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Abstract—Caching multimedia files at the network edge has
been identified as a key technology for enhancing users’ quality-
of-service (QoS), while reducing redundant transmissions over
capacity-constrained backhauls. Nevertheless, in small cell net-
works, the efficiency of a caching policy depends on the ability
of small base stations (SBSs) to anticipate the requests from the
user equipments (UEs). In this paper, we propose a collaborative
filtering (CF) scheme for estimating the required backhaul usage
at each SBS, by mining the cacheability of UEs’ file requests. In the
proposed approach, each SBS has a two-fold objective: update the
bandwidth allocation based on the estimated backhaul utilization,
and, given the current bandwidth availability, identify which UEs to
service. We formulate the problem as a one-to many matching game
between SBSs and UEs, and we propose a novel cache-aware user
association algorithm that minimizes the backhaul usage at each
SBS, subject to individual QoS requirements. Simulation results,
based on real-world service request logs, have shown that the
proposed CF-based solution can yield significant gains in terms
of backhaul efficiency and cache hit-ratio, reaching up to 25%,
with a maximum gap of 9% to an optimal cache-aware association
technique.

I. INTRODUCTION

The exponential growth in the demand for high data rates
and quality-of-service (QoS) in wireless cellular networks has
led to the introduction of ultra-dense architectures, based on
the concept of small base stations (SBSs), such as picocells or
femtocells. SBS deployments promise to deliver high QoS, at
low operational costs [1], yet, in order to reap those benefits,
a number of technical challenges stemming from the backhaul
capacity limitations must be addressed [2]. In fact, due to high
SBS network density, efficient and scalable backhaul manage-
ment solutions are essential to harness traffic bottlenecks and
deliver the desired performance.

To overcome the backhaul capacity limitations, state-of-the-
art SBS architectures propose local caching of popular contents
at SBS level, in order to reduce the overall traffic load from
the core network and, thus, utilize the backhaul bandwidth more
efficiently. Caching has been originally proposed in content dis-
tribution networks for decentralizing the availability of contents
at strategic nodes of the network (e.g., proxy servers, gateways),
while balancing the network traffic during off-peak intervals
[3–5]. In essence, by decoupling the time instant during which a
content is downloaded, from the one during which it is delivered
to a UE, an SBS can boost the users’ QoS and make a more
efficient use of the backhaul resources.
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Plus project SHARING (proj. C2012/1-8), the U.S. National Science Foundation
under grants CNS-1460316, CNS-1460333, CNS-1443914, and AST-1443913,
and the ERC Starting Grant 305123 MORE.

As the efficiency of caching depends on the ability of each
SBS to intelligently select which files to store, i.e., to enhance
the hit-ratio of file requests, several works in the literature have
aimed at maximizing the hit-ratio by adequately dimensioning
the SBSs’ caches [3], [6] or through proactive techniques [7–9].
Also, due to the limited storage capacity at each SBS, it is critical
to properly decide which content to cache by taking into account
the content popularity. Based on the popularity distribution,
an SBS can estimate the probability of a file being requested
and, accordingly, predict the backhaul bandwidth utilization,
depending on whether such files are already available in the
SBS’ cache or have to be retrieved from the core network.
In such studies, a common simplification is to assume that
the global file popularity is known and modeled according to
the Zipf distribution [7], [8], [10]. Although this assumption
is valid for heterogeneous data sets, it fails to account for the
different ”cacheability” of certain file types [11]. For instance,
in several multimedia streaming applications (e.g., YouTube,
Netflix, Spotify), the contents are recommended to the users, or
they are arranged in playlists, which ultimately create a logical
link across a UE’s file requests. Inferring such information allows
to anticipate traditional network functions (e.g., pre-allocating
UEs’ bandwidth) which is a promising – and yet relatively
unexplored – research field in wireless networks [7–9].

Making accurate predictions on future file requests demands
the ability to mine the similarities across such requests and
to combine them into probability distributions. In this respect,
collaborative filtering (CF) has been one of the most successful
techniques for building recommendation systems across large
datasets. In practice, CF uses the known preferences of a group of
users to make recommendations or predictions of the preferences
for other unknown users. While being effective, CF suffers from
scalability issues as the size of the file library grows. In case
of large sets, user-based CF (based on individual requests from
UEs) has been proven to be a more scalable option for deducing
request similarity from users’ past service requests, rather than
from file libraries [12].

The main contribution of this paper is to exploit user-based CF
predictions to improve the backhaul efficiency, in the downlink
of small cell networks. By inferring on the popularity distribution
of multimedia files, the SBSs can make better informed decisions
on which UE should be serviced for a target QoS requirement,
and how to allocate the backhaul bandwidth, accordingly. We
address this problem in two phases. First, we model the file
popularity through the cacheability metric [11], which quantifies
the benefits of caching files with large revisit rate. Next, based



on the estimated incoming file requests and the current cache
composition, the SBSs individually devise a UE-SBS association
that minimizes the backhaul bandwidth allocation. In summary,
the proposed CF-based approach enables each SBS to perform
more precise backhaul bandwidth allocations, by harnessing
storage and backhaul capacity limitations.

The rest of this paper is organized as follows. In Section II,
we introduce the system model and the CF framework. In
Section III, we formulate the UE-SBS association problem and
propose a decentralized algorithm that converges to the targeted
solution. Simulation results are analyzed in Section IV. Finally,
conclusions are drawn in Section V.

II. SYSTEM MODEL

A. Network Setting

Consider the downlink transmission of a single orthogonal
frequency division multiple access (OFDMA) macro-cell. In this
network, M UEs and N SBSs are deployed, respectively denoted
by the sets M = {1, ...,M} and N = {1, ..., N}. Let Li denote
the set of UEs serviced by SBS i. The macro-cell spectrum
is divided in orthogonal frequency subbands, and each SBS i
allocates one subband wi,m to each UE m ∈ Li. The transmit
power of each SBS i ∈ N is denoted by pi. Each SBS i is
connected to the core network via a backhaul of capacity Bi.
Each UE m requests a set of files Fm = {1, ..., Fm}, Fm ⊂ F .
For simplicity, we assume that all files have the same size s1.
Finally, for the transmission of the files in Fm, the instantaneous
capacity between each SBS i and UE m is given by:

ri,m(t) = wi,m log(1 + γi,m(t)), (1)

where gi,m(t) is the channel gain between UE m and SBS
i, at time t, γi,m(t) =

pigi,m(t)
σ2+Ii,m(t) is the instantaneous signal-

to-interference-plus-noise ratio (SINR) between SBS i and UE
m and σ2 the variance of the Gaussian noise. Moreover, the
interference component Ii,m(t) =

∑
j ̸=i pjgj,m(t), denotes the

interference produced by the transmissions from other SBSs j to
their respective UE n, which takes place on the same frequency
band wi,m allocated to UE m. Here, pj , and gj,m(t) denote,
respectively, the transmit power and the channel gain between
SBS j and UE m. Finally, each UE m has a minimum data rate
requirement r∗m.

In order to accommodate the users’ traffic requests, at time
instant2 t, each SBS i allocates a backhaul bandwidth Bi,m(t)
to each UE m ∈ Li, such that

∑
m∈Li

Bi,m(t) ≤ Bi. In such
a setting, the quality of the transmission stream depends on
the wireless channel conditions (e.g., interference) and on the
backhaul capacity Bi,m(t) that SBS i allocates to the UE’s traffic
requests. As a result, the maximum data rate at which the files
in Fm can be delivered, from an SBS i to a UE m, is:

Ci,m(t) = min{Bi,m(t), ri,m(t)}. (2)

1For example, in a video application such as YouTube, each file corresponds
to a short segment of a video, a few seconds long. For instance, 100 different
popular video clips with a length of 30 seconds each would correspond to more
than 3000 different files.

2In the considered setting, time can be discretized into scheduling intervals,
during which file requests are sent and radio resource management operations
performed.

Note that, if the backhaul capacity Bi is insufficient for keep-
ing up with the transmission data rate ri,m(t) (i.e., Bi,m(t) <
ri,m(t) ), UE m can experience a considerable QoS degradation
(e.g., low resolution or playback, for video applications), for
reasons that are independent from the quality of the wireless
transmission. To overcome such limitations, we consider that
each SBS i is equipped with a data storage unit having a capacity
of Ki bytes in which it can locally store a subset of the files in F ,
denoted by Di = {1, . . . , Di}. This caching procedure continues
until the storage capacity Ki is exhausted. Upon reaching the
maximum storage capacity Ki, the least requested files are
systematically dropped to accommodate new file entries.

Introducing caching capabilities at SBS level yields two
noteworthy considerations. First, the files in local caches can
be transmitted at data rates that are no longer affected by the
backhaul status, since the constraint in (2) no longer applies.
Second, the backhaul allocation Bi,m(t) exclusively caters for
the files that are not locally available at SBSs i. As a result,
dimensioning the backhaul allocation, based on the current cache
composition, directly affects the number of UEs an SBS can
service and their respective QoS. In the next sections, we will
discuss how the popularity of multimedia files can be exploited
for devising smarter UE-SBS associations and optimizing the
backhaul usage.

B. Cache-Aware Backhaul Allocation via Collaborative Filtering

In cache-aware networks, the backhaul allocation exclusively
caters for the uncached files. Thus, an efficient backhaul alloca-
tion policy needs to estimate the backhaul utilization by inferring
the probability of uncached files being requested. However,
each SBS’ knowledge is limited to the file requests sent from
its previously serviced UEs. Thus, obtaining reliable popularity
statistics from a limited set of information requires robust and
systematic prediction approaches. To this aim, we propose a CF-
based approach to estimate the file popularities [12].

In the proposed CF setting, each SBS i maintains a matrix
with the UEs m ∈ Li and the number of requests for all known
files F over time. Such information can be represented in form
of matrix as shown in Table I. The f -th column of Table I
refers to the number of requests for file f , made by all the UEs
m ∈ Li. The m-th row of Table I encompasses the number of
requests of user m for the files in F . Finally, the dashes denote
unavailable information, for file requests which still have not
occurred. The goal of the proposed CF approach is to exploit the
correlations across different file requests (i.e., across columns),
and users (across rows), so as to compute the probability of a
file being requested by another UE, i.e., its cacheability. Based
on that, each SBS has a two-fold objective: update the backhaul
allocation based on the estimated backhaul utilization, and, given
the current bandwidth availability, identify which UEs can be
serviced.

In practice, when a UE m requests a file f ∈ F , an SBS i
constructs two sets of information on f , called neighborhoods,
that serve as baseline for predicting the cacheability of file f .
The first neighborhood Sf ⊆ M is composed by the number
of requests by other UEs n ̸= m previously serviced by SBS i
for the same file f (equivalent to a subset of the f -th column
of Table I). The second neighborhood Sm ⊆ Fm is defined by



TABLE I
REPRESENTATION OF THE NUMBER OF FILE REQUESTS AT SBS i.

f = 1 f = 2 . . . f = |F|
m = 1 2 - . . . -
m = 2 - 4 . . . 8
. . . . . . . . . . . . . . .

m = |Li| - 14 . . . -

the number of requests of other files in Fm requested by UE
m (subset of the m-th row of Table I). Finally, the estimated
number of requests of a UE m for a file f ∈ Fm, associated to
an SBS i, at time t can be expressed as [12]:

x̂f
i,m(t) = (x̄i+bf+bm)+

∑
n∈Sf

dm,n x̂
f
i,n∑

n∈Sf
|dm,n|

+

∑
ḟ∈Sm

df,ḟ x̂
ḟ
i,m∑

ḟ∈Sm
|df,ḟ |

,

(3)
where, x̄i is the average number of requests received by SBS i

by all known UEs and for all files in F ; bf =

∑
m∈Sf

x̂f
i,m

|Sf | − x̄i

denotes the average number of requests for file f , made by the

UEs m ∈ Li, relative to the average x̄i; bf =
∑

f∈Sm
x̂f
i,m

|Sm| − x̄i

denotes the average number of requests by UE m over all the files
ḟ , with respect to the average x̄i. Finally, dm,n = |x̂f

i,m − x̂f
i,n|

and df,ḟ = |x̂f
i,m − x̂ḟ

i,m| respectively denote the absolute error
(also referred to as distance) between the number of requests of
different UEs serviced by SBS i (i.e., the neighborhood of file
f ), and different files for a given UE m (neighborhood of UE
m). The nominal value of the unavailable entries (denoted by
dashes) is set to zero.

To quantify the benefits of caching, we adopt a metric similar
to the cacheability metric proposed in [11] for quantifying the
popularity of HTTP requests. This metric ρ̂m,i,f (t) represents
the probability of a cached file f being requested by UE m to
SBS i, given the past requests of UE m and all the other UEs
n ∈ Li serviced by SBS i:

ρ̂m,i,f (t) =
(x̂f

i,m(t)− 1)∑
n∈Li

x̂f
i,n(t)

, ∀i ∈ N . (4)

In such a setting, a suitable way for exploiting the file
cacheability inferred from the above model is to estimate the
backhaul bandwidth required for accommodating the users’ file
requests. In fact, if a UE is likely to request a cached file,
it can be assigned a minimum backhaul bandwidth B̂i,m(t).
Conversely, instantaneous requests demand larger allocations,
according to the data rate requirement r∗m. To capture such
aspects, we consider that the estimated backhaul bandwidth
requirement for a UE m associated to SBS i is given by:

B̂i,m(Li,Fm, ρ̂m,i,f , t) =
1

|Fm|
∑

f∈Fm

( ρ̂m,i,f (t) r
∗
m∑

n∈Li
ρ̂n,i,f (t) r∗n

)
·Bi.

(5)
Note that, the allocation in (5) depends on the probability

ρ̂m,f (t) that a UE m might request file f , and on the probability
that other UEs n ∈ Li might do so, as well. Both probabilities
are computed as per (4), i.e., based on CF-based estimations. In

case of even probability, the bandwidth allocations only depend
on the transmission data rate requirements r∗m and r∗n.

III. CELL ASSOCIATION AS A MATCHING GAME

A. Problem Formulation

In this work, we aim at solving the problem assigning each UE
m ∈ M to the SBS i ∈ N , through a matching η : M → N , that
minimizes the long-term backhaul bandwidth allocation, given
an initial cache composition Di and the respective file request
predictions. Essentially, this yields the following optimization
problem:

argmin
(i,m)∈η

1

T

T∑
t

∑
i∈N

∑
m∈M

B̂i,m(Li,Fm, ρ̂m,i,f , t) (6)

s.t., Di · s ≤ Ki, (7)∑
m∈Li

B̂i,m(Li,Fm, ρ̂m,i,f , t) ≤ Bi, (8)

Ci,m(t) = min{B̂i,m(t), ri,m(t)}, (9)
Ci,m(t) ≥ r∗m, ∀i ∈ N . (10)

where (7) is a constraint on the maximum storage capacity of
each SBS, constraint (8) represents a limit on the backhaul
bandwidth allocation, constraint (9) denotes the transmission
capacity bottleneck, and constraint (10) indicates a minimum
data rate requirement. In terms of complexity, the optimization
problem in (6)-(10) is NP-complete, and depends on the number
of SBSs and UEs in the network. Even by relaxing some of
the constraints, the exponential complexity makes a centralized
approach intractable, notably in small cell networks in which the
number of UEs and SBSs can considerably grow. This complex-
ity coupled with the need for self-organizing solutions mandates
a distributed approach in which UEs and SBSs autonomously
decide on the best UE-SBS association.

For solving the SBS-UE association problem in (6), one
suitable framework is that of matching theory [13]. Matching
theory provides a computationally tractable set of tools for
solving a combinatorial problem such as (6). Essentially, a
matching game is defined as follows:

Definition 1. A matching game is defined by two sets of players
(M,N ) and a function η : {M∪N} → {M∪N}, such that:

• |η(m)| = 1, for every UE m ∈ M,
• |η(i)| ≤ qi, (or equivalently |Li| ≤ qi) for every SBS i ∈ N ,
• η(m) = i if and only if i = η(m), or equivalently, m ∈ Li.

As the UEs are unaware of the files stored at the SBS side,
their preference is exclusively based on the transmission data
rate Ci,m(t). Thus, for a UE m, we define a preference relation
≻m over the set of SBSs N as:

i ≻m j ⇔ Ci,m(t) > Cj,m(t). (11)

At the SBS side, the preferences are mainly based on the
backhaul bandwidth requirements of each UE, which are inferred
by estimating the cacheability of the UE’s incoming file requests,
as discussed in Section II-B. Accordingly, for each SBS i, we
define a preference relation ≻i over the set of UEs M as:



Algorithm 1: UE-SBS Cell Association Algorithm
Data: r∗m, Di, Bi.
Begin;
Phase I - Backhaul bandwidth requirements and interference
estimation;
• Each UE m discovers the interfering SBSs in the vicinity and measures
the received interference;
• Each SBS estimates the cacheability ρ̂m,i,f (t) of the file requests from
the UEs within transmission range;
Phase II - UE-SBS matching negotiations;
repeat

• The bandwidth allocation B̂i,m(t) is updated based on ρ̂m,i,f (t)
and the current η;
• UEs and SBSs are sorted by ≻m and ≻i;
if j ≻m i then

• UE m sends a proposal to SBS j;
• SBS j computes B̂j,m(t) for the new link (j,m);
if (7)-(10) are satisfied then

• the new link (j,m) is created;
else

• SBS j refuses the proposal, and UE m sends a proposal
to the next preference.

end
end

until @n, j : n ≻i m and m ≻j n;
Outcome: Stable matching η;

m ≻i n ⇔ B̂i,m(t) < B̂i,n(t). (12)

To solve the problem in (6) in a decentralized approach, the
SBSs and UEs can individually rank one another, based on
the preference relations ≻m, ≻i. The aim of each SBS is to
maximize its own utility, or equivalently, to accommodate most
file requests, given its backhaul bandwidth availability and the
set of cached files Di. Similarly, the aim of each UE m is to be
associated with the SBS delivering the largest data rate Ci,m(t)
for its requested files.
B. Proposed algorithm and properties

To find a UE-SBS matching for the problem in (6), we propose
a new approach, shown in Algorithm 1, inspired by the deferred
acceptance scheme proposed by Gale and Shapley [13].

In this regard, a sufficient condition for the stability of the
proposed matching is given by Gale and Shapley [13] and hereby
adapted to the problem in (6):

Definition 2. A UE-SBS association is stable if there does not
exist two UEs m, n, that are respectively serviced by two SBSs
i and j, although m prefers j to i, and n prefers i to j.

Finally, at the end of Phase II of Algorithm 1, the SBS have
converged to a final matching, whose stability is guaranteed by
the following proposition:

Proposition 1. The proposed Algorithm 1 is based on the
deferred acceptance algorithm, thus, it is guaranteed to converge
to a stable matching in a finite number of iterations, as per [13].

IV. PERFORMANCE EVALUATION

For our simulations, we consider a single cell of a macro-
cellular network with a spectrum bandwidth of 20 MHz. In this
cell, M = [40, 500] UEs and N = [20, 230] SBSs are uniformly
deployed. The transmit power of each SBS i is pi = 33 dBm.
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Fig. 1. Average transmission capacity per UE-SBS link vs number of SBSs in
the network (N). |Li| = {2, 4, 5, 6} UEs, Di = 0.45 · |F|, B = 2 Gbps.

Transmissions are affected by distance dependent path loss,
with path loss exponent 3, and shadowing according to 3GPP
specifications [14]. The files in F have a size of s = 10 MB,
each with a bitrate of r∗m = 450 Kbps. Each SBS i ∈ N has
a memory capacity chosen from an interval Ki = [0.1, 0.6] TB.
Similarly, the backhaul capacity is chosen from an interval
Bi = [0.5, 2] Gbps.

To evaluate our approach, we design an experiment in which
we simulate the real situation of invoking a multimedia streaming
service. In this regard, to model the UE’s file requests, we
consider the listening logs of the Last.fm dataset [15]. The
considered file library F is composed by the top 10000 songs,
each one assigned to a non-unique tag denoting the music genre.
The probability of a UE requesting a file f is proportional to the
number of access on Last.fm, yet files are arranged in playlists,
based on genre or theme. Each UE requests a playlist of Fm = 20
files, out of a set of |F| = 10000 files. The SBSs’ caches
are composed by a set of randomly selected files, and at each
iteration, the least requested files are systematically dropped. T

For comparison purposes, we consider three additional UE-
SBS association schemes, used as benchmarks. In the first
scheme, each UE is associated to the respective SBS that maxi-
mizes the received SINR. Also, in this approach, the SBSs have
no caching capabilities and the the contents are retrieved directly
from the core network (i.e., subject to the constraint in 2. The
second scheme is also based on caching and CF, but it considers
the global file popularity (i.e., the number of requests averaged
over all UEs and all files)3, thus it is based on an average
request distribution, which converges to the Zipf one. Finally,
the third approach is a cache-aware association scheme in which
both wireless transmission and cache consistency are optimized.
The UE-SBS association of such an approach is computed in
a centralized fashion, by numerically solving instances of the
optimization problem in (6).

Figure 1 shows the average transmission capacity Ci,m per
UE-SBS link as a function of the SBS network size N , for
different number of UEs |Li| serviced by each SBS. Figure 1

3This approach is also known as baseline predictor, in the CF literature [12].
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Di = {0.22, 0.45} · |F| files, B = 1 Gbps, N=100 SBSs.

demonstrates that the backhaul capacity is the main limitation
for association techniques with no caching capabilities. In such
a regime, Figure 1 shows that the proposed caching strategy can
overcome the backhaul capacity limitations by decentralizing
selected files at SBS level. Also, Figure 1 demonstrates that
exploiting the cacheability inferred from local UEs leads to more
precise predictions of the UE’s files request, ans such gains
increase with |Li| (i.e., the CF neighborhood). For example,
Figure 1 shows that the performance gap between the proposed
approach and the global popularity scheme is 4.5%, for SBSs
with a backhaul capacity of Bi = 1 Mbps and a cache of
0.45·|F| files. Finally, the gains stemming from caching saturate
for larger networks, when the co-channel interference becomes
the main hindrance for QoS delivery (i.e., N ≥ 220 SBSs).
Therefore, Figure 1 demonstrates that the proposed cache-based
approach yields significant utility gains by exploiting local
content availability, notably in networks with a limited-capacity
backhaul.

In Figure 2, we observe the time evolution of the average
hit-ratio per UE-SBS link for different number of serviced UEs
per SBS, and cache size. Figure 2 shows that the accuracy
of the proposed approach increases over time, since, at each
iteration, the CF prediction is based on a larger number of
requests (i.e., on a larger CF neighborhood Sm). Using uncoded
caching techniques (i.e., storing complete files), the hit-ratio
grows proportionally with the number of cached files. However,
Figure 2 demonstrates that, by exploiting the file cacheability
inferred from local UEs’s requests, the predictions are more
accurate and the hit-ratio can be further improved. For instance,
the proposed approach achieves a hit-ratio of 25% by caching
20% of all the available files, after a simulation time of 160 s,
in a network composed by N = 100 SBS, each one serving
|Li| = 6 UEs. In summary, Figure 2 demonstrates that the
proposed algorithm achieves good predictions with a reasonable
initial delay, by reducing the bias in the estimated popularity
distribution.

In Figure 3, we evaluate the average outage probability as
a function of the cache size Ki, normalized to the file li-
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Fig. 3. Average outage probability (Prob {Ci,m(t) < r∗m}) vs normalized
cache size. r∗m = 450 Kbps, B = 1.8 Gbps.

brary size |F|. In this figure, we can observe that the outage
probability both depends on the received interference ( which
increases with the number of SBSs in the network) and the
cache size. With respect to the latter, by exploiting local file
availability, it becomes possible to overcome the transmission
capacity limitations due to backhaul bottlenecks (e.g., Eq. (2),
by reaching up to 43% reduction, with respect to a max-SINR
association scheme. Also note that, for all the considered caching
approaches, the probability of outage exhibits a floor, due to fact
that SBSs with larger caches tend to service more UEs. This
exposes the UEs to a larger received interference, which cannot
resolved through caching optimization, rather with interference
management techniques. Finally, Figure 3 demonstrates that
more accurate predictions on the bandwidth utilization, obtained
in the proposed CF-based approach are able to further the gap
to the optimal performance, which does not exceed 8%, for
a network of N = 180 SBSs, equipped with cache units of
0.4 · |F| files.

Figure 4 shows the cumulative distribution function of the
transmission capacity Ci,m per UE-SBS link, for all the con-
sidered schemes. Figure 4 shows that the benefits of caching
are more significant for UEs experiencing severe backhaul
bottlenecks. For example, at the tenth percentile (i.e., 10%
of all UEs with the smallest backhaul bandwidth allocations),
the performance of the max-SINR association technique yields
1550 bps (over a backhaul of capacity Bi = 1800 bps),
while the proposed approach gains up to 19.8%, by reaching
1845 bps per UE-SBS link. Moreover, note that the max-
SINR-based and the optimal caching approaches (respectively
denoted by the red and the black curves) reflect two opposite
optimization criteria: the first, based on wireless properties; the
second, content-centric. Hereby, on average, the gap between
the proposed (decentralized) CF-based approach and an optimal
(centralized) cache-enabled association scheme is 7%. This gap
can be further reduced by optimizing the CF neighborhood size
Sf or by exploting additional context information on the users’
preferences.

Finally, in Figure 5, we evaluate the average transmission
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Fig. 4. Cumulative distribution function of the transmission capacity Ci,m(t)
per UE-SBS link. N = 100 SBSs, r∗m = 450 Kbps, B = 2 Gbps.

capacity as a function of the normalized cache size and the
backhaul capacity, for the proposed CF-based caching scheme
and an optimal centralized solution. The color map indicates
the gradient of the transmission capacity as a function of the
normalized cache size. From Figure 5, we observe that the
gains of caching scale linearly for increasing cache sizes and
backhaul capacities. Nevertheless, for large backhaul capacities
(Bi = 2 Gbps), with less stringent bottlenecks, the gains saturate
more quickly as the cache size grows, mainly reflecting the
caches limitedness. This evidence suggests that, at architectural
level, caching techniques should be carefully tuned (in terms
of cache size and content placement), by accounting for local
backhaul constraints, rather than network-averaged conditions.
Finally, the comparison with an optimal centralized solution
shows a maximum performance gap of 9%. In summary, Fig-
ures 4 and 5 demonstrate that the proposed CF-based UE-
SBS association scheme can yield near-optimal performance
in terms of transmission capacity increase, in a decentralized,
uncoordinated fashion.

V. CONCLUSIONS

In this paper, we have presented a joint approach to the
UE-SBS association and backhaul bandwidth management, in
wireless small cell networks. We have proposed a CF-based
recommendation scheme that enables each SBS to estimate
the probability of its cached files being requested, based on
the history of its past serviced UEs. We have combined such
information into a UE-SBS association scheme by accounting for
the backhaul utilization and individual data rate requirements. In
the analytical formulation, we have modeled the problem as a
one-to-many matching game, in which the SBS and UE devise
individual preferences over one another. We have proposed an
algorithm that enables the UEs and SBSs to generate a list of
preferences that are respectively based on the transmission ca-
pacity and the cacheability of the UEs’ file requests. Simulation
results have shown that, by exploiting the correlations across
local UEs’ requests, the proposed CF-based solution can yield
significant gains in terms of hit-ratio, reaching up to 25%, with
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Fig. 5. Average transmission capacity as a function of the normalized cache size
Di/|F| and backhaul capacity Bi. N = 100 SBSs, r∗m = 450 Kbps.

a maximum gap of 9% to an optimal cache-aware association
technique.
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