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Abstract—Motivated by the recent interest in 3D beamforming
to enhance system performance, we present an information-
theoretic channel model for multiple-input multiple-output
(MIMO) systems, that can support the elevation dimension.
The principle of maximum entropy is used to determine the
distribution of the channel matrix consistent with the prior
angular information. We provide an explicit expression for the
cumulative density function (CDF) of the mutual information
in the large number of transmit antennas and paths regime.
The derived Gaussian approximation is quite accurate even
for realistic system dimensions. The simulation results study
the achievable performance through the meticulous selection of
the transmit antenna downtilt angles. The results are directly
applicable to the analysis of 5G 3D massive MIMO systems.

Index Terms—Massive MIMO, channel modeling, maximum
entropy, 3D beamforming, mutual information.

I. INTRODUCTION

Channel modeling and mutual information (MI) analysis is
a fundamental step towards the performance evaluation of sev-
eral transmission techniques. Over the years, channel models
have evolved to address the challenges of wireless communica-
tion technologies. Recently, the trend is to exploit the channel’s
degrees of freedom in the elevation leading to several 3D
beamforming techniques. The existing multiple-input multiple-
output (MIMO) systems were designed to support antenna
configurations at the base station (BS) capable of adaptation
in the azimuth only. Several measurement campaigns have
demonstrated the significant impact of elevation on the system
performance [1], [2] and the 3GPP is currently defining future
mobile communication standards to help evaluate the potential
of 3D beamforming [3]. An important feature of these 3D
channels is the downtilt angle, that can be optimized to change
the vertical beam pattern dynamically and yield the promised
gains [4]–[6].

To allow for a better understanding of the limits of wireless
systems through the MI analysis, a large effort is required
to accurately model the 3D channels. Given the available
knowledge on channel parameters like angle of departure
(AoD), angle of arrival (AoA), delay, amplitude, finding the
best way to attribute a joint distribution to the channel matrix
is of vital importance. It has been shown that the choice of
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distribution with the greatest entropy creates a model out of
available information without making arbitrary assumptions on
information not available [7], [8]. In the context of wireless
communications, the authors in [9] made an extensive use
of the principle of maximum entropy together with the con-
sistency argument to address the question of MIMO channel
modeling from an information-theoretic point of view for the
2D case. To the best of authors’ knowledge, there has not been
any comprehensive study to develop an information-theoretic
3D channel model and characterize its MI distribution.

The aims of this paper are twofold. First is to provide an
information-theoretic channel model for 3D MIMO systems,
inspired from models presented in standards [10]–[12]. We
follow the guidelines provided in [9] to derive an entropy
maximizing 3D channel model consistent with the state of
available knowledge of AoDs and AoAs, known apriori to the
modeler of the channel. The resulting model has a systematic
structure, which is exploited to effectively characterize its MI.
The second aim is to present an asymptotic analysis of the
statistical distribution of the MI and show that it is well
approximated by a Gaussian distribution for any number of
Rx antennas, as the number of paths and Tx antennas grow
large. The simulation results illustrate an excellent fit between
the theoretical and simulated CDFs for finite-sized systems and
provide a flavor of the performance gains realizable through
the meticulous selection of the downtilt angles. The results are
applicable to the design of 3D 5G massive MIMO systems.

The rest of the paper is organized as follows. In section
II, we introduce the information-theoretic 3D channel model.
In Section III, we provide an asymptotic analysis of the
MI distribution. The derived results are corroborated using
simulations in section IV and finally in section V, we conclude.

II. INFORMATION-THEORETIC CHANNEL MODEL

The mobile communication standards like 3GPP SCM [10],
ITU [12] and WINNER [13] follow a system level, stochastic
channel modeling approach. The extensions of these 2D mod-
els to the 3D case have started to emerge recently [11], [3].
We base the evaluation of our work on these models.

A. 3D MIMO Channel Model

Based on the aforementioned standards and assuming ver-
tically polarized antennas, the effective channel between BS
antenna port s and mobile station (MS) antenna port u is given



[H]su =
1

N

N∑
n=1

αn
√
gt(φn, θn, θtilt) exp (ik(s− 1)dt sinφn sin θn)

√
gr(ϕn, ϑn) exp (ik(u− 1)dr sinϕn sinϑn) , (1)

by (1), where φn and θn are the azimuth and elevation AoD of
the nth path respectively, ϕn and ϑn are the azimuth and ele-
vation AoA of the nth path respectively. The elevation angle of
the antenna boresight is denoted by θtilt and αn is the complex
random amplitude of the nth path. Also

√
gt(φn, θn, θtilt) and√

gr(ϕn, ϑn) are the global patterns of Tx and Rx antennas
respectively. dt and dr are the separations between Tx antenna
ports and Rx antenna ports respectively and k is the wave
number that equals 2π

λ , λ being the wavelength. The two
exponential terms in (1) are the array responses of the sth Tx
and the uth Rx antenna, that can be denoted as [at(φ, θ)]s and
[ar(ϕ, ϑ)]u respectively. Fig. 1 shows the 3D channel model.

To enable an abstraction of the role played by the antennas
in performing downtilt, the 3GPP and ITU approximate the
global pattern of each port

√
gt(φn, θn, θtilt) by a narrow

beam in the elevation as [12],√
[17dBi−min{−(AH(φ) + AV(θ, θtilt)), 20dB}]lin, (2)

where, AH(φ) = −min

[
12

(
φ

φ3dB

)2

, 20

]
dB, (3)

AV (θ, θtilt) = −min

[
12

(
θ − θtilt
θ3dB

)2

, 20

]
dB, (4)

where φ3dB is the horizontal 3 dB beamwidth and θ3dB is the
vertical 3 dB beamwidth. gr(ϕn, ϑn) is taken to be 0 dB.

B. Maximum Entropy Channel

The theoretical analysis of the ray-tracing 3D channel model
just presented is difficult. The multiple propagation paths result
in a large number of random variables in the model. Secondly,
the model exhibits non-linearity with respect to the AoDs
and AoAs. To circumvent these problems encountered in the
theoretical analysis, we use the principle of maximum entropy
to develop an equivalent information-theoretic model.

It was rigorously proved in [7] that the principle of maxi-
mum entropy yields models that express the constraints of our
knowledge of model parameters and avoid making any arbi-
trary assumptions on information not available. The authors in
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Fig. 1. 3D channel model.

[9] utilized this framework to devise theoretical grounds for
constructing channel models for 2D MIMO systems, consistent
with the state of available knowledge of channel parameters.

The geometry-based MIMO channel models presented in
standards assume single-bounce scattering between the trans-
mitter and the receiver, i.e., there is a one-to-one mapping
between the AoDs and AoAs [14]. Therefore φn, θn, ϕn, ϑn
are assumed to be known apriori and fixed over channel
realizations, during the modeling phase. The only random
component in the 3D channel model is now αn, so a suitable
distribution needs to be assigned to it such that the obtained
model is consistent with the information available.

It was proved through an extensive analysis in [9] that in the
presence of prior information on the number of paths, AoDs,
AoAs and Tx and Rx power of the propagation paths, the
maximum entropy channel model is given by,

H = ΨP
1
2

Rx(Ω ◦G)P
1
2

TxΦ
H , (5)

where PRx and PTx contain the Rx and Tx powers of the
multipaths respectively, Ω is the mask matrix that captures
path gains, Ψ and Φ capture the antenna array responses and
◦ is the Hadamard product. The solution of the consistency
argument that maximizes entropy is to take G to be i.i.d zero
mean Gaussian with unit variance [9], [14].

To represent the channel model in (1) with a structure
similar to that of (5), we define A and B as NBS × N and
NMS ×N deterministic matrices given by,

A =
1√
N

[at(φ1, θ1), at(φ2, θ2), ......, at(φN , θN )]◦ (6)
√
g(φ1, θ1, θtilt1) . . .

√
g(φN , θN , θtilt1)

...
. . .

...√
g(φ1, θ1, θtiltNBS

) . . .
√
g(φN , θN , θtiltNBS

)

 ,
where at(φn, θn)=[[at(φn, θn)]s=1, ..., [at(φn, θn)]s=NBS

]H .

B = [ar(ϕ1, ϑ1), ...., ar(ϕN , ϑN )], (7)

where ar(ϕn, ϑn) = [[ar(ϕn, ϑn)]u=1, ..., [ar(ϕn, ϑn)]u=NMS
]T .

Note that the array responses and antenna patterns are
captured in A and B. Since the Tx and Rx powers are
incorporated in the antenna patterns so PRx and PTx in (5)
are identity matrices. For the single-bounce scattering model,
the mask matrix Ω will be diagonal. Taking Ψ and Φ to be
B and A respectively, the solution of the maximum entropy
problem for the NMS ×NBS 3D MIMO channel matrix with
entries given by (1) will have a systematic structure as,

H =
1√
N

B diag(α) AH , (8)

where α is an N dimensional vector with entries that are i.i.d
zero mean, unit variance Gaussian RVs.



III. ASYMPTOTIC ANALYSIS OF THE MI

We consider a point-to-point communication link where H
is a NMS×NBS MIMO channel matrix from (8). The channel
is linear and time-invariant. A time-division duplex (TDD)
protocol is considered. The complex received baseband signal
y ∈ CNMS×1 is given by,

y = Hs + n, (9)

where s ∈ CNBS×1 is the Tx signal from the BS and n ∈
CNMS×1 is the complex additive noise such that E[nnH ] =
R + σ2I, where R is the covariance matrix of interference
experienced and σ2 is the noise variance at the MS. In this
context, the MI of the 3D MIMO system is given by,

I(σ2) = log det(INMS
+ (R + σ2INMS

)−1HHH). (10)

The reduced degree of randomness in our model makes
it difficult to characterize the behaviour of the MI. The
asymptotic analysis provided here differs from the previous
analysis because of the non-Wishart nature of HHH and
the incorporation of the elevation dimension and antenna tilt
angles in the channel model. In order to study the asymptotic
approximation to the MI distribution, the following assumption
is required over the number of BS antennas and multipaths.
Assumption A-1. In the large (NBS , N) regime, NBS and N
tend to infinity such that

0 < lim inf
NBS
N
≤ lim sup

NBS
N

< +∞, (11)

a condition we shall refer to by writing NBS , N →∞.

A. Distribution of HHH

The analysis starts by characterizing the distribution of
HHH , which would later be followed by transformations to
complete the characterization of MI. Defining b̄i as the ith

row vector of B in (7), the (k, l)th entry of HHH is given by,

[HHH ]kl =
1

N
αH([b̄Hk b̄l] ◦ (AHA)T )α. (12)

Denoting NMS by M , HHH is a M ×M matrix of the
following general form,

1

N


αHC1,1α αHC1,2α . . . αHC1,Mα

αHC2,1α αHC2,2α . . . αHC2,Mα
...

...
. . .

...
αHCM,1α αHCM,2α . . . αHCM,Mα

 , (13)

where Ck,l = [b̄Hk b̄l] ◦ (AHA)T ,∀k, l = 1, . . . ,M . To char-
acterize the distribution, an additional assumption is required
over the matrices that form the quadratic terms in HHH .
Assumption A-2. Under the setting of Assumption A-1,

||[b̄Hk b̄l] ◦ (AHA)T ||sp
||[b̄Hk b̄l] ◦ (AHA)T ||F

−→ 0, ∀k, l = 1, . . . ,M, (14)

where ||.||sp denotes the spectral norm and ||.||F denotes the
Forbenius norm of a matrix. This is a technical assumption
required to observe the convergence behavior.

Denoting the (k, l)th quadratic term by T k,l = 1
NαHCk,lα,

every quadratic term can be decomposed into its real and
imaginary parts, which are also quadratic forms in α as,

T k,l =
1

N
<(αHCk,lα) +

j

N
=(αHCk,lα), (15)

where <(αHCk,lα) and =(αHCk,lα) are given by (16) and
(17) respectively. Equivalently HHH can be written as a sum
of two matrices with the real and imaginary parts.

With this decomposition at hand, we now state in the follow-
ing theorem the asymptotic behavior of the joint distribution
of the entries of <(HHH) and =(HHH) stacked in vector x,

x = [vec(<(HHH))T vec(=(HHH))T ]T , (18)

where the operator vec(.) maps an M×M matrix to an M2×1
vector by stacking the rows of the matrix.

Theorem 1: Let H be a NMS×NBS MIMO channel matrix
from (8), then under A-1 and A-2, x behaves as multivariate
Gaussian such that the MGF of x converges as,

E

[
exp

(√
NsT (x−m)√

sTΘs

)]
− exp

(
1

2

)
−→ 0, (19)

where m= 1
2N×

[Tr(C1,1
< ) . . . T r(CM,M

< ), T r(C1,1
= ) . . . T r(CM,M

= )]T (20)

and Θ is given by (21).
The proof follows from the fact that the mean and covari-

ance of the quadratic terms can be computed using (3.20)
in [15]. The Central Limit Theorem for the (k, l)th entry of
<(HHH) and =(HHH) can be established from the result in
[16] under A-1 and A-2, implying that the MGF behaves as,

E

exp

s√N [<(T k,l)− 1
2N Tr(C

k,l
< )]√

[Tr(Ck,l
< Ck,l

< )+Tr(Ck,l
< (Ck,l

< )T )]

4N

− exp

(
s2

2

)
−→ 0.

To characterize the joint distribution of <(HHH), =(HHH),
the behaviour of their linear combination gT [x−m], where g
is any arbitrary vector, is studied. Theorem 1 follows from it.

B. Distribution of Mutual Information

The analysis starts by expressing (10) as,

I(σ2) = log det((R + σ2IM ) + HHH)− log det(R + σ2IM ).
(22)

Decomposing ((R+σ2IM )+HHH) into real and imaginary
parts as Y+j Z, and denoting the entries of R+σ2IM by ζij ,
we can extend the result of Theorem 1 to <((R + σ2IM ) +
HHH) and =((R + σ2IM ) + HHH), which will also show
the convergence in (19) under assumptions A-1 and A-2 with
mean vector m given by (23) and the same covariance. The
mean matrix M for ((R + σ2IM ) + HHH) is expressed as,

M = M1 + j M2, (24)

where M1 and M2 are M ×M matrices, containing the real
and imaginary parts of the means of ((R + σ2IM ) + HHH).



<(αHCk,lα) = [<(α)T =(α)T ]

[
<(Ck,l) −=(Ck,l)
=(Ck,l) <(Ck,l)

] [
<(α)
=(α)

]
= [<(α)T =(α)T ](Ck,l< )

[
<(α)
=(α)

]
. (16)

=(αHCk,lα) = [<(α)T =(α)T ]

[
=(Ck,l) <(Ck,l)
−<(Ck,l) =(Ck,l)

] [
<(α)
=(α)

]
= [<(α)T =(α)T ](Ck,l= )

[
<(α)
=(α)

]
. (17)

Θ =



1
4N [Tr(C1,1

< (C1,1
< )) + Tr(C1,1

< (C1,1
< )T )] . . . 1

4N [Tr(C1,1
< (CM,M

= )) + Tr(C1,1
< (CM,M

= )T )]
...

. . .
...

1
4N [Tr(CM,M

< (C1,1
< )) + Tr(CM,M

< (C1,1
< )T )] . . . 1

4N [Tr(CM,M
< (CM,M

= )) + Tr(CM,M
< (CM,M

= )T )]
1

4N [Tr(C1,1
= (C1,1

< )) + Tr(C1,1
= (C1,1

< )T )] . . . 1
4N [Tr(C1,1

= (CM,M
= )) + Tr(C1,1

= (CM,M
= )T )]

...
. . .

...
1

4N [Tr(CM,M
= (C1,1

< )) + Tr(CM,M
= (C1,1

< )T )] . . . 1
4N [Tr(CM,M

= (CM,M
= )) + Tr(CM,M

= (CM,M
= )T )]


. (21)

m = [<(ζ11) +
Tr(C1,1

< )

2N
, . . . ,<(ζMM ) +

Tr(CM,M
< )

2N
,=(ζ11) +

Tr(C1,1
= )

2N
, . . . ,=(ζMM ) +

Tr(CM,M
= )

2N
]T (23)

Before presenting the Gaussian approximation to the statis-
tical distribution of the MI in the asymptotic limit, we define
a matrix M̃ and a 2M2 × 1 vector f(M̃) as,

M̃ =

[
M1 −M2

M2 M1

]
, (25)

f(M̃)|l+(k−1)M = [det(D1) + · · ·+ det(D2M )]|l+(k−1)M ,

k = 1, . . . , 2M, l = 1, . . . ,M , where Di is identical to M̃
except that the entries in the ith row are replaced by their

derivatives with respect to (k, l)th entry of
[

M1

M2

]
. Every entry

of the 2M2×1 vector, f(M̃) will involve the sum of only two
non-zero determinants as every (k, l)th entry occurs in only
two rows. Additionally we make the following assumption,
Assumption A-3. In the large NBS , N regime under A-1,

lim inf f(M̃)T Θ f(M̃) > 0.

We now present the Gaussian approximation to the statistical
distribution of the MI in the asymptotic limit.

Theorem 2: Let H be a NMS×NBS MIMO channel matrix
from (8), such that assumptions A-1, A-2 and A-3 hold, then
the statistical distribution of I(σ2) can be approximated as,

P[
√
NI(σ2) ≤ x]− 1

2

(
1 + erf

(
x−
√
Nµ√

2σ2
a

))
−→ 0,

(26)
where erf is the error function, µ = 0.5 log det M̃ −
log det(R + σ2IM ) and σ2

a is given by,(
.5

det M̃

)2

× f(M̃)T Θ f(M̃). (27)

The proof follows from succumbing to the Taylor series
expansion of a real-valued function f(xn),

f(xn) = f(m) + 5T f(m)(xn −m) +Rn, (28)

MS of interestBS 1 BS 2

Cell Edge

ISD=500 m

H1 Hint

Fig. 2. Example scenario.

where m is the mean vector in (23) and Rn = o(1).

E[exp (f(xn)− f(m))] = E
[
exp

(
5T f(m)(xn −m)

)]
+ o(1).

Note that E[exp
(
5T f(m)(xn −m)

)
] is analogous to

E
[
exp

(
sT [xn −m]

)]
with s = 5f(m). Now using the

convergence result from last section and invoking Slutsky’s
Theorem, under A-3 results in,

E

exp

 √
N [f(xn)− f(m)]√
5T f(m)Θ5 f(m)

− exp

(
1

2

)
−→ 0.

The expression for 5f is worked out using (det(M1 +
jM2))2 = det M̃ and the expression for derivative of the
determinant from [Ch 6, [17]]. Theorem 2 follows from it.

IV. NUMERICAL RESULTS

We corroborate the results derived in this work with simula-
tions. A simple but realistic multi-cell scenario shown in Fig.
2 is considered. The worst case performance when the MS is
at the cell edge is studied. R is computed as,

R =

Nint∑
i=1

E[HiHH
i ], where (29)

E[HiHH
i ] =

1

N
Bidiag(α)AHi Aidiag(α∗)BHi , i = 1, . . . , Nint,
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Fig. 3. Comparison of Monte Carlo simulated CDF and asymptotic theoretical
CDF in (26).

where Nint is the number of interfering BSs (1 for Fig. 2).
In the standards, (θn, ϑn) are drawn from Laplace(θ0, σ)

density, while (φn, ϕn) are drawn from Wrapped Gaussian
distribution, which can be approximated as Von Mises (µ, κ).

The radio and channel parameters are set as θ3dB = 15o,
φ3dB = 70o, σBS = 7o, σMS = 10o, κBS , κMS = 5 and µ =
0. Moreover θ0 is set equal to the elevation LoS angle between
the BS and MS. Two thousand Monte Carlo realizations of the
3D channel in (1) are generated to obtain the simulated MI
for comparison. SNR denotes 1

σ2 in dB. We now validate the
result obtained for the CDF of MI for finite-sized systems.
The first result deals with the case when BS 2 is operating in
a different frequency band as BS 1. Fig. 3 illustrates a good fit
between the asymptotic theoretical and simulated result for a
finite-sized system with N,NBS = 60 and NMS = 4. Even at
the highest value of SNR, the asymptotic mean and variance
show only a 1.2 and 3.2 percent relative error respectively.

Finally the multi-cell scenario is considered in Fig. 4, where
we plot the CDF of the MI at different values of antenna
boresight angles of the serving BS. We again deal with the
worst case scenario of the MS being in the direct boresight
of the interfering cell. Comparison with the simulated CDF
of MI obtained at SNR = 5dB validates the accuracy of the
derived theoretical asymptotic distribution and illustrates the
impact 3D elevation beamforming can have on the system per-
formance through the meticulous selection of downtilt angles.
For the case on hand, the MI of the system is maximized when
the serving BS also sets its antenna boresight angles equal to
the elevation LoS angle with the MS, i.e. θtilt ≈ 96o.

V. CONCLUSION

The prospect of enhancing system performance through
elevation beamforming has stirred a growing interest among
researchers in wireless communications. In this work, we used
the principle of maximum entropy to determine the distribution
of the MIMO channel matrix based on the prior angular
information. An asymptotic analysis, in the number of paths
and BS antennas, of the MI is provided and validated for
finite-sized systems via simulations. We believe that the results
presented will enable a fair evaluation of the 3D massive
MIMO channels being outlined in the future generation of
mobile communication standards.
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