the adaptive normalized matched filtarises. Recent previous works dealing with this issue pepo
(ANMF). Several concurrent estimators @fy can be used. to setp in such a way as to minimize a certain mean-squared-
The most popular one is the traditional sample covarianeeror betweerCy andCy [?], [15]. While easy-to-compute
matrix (SCM) given by: estimates of these values of were provided, one of the
major criticism to these choices is that they are performed
== Z XiX) regardless of the application under consideration. Inqaér,

n a more relevant choice to the application under study ctmsis
which corresponds to the Maximum-Likelihood estimatdf Selecting the values of that maximize the probability of
(MLE) if the clutter is Gaussian distributed. However, imso detection while keeping fixed the false alarm probabilities
scenarios where the available number of observatioris These values will be considered as optimal in regards ofrrada
of the same order or smaller tha¥, the SCM, being ill- detection applications.

Conditioned' will not lead to accurate detection reguls To this end, one needs to characterize the distribution of

practical approach that has received considerable aiteri TN*M(p) and TR (p) given by:

to regularize the SCM, thereby yielding the regularized SCM *ﬁ—l( )
(RSCM) given by: FRSCM )\ _ Y Ry PP
Y ) TREM(p) = —— A (@)
R (p) = (1-p) R+, (2) VYR (0)yy/p Ry (o)p
where the parameter € [0,1] serves to give more or less 6 (p)p
importance to the sample covariance matfbg depending TRTE (5)
on the available number of samples. The ANMF that uses the \/y Cy y\/p*C

RSCM as a plug-in estimator of ;v will be referred to as
ANMF-RSCM.

While this regularization artifice has revealed efficient i
handling the scarcity of the available samples, it has thes®

drawback of fundamentally relying on the SCM. In effect, thfhe case wher& andn go to infinity with & — ¢ € (0, 00)

SCM, even though suitable for Gaussian settings, is known{g. i particular enables leveraging the recent resul{2ef
be vulnerable to outliers and thus leads to highly 'nemt'e'fhat will be reviewed in Sectiofi TVIA.

estimators when the samples are drawn from heavy tailed non-
Gaussian distributions. A standard alternative to corivaat
sample covariance estimates is constituted by the class 0%
robust-scatter estimators, known for their resiliencetypiaal
observations. The robust estimator that will be considémed

this work was defined in_[14] as the unique squtiém(p)
1y C +ply. () corresponding statisti# ZSM . In order to pave the way to-

to: n
Cn(p) % B I e ")

’ i wards an optimal setting of the regularization coefficignive
with p € (max (0,1—4),1]. This estimator correspondsneed to characterize the asymptotic false alarm and detecti
to a hybrid robust-shrinkage estimator reminding Tyler's Mprobabilities under the assumptions thgt = % — ¢. That s,
estimator of scale_[12] and Ledoit-Wolf's shrinkage estiona providedH, or H; is the actual scenaridy = x ory = ap+
[21]. We will thus refer to it as the Regularized-Tyler Estitor x) we shall evaluate the probab”még[TRSCM > F|Ho}
(RTE). Besides its robustness, the RTE has many |nterest|ng
features. First, it is well-suited to situations whege 2 & js and P TRIM > F|H1] for I' > 0. Before going further,
large while standard robust scatter estimates are iilitoned We need to stress that some extra assumptions on the order
or even undefined itV > n. By varying the regularization of magnitude ofo andI" with respect toN should be made
parametep, one can move from the unbiased Tyler-estimatd® avoid getting trivial results. Indeed it appears thaﬁem
[34] (p = 0) to the identity matrix(p = 1) which represents o, the random quantltles\ﬁy*R o) s Y Ry (0)y.,

a crude guess for the unknown covariar@e . Its relation and p* R Yp )H z are standard objects in random matrix
to the Tyler's estimator has recently been reported_in [35] bheory, WhICh converge almost surely to their means when
viewing it as the solution of a penalizel/ -estimation cost both NV andn grow to |nf|n|ty with the same pacé [B5]. As
function. We will denote by ANMF-RTE the ANMF detectora result, since—-y “Ry'(p)p =2 0, TRSOM 2% ¢ for
that uses the RTE instead of the unknown covariance matrigl ' > 0, whic does not allow to infer much information
Upon replacing inl’y the unknown covariance matrix by aabout the false alarm probability. It turns out that the @rop
regularized estimate, be it the SCM or the RTE, the questigbaling of I' should bel' = N~2r for some fixedr > 0,

S L , _ an assumption already considered!(in|[28]. Similarly, one ca
Traditionally, it is assumed th&t N observations are required to ensure

good performances of the sub-optimal filtering, i.e3 @B loss of the output see that undelHlv the presence of a S|gnal component in
SNR compared to optimal filtering [33]. y causesTRSCM to converge almost surely to some positive

under hypothesed, and H;. For fixed N andn, this is not an
easy task and in our opinion would not lead, if ever feasible,

to easy-to-compute expressions for the optimal valugs of

this paper, we relax this restrictive assumption by consgide

OPTIMAL DESIGN OF THEANMF-RSCM DETECTOR
GAUSSIAN CLUTTER CASE

In this section, we consider the case of a Gaussian clutter. |
other words, we assume that all the secondarygata - ,x,
are drawn from Gaussian distribution with zero-mean and co-
varianceCy. Forp € (0, 1], we define the RSCM as ihl(2) and



constant ifa does not vary withV. Therefore, fol" = N~—zr, where:
P |TRSCM >F|H1} — 1. In order to avoid this trivial

. . 2 al P CnQY (p)P
statement, we shall assume that= N~2q for some fixed onsem(p) = §p*QN(p)pi tr CxQu (p)
a > 0 with ||p]|| = N. In practice, this means that the N 1
dimension of the array is sufficiently large to enable wogkin X
in low-SNR regimes. 1=c(1=p)*mn(=p)*x tr CRQ} ()

Prior to introducing the results about the false alarm and N 1
detection probabilities, we shall introduce the followiag- and Qn(p) = (Iv+(1=p)mn(-p)Cn) .
sumptions and notations: The uniformity overp of the convergence result in The-
orem[1 is essential in the sequel. It obviously implies the
_ _ pointwise convergence for eaph> 0 but, more importantly, it
« wi,--,w, are Nx1 independent standard Gaussiani ajiow us to handle the convergence of the false alarnbpro
random v](\a]cxtgrg with zero-mean and covariagg ability when random values of the regularization parameter
y ?N € C is such thatlimsup [|[Cn|| < oo and  re considered. This feature becomes all the more integesti
N “f Cn 1: L, knowing that the detector is required to set the reguladmat
« liminfy Fp"Cnp > 0. parameter based on random received secondary data. Ngte tha
Note that the normalizatio, tr C,y = 1 is not a restricting fOr technical issues, a set of the forfon ), wherex > 0 is
constraint since the statistics under study are invarathe @S Small as desired but fixed, has to be discarded from the
scaling of Cy. The last item in Assumptiof] 1 is requiregUniform convergence region.
for technical purposes in order to ensure that the considere The result of Theorerfil 1 provides an analytical expression
statistic exhibits fluctuations unde, and H;. In practice, for the false alarm probability. Since this expression dejse
this assumption implies that the steering vector does aahli ©n the unknown covariance matrix, it is of practical interes

Assumption A-1. For i € {1,--- ,n}, x; = Cjé\,wi with:

Denote forz € C\Ry by mpn(z) the unique complex Proposition 2. For p € (0, 1), define
solution to:
o _ _ PRI
mn(z) = (=z+en(1-p) e

. 1
-1 012V,SCM(P) = )

x % trCy (IN—i—(l—p)mN(z)CN)l) (1—cN+ exp tr Ry (p)) (1— LRy (p))
that satisfies(z)S(my(2)) > 0 or unique positive ifz < 0. 52 T 52 _ P'Ryp

The existence and uniquenessiof; (z) follows from standard \?vr;dhlaexr,]\;‘gf%(ylel O’hmpﬂ o .sou () trRy Then.
results of random matrix theory [36]. It is a deterministic

quantity, which can be computed easily for eaehusing sup 6% sem(p)— 0% sem(p)] 255 0.
fixed-point iterations. In our case, it helps characterize t pERSCM ’ ’

asymptotic behavior of the empirical spectral measure ef th

random matrix(1—p)2 37 x;x:f.

Define also forx > 0, RSM as: The proof of Propositiofil2 follows along the same lines as
SCM & that of Proposition 1 in[[28] and is therefore omitted.
R = [, 1] We will now derive the asymptotic equivalent for

With these notations at hand, we are now ready to anaIyIEe{ff\}SCM(p) > ﬁIHl}, where underff; the received vec-
the asymptotic behaviour of the false alarm and detectitor y is supposed to be given by:
probabilities. The proof for the following Theorem will not

be provided since, as we shall see in Seclioh IV, it follows H: y= Lp.;_x

directly by applying the same approach used_in [28]. VN

Theorem 1 (False alarm probability)As N,n — oo with with x distributed as the;'’s in Assumptiorﬂl.. The following

en — ¢ € (0,00), results constitute the major contribution of the presentkwo

) They will lead in conjunction with those of Theordrh 8 and
sup [P [T\]%SCM(p) > \/TN|H0} ¢ ¥Xsoum | 25  Propositior[ P to the optimal design of the ANMF-RSCM.

PERZCM Theorem 3 (Detection probability) As N, n — oo with ¢y —
SLet oy = LZiZ\Ll‘SM be the empirical spectral measure of the’” we have for any: > 0

random matrix %’3 Sy xixy with Ag,---, Ay the eigenvalues of N

Lo xix;. Denote by sy (z) its Stielies transform given by sup |P {TESCM(p) > L|H1}

mn(z) = [(t—2)"ton(dt) = & SN L. Then, quantitym (z) is pERSCM VN

the Stieljes transform of a certain deterministic meaguie (i.e, my(z) = r .

J(#—2)"tun(dt)) which approximates in the almost sure senmsg(z) —-Q1 <gSCM(p)7 7> 250.

(ie. iy (z) —m (2) 25 0.). on.scm(p)




where @, is the Marcum Q-functicﬂ‘nwhile on,scum IS given matrix Cy which is unknown to the detector. AC(luiring a

in Theoren{ L angiscas(p) is given by: consistent estimate ofscm(p) based on the availabB y is
thus mandatory. This is the goal of the following Propositio
\/1 c(1=p)>m(—p)?+ tr C3Q% (p) . .
gsom(p SIS Proposition 4. For p € (0,1), definefscm(p) as:
p NN R 2 R 2
2 . i (PR3 (0P) (1-p) (1-c+5ptr R5 ()
X Nah) Qn(p)p|- fsem(p) = =7 S-2
PRy (p)p—pp*Ry (p)P
3 A 3 _ _ N .
Proof: See AppenditA. and letfsom(1) £ limpy1 fsom(p) = SR Then, we have:

According to Theoreni]l and Theordm BRSCM(p) be-
haves differently depending on whether a signal is present
or not. In particular, underf,, vVNTESM(p) behaves
like a Rayleigh distributed random variate with paramet&yhere we recall thaR3™M = [x, 1].
on,scm(p) while it becomes well-approximated undgr by Proof: See AppendiB. -

a Rice distributed random variable with paramei@séyi(p)  gjnce the results in Propositidi 4 and TheorBm 3 are

andon scm(p). It is worth noticing that in the theory of radaruniform in p, we have the following corollary:
detection, getting a false alarm and a detection probwloiig-

tributed as Rayleigh and Rice random variables is among tGerollary 5. Let fscas(p) be defined as in Propositiod 4.

simplest cases that one can ever encounter, holding ortlyeto Define 53, as any value satisfying:

best of the authors’ knoweldege, if white Gaussian noises ar . A

considered ?, p.188]. We believe that the striking simplicity PN & af%ggf{fsw(ﬂ)} :

of the obtained results inheres in the double averagingteffe PERR

that is a consequence of the considered asymptotic reginhBen, for every- > 0,

This is to be compared to the quite intricate expressions for .

the false alarm probability obtained under the classicgihne P (\/—TN(”N) > T|H1)

of n ten_ding to i_nfinity whiIeN_is fixed [40). o — max {]p (\/NTN(p) > 7’|H1)} as g
We will now discuss the choice of the regularization param- PERZM

eter p and the threshold. In accordance with the theory of

radar detection, we aim at settipgindr in such a way to keep Proof: The proof is similar to that of Corollary 1 of [28]
the asymptotic false alarm probability equal to a fixed valugnd is thus omitted u

Z Wh|l$_hmaX|r:E|]zllng the asymp_tlotlc proﬁab"r']ty Ofl det;fdéon. From Corollanf5b, the following design procedure leads to
rom theore one can easlly see that the values optimal performance detection results:

that provide an asymptotic false alarm probability equal to
p b ymp P y €d « First, setting the regularization parameter to one of the
n should satisfy: NI
values maximizingfscm(p):

a.s.

— 0,

fsem(p)— fsem(p)

sup
pERSCM

! =+/—2logn.

ON,SCM (P) ﬁ*N € argmax {fSCM (p)} (6)
. SC

From these choices, we have to take those values that max- PERZEN

imize the asymptotic detection which is given, according to « Second, selecting the threshaids:

Th nB, by:
eore y i = 6N .som(pi)v/—2logn 7
.
Q1 (QSCM(p)v 7) .
on,scm(p) IV. OPTIMAL DESIGN OF THEANMF-RTE:

The second argument a; should be kept fixed in order NON-GAUSSIAN CLUTTER

to ensure the required asymptotic false alarm probabA$y.  This section discusses the design of the ANMF-RTE de-
the Marcum-Q function increases with respect to the firglcior in the case where the clutter is non-Gaussian. In
argument, the optimization of the detection probabilityl$o particular, we assume that the secondary observatiorsfysati

down to considering the following values pf the following assumptions:
1
p € argmax { fscm(p)} Assumption A-2. For i € {1,---,n}, x; = /7,CLw; =
where: 1 \/Tiz; wWhere
fsem(p) = ﬁ.ggCM (p) e Wi, ---,w, are Nx1 independent unitarly invariant

o _ o complex zero-mean random vectors wjjti; |2 = N,
However, the optimization ofscu(p) is not possible in prac- |, ¢, ¢ CV¥*V js such thatlimsup||Cy|| < oo and
tice, since the expression gkc . (p) features the covariance LtrCy=1.

o 7; > 0 are independent ofv;.

4 Q1(a,b) = fb+°°xexp —w2J2ra2 Io(az)dz where Iy is the zero-th o liminf LP*CNP >0
N .

order modified Bessel function of the first kind.




The random model described in Assumpfion 2 is that of CE68r eache > 0, the above convergence does not suffice
distributions which encompass a wide range of observatitm obtain the convergence of most of the commonly used
distributions obtained for different settings of the sttitis of functionals which involve fluctuations of ordéf—= or N—!

;. Prior to stating our main findings, we shall first reviewe.g. quadratic forms ctEN(p) or linear statistics of the eigen-
some recent results concerning the asymptotic behaviourvaiues ofCN(p)). While a further refinement of the above
the RTE in the asymptotic regime. convergence seems to be out of reach, it has recently been
established in[[28] that the fluctuations of special funtdis

can be proved to be much faster, mainly by virtue of an
averaging effect which cancels out terms fluctuating at fowe
This section reviews the recent results [n][28] about thgyeed. In particular, bilinear forms of the ty@g;;v(p)b were

asymptotic behaviour of the RTE estimator. studied in [28], where the following proposition was proved
Recall that the RTE is defined, fore (max {0,1-%},1],

A. Background

: - : - Proposition 7. Let a,b € CV with |jal| = |b||
as the unique solution to the following equation: L P
q geq deterministic or random independentxf, - - - ,x,,. Then, as
. 1 — X X" N,n — oo, with ¢y — ¢ € (0,00), for anye > 0 and every
C = 1— — Aiz‘i‘ I .
vl =0 Y e o T kez,

. l1—e | ,*x 1k _ a*xQk a.s.
The study of the asymptotic behaviour of robust-scatter est pejg)m N a”Cx(p)b—a’Sy(p)b| = 0.
mators is much more challenging than that of the traditional RT”E ] ) ] )
sample covariance matrices. The main reasons are thag, fifdieréR. * is defined as in Theore 6, whekrec Z in any

robust estimators of scatter do not have closed-form expr@9Wer of the matrice€y and Sy .

sions and, second, the dependence between the outer-fFodusome important consequences of Proposifion 7 need to be
involved in their expressions is non-linear, which does netated. First, we shall recall that, while the crude studshef
allow for the use of standard random matrix analysis. ltandom variatea*C% (p)b seems to be intractable, quadratic
order to study this class of estimators, new technical toGisrms of the typea*gl]cv(p)b are well-understood objects
based on different rewriting of the robust-scatter estrsat whose behavior can be studied using standard tools from
have been developed by Couillet et al.|[29].1[37].1[38]. Theandom matrix theory[[39]. It is thus interesting to tramsfe
important advantage of these techniques is that they stiigeshe study of the fluctuations o&*Ck k(p)b to a S’f\,(p)b.
replace robust estimators by asymptotically equivalemioan proposition[ ¥ achieves this goal by tak|ﬂg< . Not only
matrices for which many results from random matrix theoryges it entail that* C* k (p)b fluctuates at the order of—3

are applicable. In particular, the RTE estimator deﬂned/abO(Slnce so doesa*Sk k(p )b) but also it allows one to prove that
has been studied in [28] and has been shown to behave in thg:x k (p)b and a Sk k (p)b exhibit asymptotically the same

regime whereV, n — oo in such a way thaty — ¢ € (0, 00) fluctuatlons. Similar td [28], our concern will be rather fised

similar to Sy (p) given by: on the casé = —1. In the next section, we will show how this
. 1 1— 1 result can be exploited in order to derive the receiver dpeya
Sn(p) = p Zzlz +pIn, (8) characteristic (ROC) of the ANMF-RTE detector.

N (p) 1=(1=p)en n =

: . . B. Optimal design of the ANMF-RTE detector
where~yy (p) is the unique solution to:

As explained above, in order to allow for an optimal
_ / ¢ v (dt) design of the ANMF-RTE detector, one needs to characterize
(p)p+(1—p)t ' the distribution of TR™E(p) under hypothesesf, and H1
TE
More specifically, the following theorem applies: Using Propositior17, we know that the statisticy
which cannot be handled directly, has the same fluctuat|ons

Theorem 6 ( [29]). For any x > 0 small, defineRE™ £  asTRTE () obtained by replacingy (p) by Sy (p). That is:
[li—i-maX(O, 1—c™h), 1}. Then, asN,n — co with cy — ¢ €

(0,00), we have: FRIE(, Sy (P)P‘
T A
sup CN(p)—SN(p)‘ 220. \/P*S )p\/y*SX,I(p)y
RRTE N
PR whereSy (p) is given by [3). X
— 1*[7_ B S =
Theoren{ b establishes a convergence in the operator norr}TetAB o (p+ v (p) 1-(1-p)c ) . Then, Sx(p)

of the differenceCy (p)—Sn(p). This result allows one to pp~ 'R (p), where, with a slight abuse of notation, we
transfer the asymptotic first order analysis of many fumals denote byR y(p) the matrix(l—p)% i zizi+ply. Since

of Cn(p) to Sn(p). However, when it comes to the study7'RTE(y) remains unchanged after scaling $% (p) andy,
of fluctuations, this result is of little help. Indeed, altlyghh we also have:

Theoren{® can be easily refined as

C(p)=Sn (1)

TRTE ‘fy (g)p‘
=3 0. ~
\/p Ry ()py/ Ly Ry (p)y

1_
sup Nz27¢
PERETE




wherer = 1 underH,. It turns out that, conditionally te, the and resorting to the dominated convergence theorem. m
fluctuations of the robust statistiER = (p) under Hy or H; Similar to the Gaussian case, we need to build consistent
are the same as those obtained in Thedrem 1 and ThédreesBmates fow3, (o) and frre(p) given by:

oncea is replaced by— andp by pﬁ As a consequence, we -

have the following relults: frrE(p) = ﬁg%{TE(p)

Theorem 8 (False alarm probability/ [28])As N,n — oo A consistent estimate foJQV,RTE(p) was provided in[[28]:

with ey — ¢ € (0, 00), Proposition 10 (Proposition 1 in [[28]) For p €

2 _ -1 "
sup [P [TRTE( ) > L|Ho} _e e | 0, (max({0,1—cy'},1). Define,
PERRTE VN L 1- pp "GP
. . . N (PP
wherep — p is the aforementioned mapping and 02 =
o3 (p) £ 1 p*CNQ?\/( )p
N,RTE\P) = 5 T
2P Qn ()P trlcNQN( p) and let6% prg (1) £ limy1 6% (p). Then, we have:
X ~ a.s.
(1—c(1—p)2m(—p)?+ tr C3 Q% (p)) 571%11) 0% rrE(P) — 6% RTE(P)| = 0.
- - - peE

. —1
with Qn(p) £ (In+(1—p)m(—p)Cn) . Similar to the Gaussian clutter case, acquiring a condisten
Theorem 9 (Detection probability) AsN, n — oo with ¢ —  €Stimate forfrre(p) is mandatory for our design. We thus

prove the following Proposition:
€ (0, 00) the following Proposit
Proposition 11. For p € (max {0,1—cy'},1), let
sup (2| T () > it
) frern(p) = (P*€31(P) (7 trCnlp)=p
“E S —
[Ql (gRTE( ) UN,RTE(p))} (1—cN—i-ch)2

where the expectation is taken over the distributionrof p*C;Vl(p)p—pp*ijz(p)p

has the same expression as in Theorém 8 and . N
UN’RTE( ) P e and fRTE £ limpTl fRTE(p)- Then, we have:

gRTE S;;r?TE fRTE(p)_fRTE(p)‘ E) 0-
*CNQ2 (p)p pers
2, " Qn(p)p|- _Proof: The proof follows by first replacindR ' (p) by
Nt = Ry'(p) andp by p in the results of Propositidnl 4 and using
and @, is the Marcum Q-function. the convergences [28]:

Proof: Since the fluctuations of the robust statistic

T 53 Cn(p) 5
TRTE( ) is the same as that @t“* (p) whena is replaced su “R

Toe., R
peRETE || 3 tr Cn (p)
by ¢ 77 we have for any fixed,
RTE r 8731?@ BCN(p)_pRN(B)H 0.
sup ]P’[T (p )>—|H1,T} PERE
PERTE VN and
r P 1 A a.s,
_ S A ———trCp(p)| — 0.
Q1 (gRTE(p)a CTN,RTE(p)) ’B N
The result thus follows by noticing the following inequglit u
Since the results in Propositidn]11 and Theorfgm 9 are
sup |P [TRTE( ) > L|H1} uniform in p, we have the following corollary:
pERATE VN A _ . iy
Corollary 12. Let frre(p) be defined as in Propositidd 4.
-E |:Q1 <gRTE(p), ;)] ‘ Definep%, as any value satisfying:
UN,RTE(p) "
~ oy € arg max { } )
<E sup |P [T]zvaTE( ) > \/LN| Hm} Py € arg max, frre(p)
RTE
PER:: Then, for every- > 0,
r
— Q1 (QRTE(p)a m)‘ P (\/NTN(ﬁjv) > r|H1)
5Note that vectory can be assumed to be Gaussian without impacting the — max {]P’ (\/NTN(p) > T) |H1} 2%0.
asymptotic distributions of/ NTZTE under Hy and H;. PERTTE



Using the same reasoning as the one followed in the Gaus-
sian clutter case, we propose the following design strategy

« First, set the regularization parameter to one of the values
maximizing frre(p):

Py € arg o, {fRTE(P)} ;
« Second, set the threshold o

7 =06n,rrE(pN)V —2logn

wheren is the required false alarm probability.

V. NUMERICAL RESULTS

A. Gaussian clutter

Betection Probability

In a first experiment, we consider the scenario where th
clutter is Gaussian with covariance mati@y of Toeplitz
form:

bi—i

oy ={ oy

where we seb = 0.965 N = 30 andn = 60. The steering
vectorp is given by

i<

b 1
ST el

)

Fig. 1.
p =a()

where§ — [a(0)], = e 7™ In this experimentf is

set to 20°. For each Monte Carlo trial, the simulated data
consists ofy = ap+x and the secondary dat,--- ,y,
which are used to estimajg, and to comput&Ry (5% ). In
particular, the shrinkage parameter and the thresholc\ade
determined using[{6) and](7). We have observed from the
considered numerical results thﬁCM(p) is unimodal and
thus the maximum can be obtained using efficient line search
methods. For comparison, we consider two other designs: the
first one is based on the regularization parameter derived in
the work of Chen et al.[[22, Equation (19)] (we denote by
pPenen the corresponding coefficient) while the second one
corresponds to the non-regularized ANMF=€ 0). . In order >
to satisfy the required false alarm probability, we assuore f 3
the first design that the threshold,., is given by: 7., =

o N,5¢ M (Pehen)vV/—2log . For the non-regularized ANMF to
satisfy the false alarm probability, the threshold valuesés
based on Equation 11 in [27]. Figuré 1 represents the RO
curves of both designs for different values of= a+v/N,
namelya = 0.1,0.25,0.5, along with that of the theoretical 3
performances of our design. We note that for all SNR ranges,
the proposed algorithm outperforms the design based on the
regularization parametei.,., and the gain becomes higher
asa increases. It also outperforms the non-regularized ANMF
detector. Moreover, the performances of the proposed ulesig
correspond with a good accuracy to what is expected by our
theoretical results.

(10)

tecton Probal

Proposed design
Theory
Design usingchen aNdrchen [22]
Design without regularizatiop = 0

| | |
0.1 0.2 0.3
False Alarm Probability

0.4

ROC curves of ANMF-RSCM designs far= 0.1,0.25,0.5, p =

0.4

a(0) with = 20°, N = 30, n = 60: Gaussian setting

Proposed design
Theory
Design usin@jchen and 7enen [22]
Design without regularizatiop = 0

| | |

|
1-1072 2-1072 3-1072 4.107% 5-1072
False Alarm Probability

In order to highlight the gain of the proposed design ové&ig. 2. ROC curves of ANMF-RSCM designs far= 0.9, p = a(6) with

the most interesting range of low false alarm probabiljties
represent in Fid.12 the obtained ROC curves when 0.8 and
the false alarm probability spanning the inter{@b01, 0.05].

0 = 20°, N = 30, n = 60: Gaussian setting



B. Non-Gaussian clutter  — Proposed design
-=—- Design usin@olilla, Tolila [15]

In a second experiment, we proceed investigating the per-
formance of the proposed design in the case where a non-
Gaussian clutter is considered. In particular, we consider
case where the clutter is drawn fronkadistribution with zero
mean, covarianc€ , and shape = 0.5 [3]. The covariance
matrix has the same form as inl (9) with= 0.967 but with
N =30 andn = 60.

Similar to the Gaussian clutter case, we consider for thg?
sake of comparison the concurrent design based on the re
ularization parameter derived in the work of Olilla and Tyle =
in [15, Equation (19)]. We denote by,ni. and 7o, the
corresponding regularization coefficient and thresholdteN
that, according to our theoretical analysis, the threskigld.
should be set t@oi1a = 6N, rTE(foliila)vV/—21ogn in order
to satisfy the required false alarm probability. The resalte ‘ ‘ ‘
depicted in Figurd]3. We note that for all SNR ranges, the 0 0.1 0.2 0.3 0.4
proposed method achieves a gain over the design based on
the regularization coefficient proposed by Olilla et al. Vifoa
observe that, similar to the first experiment, the gain iases
asa grows but with a lower sloﬁe Fig. 3. ROC curves of ANMF-RTE designs for= 0.1,0.25, 0.5, p = a()

In a last experiment, we investigate the impactszodnd With ¢ = 20°, N =30, n = 60 K distributed clutter setting
the distribution shape . Figure[4 represents the detection
probability with respect ta when the false alarm probability 1
is fixed t0 0.05. We note that for small values af, higher
detection probabilities are achieved when the distriloutid
the clutter is heavy-tailed (small), whereas the opposite
occurs for large values af. In order to explain this change
in behavior, we must recall that heavy-tailed clutters (§ma
v) are characterized by a higher number of occurrences ofr

bability

Detect

False Alarm Probability

obability

7 in the vicinity of zero and at the same time more frequent §

realizations of large values af If a is small, the improvement G

in detection performances achieved by heavy-tailed cluite % 4

attributed to the artificial increase in SNR over realizasiof o 0.7

small values ofr. As a increases, the power of the signal of

interest is high enough so that the effect of realizationth wi

large values ofr becomes dominant. The latter, which are 0.6

more frequent for small values of are characterized by high

levels of noises, thereby entailing a degradation of digtect a

performances.
Fig. 4. Detection probability with respectéop = a(6) with 6 = 20°, N =

VI. CONCLUSION §27n = 60, v = 0.1,0.9, 30: K-distributed clutter, false alarm probability

- 0.

In this paper, we address the setting of the regularization
parameter when the RSCM or the RTE are used in the ANMF
detector statistic as a replacement of the unknown covagirow large simultaneously. Based on tools from random matri
ance matrix, thereby yielding the schemes ANMF-RSCM artHeory along with recent asymptotic results on the behandbu
ANMF-RTE. One major bottleneck toward determining théhe RTE, we derived the asymptotic distribution of the ANMF
regularization parameter that optimizes the performamdesdetector under hypothesid, and H;. The obtained results
the ANMF detector, is linked to the difficulty to clearlyhave allowed us to propose an optimal design of the regu-
characterize the distribution of the ANMF statistics unttex larization parameter that maximizes the detection prdibpabi
cases of presence or absence of a signal of inteféstaphd while keeping fixed the false alarm probability through an
Hy). In order to deal with this issue, we considered the regina@propriate tuning of the threshold value. Simulationsilies
under which the number of samples and their dimensiookarly illustrated the gain of our method over previously
proposed empirical settings of the regularization coefiti
_ 5Note that we do not compare with the zero-regularizatiore @sin the  Qpe major advantage of our approach is that, contrary to first
first experiment, since, contrary to the Gaussian case, wsotibave in our . . . . .
intuitions, it leads to simple closed-form expressiond ttem

disposal theoretical results allowing the tuning of thee¢imold to the value i b - e X "
that achieves the required false alarm probability. be easily implemented in practice. This is quite surprising
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given that the handling of the classical regime whergrows Arguing in a similar way to that in[{11), we know that the
to infinity with N fixed has been shown to be delicate. Aquantity%ap*Rlep does not fluctuate and converges to:
a matter of fact, it has thus far been considered only for the 1 R a e

non-regularized Tyler estimator where intricate exp@ssin NGP*R]_le_ N—P*QN(P)P — 0,

the form of integrals were obtained [40]. Building the bedg ) P

between both approaches is an open question that deselgde, from [28]:

investigation. 1 N 1 N T
—RX'RY'P), =3 (x*Ry }
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APPENDIXA Ty = 1 p*CnQ% (p)pP
PROOF OFTHEOREM[3 202N (1—em(—p)2(1-p)2% tr C2,Q% (p))

The proof of Theorend]3 consists of two steps. First, we Wy = LP*QN(p)p
study the asymptotic behaviour of the detection probabilit Np
for fixed p. Then, by a similar argument to the one considerd®ecall the following distance between probability distrib
in [28], we establish the uniformity of the result over theions:

considered set op. Assume that the received signal vector - .
y is given by: ﬁ(PaP) ZSUP{/fd]P’—/fdPJﬂBLSl}

a
Y= UNPT where||fl| sz = | £l zip+ | flloor [1f]l2ip being the Lipschitz

~ norm and||. ||, the supremum norn®?]. Assume for the mo-
H 2 _ H RSCM .
with [[p|[* = N and let us writey NT{Y (p) as: ment thatlim sup Yy < oo andlimsup §-p*Qn (p)p < oo.
The proof for these statements will be provided later. Then,

L *R-1 L‘ :
VNTESCM () = /N ‘Wy v (D5 . from Theorem 11.7.1 in?,
iy*ﬁ—l(p)y /PRy (p)p 1 o ,
VN N N 8 (E (r, NGP*RN p) L (TNZ ,oJN)) — 0.

; ; ; TRSCM _
A close inspection Of. the expression OINT); (p) re where £(X) stands for the probability distribution of
veals that the fluctuations will be governed by the numerats)g This in particular establishes that the random vari-

y*f{g,l (p)\/% since, from classical results of random matrix L e _ . o
theory, we know that quantities in the denominator exhibPe (r’ ~vap Ry p) converges uniformly in - distribu-

a deterministic behaviour, being well-approximated by sonjion to TNZ/,wN . From the uniform continuous map-
deterministic quantities. In effect, ping Theorem in P, Theorem 1], we thus prove that

1 .- 1, as. VN [ Ly R ‘ behaves asymptotically as a Rice ran-
~P RNI(P)P——NP Qn(p)p — 0, (11) Ny v P asy ap . y
p dom variable with location ;P Qn(p)p and scale
while: 1 P*CnQ% (p)pP . .
Lo . - %N (om0 (10" & 11 LGB (7) Using this result
—y'Ry (p)y———trCnQn(p) — 0. (12) along with Slutsky Lemma, we conclude that und,
N Np SRSCM () i : i i .
&n TN (p) is also asymptotically equivalent to a Rice ran
The first convergencé (l11) follows from Theorem 1.1[ofl [41 . . C QN ()P
whereas the second one is obtained by observing that, tmcagjuosm variate but with Iocatlon\/—ﬁ /% trCn QN (p) and scale
of the low-SNR hypothesis: on,scm- We therefore get, for a fixed,
1 * T — 1 S — a.s, TSCM r r a.s,
~Y RNl(p)y—Nx Ry (p)x 230 P {TN > \/—N|H1} -1 (gSCM(p)a UN.,SCM) —0

and then using the well-known convergence result [42]:  The generalization of this result to uniform convergencess
1 oy 1 e p € RM can be derived along the same steps as ih [28]. We
vX Ry (P)X—N—p trCnQn(p) — 0. now provide details about the control of thieasup Y and
limsupwy. The fact thatlim supwy < oo follows directly
We will now deal with the fluctuations of the numerator. Wegrom the last item in Assumptioh] 1, while the control of

have: limsup T < oo requires one to check that:

I o- ap” & «H-1_P 1
\/N‘Ny Ry'P| = ‘ N Ry'p+x RNl\/—N : liminfl—cm(—p)Q(l—p)QN tr C3, Q% (p).
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The proof hinges on the observation that this term naturally Proof: The proof relies on the Talor expansion/af and
appears when computing the derivativerofz) with respect ¢y in the vicinity of 1, which asserts that for any € [0, 1]
to z at z = —p. Simple calculations reveal that: there exist{; and¢, satisfying:

hav(p) = hy(1)(p—1)+(p—1)*hx (&)

ml N= (-2 M T z -
(2) ( te5 CnQn( )) an(p) = gn(D(p—1)+(p—1)%gx (&)

1 —1
<(1-mra-pP g e Ci o)
We therefore have,

’ "

h(p) (1) hy(D+(p=Dhy (&) hy (1)

gn(p)  gn(1) gn(D)+(p—1)gn(&)  gy(1)

It suffices thus to show that'(—p) is bounded. Asn is a
Stieltjes transform of some positive probability measuydt  limsup
can be written as: N
, B p(dx) < 1 _ (p—Dhn(&)gn(1)—(p—1)hy(1)gn(£2)
mi=p) = / (z+p)? ~ K2 gn (D) (gn(D)+(p—1)gn(&2))

which ends the proof. < |p_1|1imsupzv |h/]lv(§1)g;v(1)|+limsu12)]v [Py (§1)gn (&2)]

= lim sup
N

lim inf ’g}v(l)’
APPENDIXB Tendingp to 1 establishes the desired result. ]

PROOF OF PROPOSITIONM] Obviously functionsh(p) and g(p) satisfiy the assump-

For ease of notation, we denote bi(p) and f(p), the gof:s of LemmdllB AI\{pplylngl HO]:Ita'S rulefi\nd using ;he
quantitiesfsca (p) and fscar(p). It is easy to see that(p) ifferentiation ru es— N (p) = —Ry(p) ( N+I) an

and f( ) converges to an undetermined form as" 1. Set dipRN (p) = _2RN (p) (—RN+I), we finally prove:

flp) & q( ) with ¢ and i being given by: N

p*Rnyp

f(p)—

lim lim su =0. 14
2 ptl o ‘ (14)

i(0) = (1=9) (PR )p) (1) (1-ct S pir Ry ()
h(p) = P'Ry' (p)p—pp Ry ()P

The handling of the values gf approachingl can be per- o

formed using the I'Hopital’s rule. 1;?11 lim Sl}\lfp
The idea of the proof is to treat seperately the values iof

the interval[x, 1— ] and those in1—«, 1] for somex small

enough. In order to allow for a setting sfthat is independent

Now, using the fact: p*Ryp—+p*Cyp 2 0 in conjunc-
tion to the last item in Assumptidd 1, we get:

flp)— " Cap
On the other hand, a careful analysis of the behavioyf(pj
nearl reveals similarly that:

230. (15)

from N, we need to prove that: Jim lim sup | £(p) — ‘ 50 (16)
W (1) Pt N p* C NP
lim lim sup | f(p) — - =0. (13) Combining [Ib) with [[IB), we finally obtain:
s N gn(1)
hmhmsup‘f )‘—>0

To this end, a uniform variant of the I'Hopital's rule is

essential. This variant is stated in the following Lemma: It then suffices to prove Propositiéh 4 @, 2 [x,1—4].

Lemma 13. Let fx(p) = ’;Ngf’g with hy and g being de- To this end, we need to recall the following relations satfi
N

fined in the intervap € [0, 1]. Assume thak (1 f =gn(1) = by mn(—p):

0 while liminf @_;)v’p:1 > 0, limsupy <4 dgn " < +00 mx(—p) = 1—c c;{ )
and lim sup ‘””V‘ < +oo. Assume also that the second pr
derivatives ofh and gn are uniformly bounded inV, that . 1
s: ma(0) = (pet=p 5 rCvQx )
pzl[t)pu thsuP hN(p)‘ < Foo Combining these relations, we therefore get:
” 1
sup limsup ‘gN(p)‘ < +00 itrcNQN( ) — p(1—%trQn(p))
pe01] N (I1=c)(1=p)(I—c+5 tr Qn(p))
Then, The result thus follows by using Propositibh 2 and noticing,
o (p) h/zv(l) in the same way as in_[28], that:
lim lim sup —— — 0
=1 N |gn(p)  gn(1)

1 1 = a.s.
sup —trQN——trRx,l(p) =0,
p€lk,1—£] P



and

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]
El
[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]
[20]

[21]

[22]

(23]

P* -1 a.s, 24
sup  |——=Qnp——=pP'Ry' (p)p| — 0 [24]
pelr,1—0) | VN pVIN
[25]
1 *C 2
~P*CN Q% (p)P
sup 1 2(1 21 C2.0Q2 (17)
p€lK,1—£] —em(=p)*(1—p) ~ tr NQN(p) [26]
1 n-—1 -2
N (p*RN p—pP" Ry p) as.
— — = 0. (18) 27
(1-p) (Tp +eltrRy (p))
[28]
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