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Large Dimensional Analysis of Robust
M-Estimators of Covariance with Outliers

David Morales-Jimenéz Romain Couillet, Matthew R. McKay

Abstract—A large dimensional characterization of robust
M-estimators of covariance (or scatter) is provided under he
assumption that the dataset comprises independent (esséily
Gaussian) legitimate samples as well as arbitrary determistic
samples, referred to as outliers. Building upon recent randm
matrix advances in the area of robust statistics, we specifatly
show that the so-called Maronna M-estimator of scatter asym-
totically behaves similar to well-known random matrices wken
the population and sample sizes grow together to infinity. Th
introduction of outliers leads the robust estimator to behae
asymptotically as the weighted sum of the sample outer prodiis,
with a constant weight for all legitimate samples and diffeent
weights for the outliers. A fine analysis of this structure reveals
importantly that the propensity of the M-estimator to attenuate
(or enhance) the impact of outliers is mostly dictated by the
alignment of the outliers with the inverse population covaiance
matrix of the legitimate samples. Thus, robust M-estimatos can
bring substantial benefits over more simplistic estimatorssuch
as the per-sample normalized version of the sample covariae
matrix, which is not capable of differentiating the outlying
samples. The analysis shows that, within the class of Marorr's
estimators of scatter, the Huber estimator is most favorake for
rejecting outliers. On the contrary, estimators more simibar to
Tyler's scale invariant estimator (often preferred in the literature)
run the risk of inadvertently enhancing some outliers.

Index Terms—Robust statistics, M-estimation, outliers.

I. INTRODUCTION

Of particular interest is the structure of robust M-estionat

of covariance (or scatter), which have very recently come to
a better understanding in the large dimensional regime sind i
the focus of the present work.

The field of robust M-estimation, born with the early works
of Huber [6], roughly consists in improving classical Gaass
maximume-likelihood estimators, such as the sample mean or
SCM, into estimators that (unlike the classical estimators
are resilient to both the possibly heavy-tailed nature & th
observed data or the presence of outliers in the datasainiss
ing observation data of known zero mean, robust estimators
of the population covariance matrix, referred to as robust
M-estimators of scatter, were proposed successively ifioj6]
data composed of a majority of independent Gaussian samples
and a few outliers and then in/[7] and [8] for elliptically
distributed or arbitrary scaled Gaussian data.

But the analysis for each givetv,n of the aforemen-
tioned robust estimators of scatter, which often take thenfo
of solutions of implicit equations, is in general intradab
In a series of recent works|[9=12] (see alsol [L3, 14] for
applications), this limitation was alleviated by considgr
the random matrix regime where botN,n are large and
commensurable. These works have shown that in this regime
several classes of robust estimators of scatter (Maroryher, T
and regularized Tyler) behave similar to simpler and explic

The growing momentum of big data applications alongandom matrix models, which are fully understandable via
with the recent advances in large dimensional random mat('pfow standard) random matrix methods. Nonetheless, alethe
theory have raised much interest for problems in statistigirks were pursued under the assumption that the input data
and signal processing under the assumption of large Ryt independent and follow a zero-mean elliptical distidu

similar population dimensiolv and sample sizex.. Due to

One of the salient outcomes of these works is that, under

the intrinsic complexity of large dimensional random matrig|liptical inputs, the Tyler and regularized Tyler estiorat

theory, as compared to classical statistics whres fixed

asymptotically behave similar to the SCM of the normalized

andn — oo, most of the classical applications were congatd] henceforth referred to as the normalized SCM, and
cerned with sample covariance matrix (SCM) based methog@refore do not provide any apparent gain in robustnessiser
(as in e.g., [1/12] for source detection ar [3] for subspacgmpler sample covariance estimators.

estimation). Only recently have other random matrix stroes

This fact, however, fundamentally disregards the impdrtan

started to be explored which are adequate to deal with m@tge of robust estimators as arbitrary outlier rejectons. |
advanced statistical problems; see for instance [4] on[f@epthe present work, we shall consider data comprising both
random matrix structures, or/[5] on kernel random matriceggitimate data (that are essentially independent Gaussia
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samples) and a certain (a priori unknown) amount of arlyitrar
deterministic outliers. Focusing our attention specifical the
(larger) class of Maronna’s M-estimators of scatter, samib
all of the aforementioned works and following the approach

The work of D. Morales-Jimenez and M. R. McKay was supportgd bin [9], we will show that in this setting the robust estimator
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of scatter behaves similar for larg€,n to an explicit and
easily understood random matrix. But it will appear, uniike

1This being valid up to second-order fluctuatiohs| [11].
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[9-12], that this random matrix no longer behaves similar tutliers. It is important to note at this point that all estiiors
the normalized SCM. Our main finding is that, under suitablef Cy considered in the following are invariant to column
conditions, the robust estimator of scatter manages towdte permutations inY so that we can freely assume the first
(to some extent) the impact of the deterministic outliersplumns ofY to be the legitimate data and the last columns
which the SCM (or normalized SCM) may not be capable ofo be the outliers. Note also that we consider here a more
Calling C the population covariance matrix of the legitimatgeneral setting than Gaussian legitimate data as we merely
data,a; € CY the i-th outlier, and assuming the numberequest thex;'s to have independent normalized entries with
of outliers is small compared te, it will be demonstrated some bounded moment condition.
that the rejection power of the robust estimator of scatier i Althoughas,...,a. , are arbitrary, for technical reasons
monotonically related to the quadratic forajcg,lai. This we shall need the following control.
shows that, ifCy is (invertible but) essentially of low rank, . . 1 menn ~—1/2
a;fCX,lai can take large values and thas is likely to be Assumption 1. limsupy, [|; 37521 Cy
suppressed. I:iZTC]‘Vlai is quite small instead, an inverse effect Note that, iflimsup,, €,n < co, Assumptior L reduces to
of outlier enhancement may appear that needs be controlled sup,, maxi<i<c,n %afC]_Vlai < oo.
by an appropriate choice of estimator within Maronna’s €las -
We shall show that such an estimator should resemble thdf one were aware of the presence and position of out-
original Huber estimator fron [6] and substantially diffesm  li€rs in the dataset, then the natural estimator @t (up
the Tyler estimator. to renormalization byl —.sn) vyould reaq %Y"Y"T with

In the remainder of the article, we provide a rigorous stat&’ = [Y1, -+, ¥(1—<,)n); this estimator, which we shall refer
ment of our main results. The problem at hand is discussijas the Oracle estimator (hence th& Superscript), merely
in Section[D and our main results introduced in Secfioh l1€onsists in a SCM with discarded outliers. For lack of knayvin
all proofs being deferred to the appendices. Special mtentthe_ outliers presence and positions, the immediate atieena
will then be made on the analytically tractable cases wheze €stimate forCy is the SCM, which reads hergYY'. If
number of outliers is either small (Sectiorl IV) or randondi.i ©ne is only interested in estimating any scaled version of

arbitrarily large norm, a simple robust procedure consists

estimatingCy via the normalized SCM%Y“Y“T, where
2 Ydiag(+Y'Y)~ 3. This matrix has the advantage of
ding arbitrarily large biases in the estimation®f. How-

aiaIC;Vl/QH < 00.

Notations: The superscript-)" stands for Hermitian trans-
pose in the complex case or transpose in the real case.
norm|| - || is the spectral norm for matrices and the Euclideap, ;
norm for vectors. The Dirac measure at poinis denoted ever, being only based on a per-data norm contkarny st

. . . . 1 T )
0, and 1 _sta.nds fpr the |nd|cato_r fuqct|on W_'”?“ the does not take into account the fact that outliers can also be
corresponding inclusion event. The imaginary unit is dedotOletected if they significantly differ, not just in norm, from
. — Cx . . . ) X 1 X 1
v = v~1 and3[] stands for the imaginary part. The set the majority of the data. The robust estimators of scatter,

i i . +_

'S deflntedfaqé; 'tx'bzt'o} a}nd (2 n]: {zde (C,t%d[zg)> 0}. }he introduced by Huberl [6] and later studied by Maronpa [7],

_srl;]ppord ° 3 1St ullon upc:c_l) 'Sft. enote )Bu];;p( )- ,vere precisely designed for this purpose. Our objective her
€ ordered eigenvalues of a Hermitian (or symmetric) ma s to finely understand this outlier identification and mntign

i (])3ff||ze N X ]Xar%denote@\rl]gi) ?3 = {\_N(}é).f_F_or procedure by means of a large random matrix analysis.
’ ermitian, A > B meanst —Blspositive definite. 1 o aple to define a robust M-estimator of scatter in

The notationliag(X) stands for the diagonal matrix composeq)he sense of Maronna under the presence of arbitrary outlier

of the diagonal elements of matrK anddiag(x) the diagonal vectors, a constraint must be set gpand N. In particular

matrix composed of the elements of vectoon the diagonal. asn gréws large, we shall require that1 — ,,)/N (and noi

The arrow % designates almost sure convergence and only n/N) be aIv;/a s bevond one "

stands for weak convergence. y y 4 '
Assumption 2 (Growth rate) Asn — oo &, — ¢ € [0,1)

Il. SYSTEM MODEL AND MOTIVATION andc, 2 s cwith0O<ec<1—ec.
For e,, € R such thatne,, € {1,...,n}, let We then define Maronna’a/-estimator of scatte€ y as a
Y = [yl, e Y (1—en)ns AL, - - .,aann} c CNxn solution, when it exists, to the equationZh
1-¢ep,

wherey; = C}V/QXZ- e CV,i = 1,...,(1 — en)n, are 7 — l( i)nu —viz v ) vivi
independent acrossCy € CV*V is deterministic Hermitian “n - Y& Vi | YiYi
positive definite, andkx; has zero mean, unit variance and anZL_
finite (8 + n)-th order moment entries fo_r somge> 0, while + 1 Z“ (%azfz—lai) aiaj. 1)
ai,...,a.,, € CV are arbitrary deterministic vectdfswe n.-
shall further assume that, @ — o, limsupy [|[Cn || < 0. \yherey : [0, 00) — (0, 00) is continuous, non-increasing, and

_The vectorsyy, ... y(—e,), Will be considered the le- g cn thath(x) 2 zu(z) is increasing withlim,_,.o é(z) 2
gitimate data, whilea,,...,a. , are deterministic unknown b and (1 — £)"! < ¢ < ¢ L. Note that the latter

2As shall be seen in Secti¢dl V, the vecterss can be considered random assu_mptipn Om’oo is _eqUivalent to that in ‘-9] Wi_th a Slight
as long as they are independent of ghes. modification accounting for the presence of outliers.



A standard choice for the functiomis © = ug, where, for
somet > 0,

A L4t

T t4zx

)

which, for an appropriate, turns Cy into the maximum-
likelihood estimator ofC, when the columns oY are in-

ug(z)

Remark 1 (Functionv). The functiorv defined in Theorein] 1
was already introduced in|[9] and uses, througfy the

assumption thatp(z) < c¢~!. It has essentially the same
general properties as in that it is continuous, non-increasing
and such that)(x) £ zv(x) is increasing and bounded with

limg 00 ¢(x) £ Yoo = (boo/(l - C¢oo)

dependent multivariate Student vectors (hence the sujirscRemark 2 (Relation to previous results)Taking e, = 0,
“S”)_ As t — O, CN converges to one version of the SOIheqrenﬂl reduces to the result obtained |in [18] and [12],

called Tyler estimator [8], as shown in [ﬁ}Ne shall however

restrict our study here to Maronna’s class of estimators. Of

particular interest in the present work is another function
which we shall (somewhat abusivB)yrefer to as Huber's
estimator functionuy, defined, for some > 0, as

uH(x)émax{l Ht}.

i.e., Sy =v(1,)2YYT. In this case(d) reduces to
_ 1+ cv(yn)1n
v(Yn)
which, after basic algebra, entailg, = ¢~1(1)/(1 — ¢) and
v(m) = 1/¢7H(1).

Theorem[L allows us to transfer many properties of the

n

This function has the particularity of being constant for alMPlicit matrix Cy into the more tractable matri$y, the

x < 1, which will be later seen as an important property.

I1l. M AIN RESULT

From the problem setting, Assumptionl 2, and |[1
Thm. 2.3], it is easily seen that, with probability one, th

solution of [1) is unique for all large: and thusCy is

unequivocally defined. In the same spirit as lin [[9, 10] (an

with similar notations), our first objective is to find an el
tight approximation of the implicitly define@ » in the regime

where N,n — oo as per Assumptiofi]2. Our main resul

unfolds as follows.

random matrix structure of which is well known and has been
studied as early as in[19]. The structureSqf is particularly
interesting as it mostly consists of two terms: the sum oéput

6products of the legitimate data scaled by a constant factor

v(v,) along with a per-sample weighted sum of the outer
?)roducts of the outlying data. Therefore, as one would expec
(:nv Sets a specific emphasis (either small or large) on each
tlying sample while maintaining all legitimate data unde
constant weight. We expect here that, as opposed to the SCM
that provides no control on the data or to the normalized SCM

that merely normalizes the outlier§€;y will appropriately

ensure a reduction of the outlier impact by lettingv; ,,)

Theorem 1 (Asymptotic Behavior) Let Assumptioris [3-2 hold be quite small compared with(~y,,), especially ife,, is small.

and letCy the solution to@) (unique for all largen, with
probability one). Then, as — oo,

| = 8u|| == 0

where

(1_571)77/ EnM

A 1 1
Sy £0(m) ~ Z yivl+ Z (cin) 2]
1= 1=

with v(z) = u(g~'(2)), g(z) = z/(1 — cp(z)), and
(Vn, @1my - - -, Qe m,n) the solution to
-1
L (1 —¢&)v(m) 1 t
n=—=trCy| ———————=C — n)ajal
NN T () N+n;”(a-” Jaja;
—1
1 (1 —=¢e)v(yn) 1
o ot AT )P - ) ot )
Qpp = Nai T Cy + " ;v(alw)ajaj a;
4)
fori=1,...,e,n. In particular, from [17, Thm. 4.3.7],
max )\Z(CN) — )\Z(SN) i> 0.
1<i<N

SAs opposed to Maronna’s class of estimators, Tyler estimiatconly

defined up to a constant factor; thus it estimafzg up to a scale parameter.

4Huber’s original estimator takes the forafz) = max{«, §/z} for some
a, B, hence with additional parameters and witk- 0. However, uniqueness
of Cp is not guaranteed fot = 0 and, in the random matrix limitex =
B =1 is a particularly appealing choice.

An immediate corollary of Theorefn 1 concerns the large
N eigenvalue distribution o€ and reads as follows.

Corollary 1 (Spectral Distribution) Define the empirical
spectral distribution Fy™ (z) = % 30, 1y @n)<ay O
x € R. Then, under the setting of Theoréin 1,

FSN(x) —Fn(z)=0

almost surely as: — oo, where Fiy (z) is a real distribution
function with density defined via its Stieltjes transforg (z)
(el mn(z) 2 J(t—z)"tdFn(t)) given for allz € C* by

1 ((—e)v(m) -
=—tr| —————=C Ay — 21
my(2) N 1"( T+ en(2) NtAN—zlN
with Ay 2 15"y (q,,)aa] and en(z) the unique

solution inC* of the equation

eN(z) — @ tI‘CN <(1 — E)’U(’yn)

—1
Cn+Ay—2In] .
EEERATOREY)

In the appendix, it is importantly shown that
limsupy ||Cn|| < oo @a.s. (as aresult dfmsupy ||Sn|| < oo

5Recall that any distribution functio®" is uniquely defined by its Stieltjes
transformm(z) by the fact that, for all continuity points, b of F,

b
F(b) — F(a) = Lli% g S[m(t + wy)]dt.



a.s.). This implies thatF]f?N and Fy have compact

supports and are fully determined by their respective

momentsMyy £ ft’“dFéN( t) and My 2 [tFdFN(t),

k=1,2..., whlch saUsfnyV’f; My 225 0 (by the

domlnated convergence theorem). Whife; is defined via
its deterministic but implicit Stieltjes transform, th&ly
can be retrieved explicitly using successive derivativiethe
moment generating formula (fog| < 1/ sup(Supp(Fn)))

Z FH My e

Precisely, we obtain here the followmg result.

N(1l/z) =

Corollary 2 (Moments) For Fy defined in Corollary[1L,

letting My, £ [tPdEN(t), p=1,2,...,
(1) 1
MN,p = p' N tr Tp

whereT,, is obtained from the following recursive formulas

Tm:—zn ANT, +;;( )(0) s,
Qpt1 = (P+ ) fp(1 = €)v(1m)Cn

for1 = ;JX%( )( > =i+ 1)fjfimjBpi

1
ﬂerl = U(Vn)ﬁ tr CNTerla

with initial valuesTo = Iy, fo = —1, 8y = v(a) 2 tr Cy.

In particular,

My1 = %tr Ay + (1= )o(y0)Cx]

My = %tr [A?V +2(1 — £)v(72)Cn AN
+L-P00n)Ch + | 1| (1= ).

Albeit having characterized the random matfx;, which
approximates the behavior & for large N, n, it is quite

challenging to gain a good intuitive understanding of th

weight structure as the expressibh (4) relatingo thea; ,,’s
is still implicit (while being deterministic). To get morasnght
on the properties o€, we shall successively consider two
specific scenarios that simplify the systdm (4).

IV. FINITELY MANY OUTLIERS SCENARIO

Let us first assume that,n = K is maintained constant

asn — oo (thuse = 0). Recall that, in this scenario,

Assumption[IL can be replaced by the sufficient conditio

lim sup y maxj<;<e,n Na i Cy la, < co. In the appendix, it
is shown thaty,, cannot grow unbounded with. As such, by
a rank-one perturbation argument iteratedtimes, see e.g.,
[19, Lemma 2.6], we find that

Lt evlm)m _

AR

which ensures by Rematk 2 that

¢~'(1)
n = O(1/N).
1_C+</>
We shall denote next 2 W (and thuss(v) = 1/¢~(1)).
Then we obtain that
HCN Syl 220
with
1n7K 1 K
&/ T - !
Sy =v(7) o ; yiy; + n;”(@
wherec ,, are the unique positive solutions to
-1
O/» = iaT 'yflcN —+ l ZU(O/ a;
7,Mn N 7 n j g

J#i

As such, when the numbéf of outliers is fixed, the common
weightv(v,,) becomes independent of the vectars (even if
they are of arbitrarily large norm) while the individual \ybis
v(ay,,) eventually solve a system df equations involving
thea;’s andCy.

A more specific case lies in the scenario where= ... =
ag. There,a; , = ... = ag,, and theK equations above
reduce to a single one reading

v (0

which, usinga’(A + taaf)~!
invertible A, simplifies as

1
o aj

-1
" e Jmal)

=alA~!/(1 +tatA~1a) for

-1
O/l =~ %aICN a1
" 1+ cepy(K — (o n)J%,aIC]_Vlal
or equivalently
O/l n T—1
: =~y—a;C .
T—ca(K — Dilof,) NN

Since the right-hand side is positive, so should be the left-
hand side, which may then be seen as an increasing function

of al - Thus, sincey depends neither o€ noral, it comes
t at » IS an increasing function O%a Cy al. Moreover,
o < 1/)* (1/(cn(K —1))) and thus Converges to zero as
K grows large. WhenK = 1, and thus the outlier is now
Isolated, this reduces to
= »yNaJ{C;Vlal.
This short calculus leads to two important remarks. First,
for K = 1, Cy asymptotically allocates a weight(y) to
ne legitimate data and a we|ght(7NaIC a,) for the

v, the effect of the outlier will be (for most choices of the
function) attenuated if—a{C* a; > 1 but will be increased
if —alc a; < 1. As such, the robust estimator of scatter
will tend to mitigate the effect of outliera; having either
large norm or, more interestingly, having strong alignment
the weakest eigenmodes 6fy. In particular, note that when

outlier. As a consequence, by the non-increasing propdrty o



Cy = Iy, Cy will mostly control outliers upon their norms
+ l|la1][?, which is essentially what the normalized SCM

T
IO X~ X
X
MHOOK X~ X
SHHKOMROOK X~ X
|

(1—epn)n Enm
Lyoynt 2 1 Z Lyz_i_l aa] (5)
" w2 TP T n s TP sl ]

would do, and thus there is no gain in using robust estimators
here. However, ilC y has large dimensional weak eigenspaces
(i.e., close to singular with most eigenvalues near zero),
%aICJ_\,lal may be quite large, and thus may be strongly
attenuated. But ik, aligns to the strong eigenmodes Gy,

the impact ofa; may be enhanced rather than reduced. To 02

avoid this effect, undesirable in most cases, it is crudal t —x X

appropriately choose the function. Specifically, the function 0 L L Ll |

v should be taken constant for all< -, or equivalentlyz (z) sYYT Lyrynt Gy Lyeyel

should be taken constant fer< ¢—!(1). A natural choice is

the Huber estimator, = uy introduced in [(B). Fig. 1. Eigenvalues of the SCMYY'Y), normalized SCM { Y2y™®1),

The second remark is a slightly more surprising outcom foru = us with ¢ = .1, agd;he1°ra°'?095“2mat°‘%(§°‘_{°T);N = 100,
Indeed, despite: being potentially extremely large, the pres< = 2enn=1a1 = (Qal’al) a1 € 115/2 vap R, with ay ; = ‘/ﬁ_’
ence of (already few) > 1 identical outliers drive$ v (and Zﬁ\ég 0. S”‘ET ;7?2‘?5)“ din év; i T On exﬁérvolth XLEJ Eg‘g divrshGaUSSIan

N . . . N = . 1ag(ci,Cc2), C1 , C2 , Ci1y =
thusCy) to alllocate large We'Qhﬁs(qi,n) (S'nceai7_n IS small) 1/16, co; = 1, such thattr Cy = N. Ellipse around the outlier artifact.
to these outliers, therefore seemingly contradicting theyv
purpose of the robust estimator. This seems to indicateaRat
has the propensity to put forward both large quantities ¢& daof Corollary[3, we shall use the subscrigk™ standing for
with 5|m|I<'_;1r dlstrlbutlonas_ well _asrather smf';lll quantities of “random outliers scenario”.
vectors with strong pairwise alignment, while more natyral ) . )
rejecting isolated outliers. Corollary 3 (Random Outliers) Let Assumptiofil2 hold with

In terms of large dimensional spectral distribution an@ > 0 and letay,... a. » be random independent of the
moments, the scenario of finitely many outliers is asymp:’s With a; = Dy/’x,, whereDy € CN*N is deterministic
totically equivalent to the outlier-free scenario. Thismdae Hermitian positive definite and, ..., x_ , are independent
observed from a rank-one perturbation argument along withhdom vectors with i.i.d. zero mean, unit variance, anddini
e, — 0 applied to CorollarieE] 3-2. A similar reasoning would8+7)-th order moment entries, for some> 0. Let us further
hold for the normalized SCM. However, the matricgs, assume thalimsupy [|[DyCy'|| < co. Then, asy — oo,
and %Y“YnT themselves experience a (maximum) rakik- . -
perturbation which can severely compromise the estimation HCN - SN‘
of Cy, along the previous argumentation lines.

Figure[1 displays an artificially generated scenario where
single outliera; of norm < ||a;||> = 1 produces a large value ( enn

Lot N " - &R &, (4R) L . Ry L NT At
for FalcN a; (= 14.50), thus entailing a strong attenuation Sy =v (%) - Z yiy; +v (an) - Zazai
by Cy. The termsa; andCy were made such that the SCM i=1 i=1
and normalized SCM have the same asymptotic eigenvalygs, AR
and produce an isolated eigenvalue (arou2ig. The spectra "
of the latter are compared against thos€bf and the oracle _ (1-ew(R)Cy cv(a®)Dy -1
estimator. It is seen .that the isolated eigenvalue, Wh|ch ign = Ntr Cn ( 1+ co(7B)4R 1+Cv(a5)a5)
naturally not present in the spectrum of the oracle estimato R R 1
is also not present in the spectrum®@fy, indicating thatCy & — L (1 —)v(r)Cn ev(an)Dy ) .
has significantly reduced its impact on the spectrum. "N L+ co(vH)n L+ cv(ogf)ait

a.s. O

ere

l—epn)n

and o the unique positive solutions to

tr Dy (

Another interesting case study that shall provide further In particular, for F\ (x) as defined in Corollary]1,
insight onC y is that where they,;’s (possibly numerous) are
independently extracted from a different distributionhattof
they;’s. This is pursued in the subsequent section.

FCON(2) — FR(z) = 0

almost surely asi — oo, where Fi(z) is a real distribution

function with density, defined via its Stieltjes transform
V. RANDOM OUTLIERS SCENARIO

Assumingay, . ..,a. , to be independent with zero mean m]f\‘[(z) — 1 tr E&l
and covarianceDy # Cy provides a rather immediate N R R
corollary of Theorerfill, given below. In the results to coroe, t Ey = (1 —e)v(m) ev(ay) N

. . e - N
differentiate between the conditions of TheorEm 1 and those L+ena(z) 1+ena2(2)



T T
-~ Histogram ofE[Fét\"]
Density of Fi

0 0.1 0.2 0.3 0.4 O 5 00 0.1 0.2 0.3 0.4 0.5
(@) N =10, n =40 (b) N =50, n = 200 (c) N =100, n = 400

Fig. 2. Density of '} versus histogram oE[FCN} for Cn with [Cy]i; = .91"77l, Dy = Iy, € = .05, andu(z) = (1 +¢)/(t + x) wheret = .1.

020 T T T the other to the outlying data. In the defining equationsfpr

anda an interesting symmetrical interplay arises between the
weights applied to the legitimate and the outlying data,clvhi
0.15 - - are only differentiated by. In particular, ife > 1/2, thea;’s
will be considered legitimate (being in majority) and thgs
become outliers.

Despite the symmetrical form of the equations definifg

0.10 - - . > o .
andof, it remains difficult to extract general insight on these
guantities. Thus, again, it is interesting to study the megi
wheree — 0. In this casepy? — v =¢"1(1)/(1 —¢), and
0.05 -~ -
1 _
ol — TN trDNCNl.
0 2‘0 4*0 6}0 8*0 1(‘)0 As such, the factor dictating the outlier mitigation strémg
N of Cy is now —trDNC !, Similar to before, when larger

than one, the impact of the outliers will be reduced but these
Fig. 3. Mean and standard deviation (error bars)6fy — S& ||/ | n11|ght be enlhanced when smaller than one. Interestlngly, if
for ¢, = 0.25, [Cnli; = 9173l Dy)y; = 2173l e, = .05, and FtrDy = FtrCn =1 (say), both legitimate and outlier
u(@) = (1+1)/(t + =), with t = .1. samples have similar norm for all large As such, under this

scenario, the SCMYY' or its normalized versiog YY"

behave asymptotically equivalently, neither of which Igein
for z € C* and (en,1(2),en2(2)) the unique solution in capable of differentiating between legitimate and outtiata.

(CH)*to On the contraryC y is capable of reducing the impact of the
(vR) . outliers as long a% tr DJ\ij\,1 > 1. Note here again th&
eni(z) = T" trCy (Ey — 21In) must be sufficiently distinct froriy, which would otherwise
v(a®) entail % tr DyCx' ~ 1 and thusC y would be indifferent to
enz(z) = —"trDy (Eny — 2In) . outliers. Also, similar to previously, must be well chosen to

avoid enhancing the outlier effect ;{3 tr DNC]’\,1 <1(soin
particular it is advised that be similar tou).

Figure[2 shows the density of the d|str|but|<E{FcN] Figure[4 depicts the previous observations in terms of the
obtained from Monte-Carlo averaging, verst$ for different deterministic equivalent spectral distributions§ of Cw,
values of N, n. It is observed that, as soon 2sis of the order F3°™ of LYYT (or F§M of 1y"y"' which satisfies
of several tens, the asymptotic approximation holds l}ghtIFSCM F“SCM here), andF"“‘Cle of the outlier-free oracle
The (normalized) distance in spectral norm betwébn and estimator nYOYOT, we take hereCy and Dy to ensure
SR is numerically evaluated in Figufd 3 for various value% trDyCy' large ande is taken small. The sought-for
of N. As suggested in the second order analysis| of [14istribution that would optimally discard all outliers ibet
|Cx — Sn| (or ||Cn — S} | here) is likely to decay at the oracle distribution and, thus, highly robust estimators ar
rate1/+/N , which is somewhat confirmed by observing thagéxpected to have a similar distribution. Figliie 4 confirnat th
betweenN = 20 and N = 80, the approximation error decaysthis is indeed the case @ which shows a close tail behavior
by a factor of two (precisely).042 versus0.019). but is slightly mismatched in the main distribution lobe. On

In the random outliers scenarid}y is asymptotically the contrary, the SCM (normalized or not) shows a strong
equivalent to the weighted sum of two partial sample covadecay in the main lobe and a non matching tail. The associated
ance matrices, one corresponding to the legitimate data ahdoretical values ofy® and of for ¢, = .05 are here
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Fig. 4. Density of the approximate (deterministic) spdatiatributions for
the outlier-free oracle {§ra°l¢), the SCM or normalized SCMH{CM =

FRSCM) and Cy (Fy), with w = uy with parametert = .1, [Cy];; =
9l'=il Dy =1y, N =100, ¢ = .2, ande = .05.

R) ~ 1219, while in the limite,, — 0,

v (7R) ~ 1.00, va(a
R) 5 1179.

these values becomgl(wn) — 1 andvg(a

Moradc 9.28 129 1993
M]PV” (error) | 9.18 (1.1%) 126 (1.8%) 1945 (2.4%)
MRS (error) | 8.53 (8.2%) 112 (13%) 1660 (17%)

Fig. 5. Normalized momentMRp MSC;\I versusMO”;JCIC and relative
error| - —Mgracte| /Mgracle. Random outliersN = 100, ¢ = .2, [Cn]ij =
.g‘ifJ‘ DN—IN e=.05u=uy,t=.1.

up to a scale constant, let us define the normalized moments

MN,p
M1

and define similarlyM , as well asMR5 " for the SCM,
MpPOM for the normalized SCM, anMOf‘;*flC for the oracle
estlmator Under the same setting as in Figdre 4, we provide
in the table of Figurél5 the successive normalized moments
and relative error compared fa2'°. In this case M3V =
M“SZ?M For the scenario at end, given the large support of
FR, even low order moments tend to take large values so
that the asymptotic moment approximation only theordiical
holds for p rather small whenV = 100 and we thus only
provide these first order moments. The results demonstnate a

My, =

As it appears from Figur€l4 that the tail of the variousmportant advantage brought i}y versus the SCM in that
estimator distributions may be strongly affected by a weake first few order moments are better preserved.

outlier control, it is interesting to investigate the impan
their moments. For this, we introduce the following appima
to Corollary[2 for the random outlier setting.

VI. DIScUSSION ANDCONCLUDING REMARKS
Our study of the robust estimat@y in the large random

Corollary 4 (Moments in Random Case)nder the setting matrix regime has already led to several interesting cenclu

of Corollary[d, letting My , = [ t*dFy(t), we have
(=Dr1

R
P Nter

My
whereT;‘ is obtained recursively as

=323 (1) ()

Qp+1 (p + 1) [(1—e)fipRi +cfopRo]
Jrept1 = ZZ ( > ( > — i+ 1) frjfriviBrp—i
1=0 5=0

1
R
Br,p+1 = St R T4,

R
J+1T

-1, ﬁk-,O = %tI‘Rk, and
)Dy. In particular,

with initial valuesTE = Iy, fr.o
with R; = v(7})Cx, Ra = v(al

1
]V[}\)},l = tr [EU(QE)DN +(1- E)U(’}/E)CN]

1 2
M, =t [ (ev(a®)Dy + (1 — )o(vH)Cy)

2(a* Dy E trDN} (1=’ (R)Cx [% trCN] |

sions, which we shall more thoroughly address in this sectio
Most investigations of robust estimators of scatter foaus o
the more tractable case where the samples (i.e., the columns
of Y) are independent with identical elliptical distribution.
The recent results of [, 10] have revealed that,u&s)
gets close to the Tylei/x function, in the large random
matrix regime,CN tends to behave similar to the normalized
SCM defined in [(b). This conclusion was quite pessimistic
as it suggested no real improvement@fy over simplistic
alternative robust methods. In the concluding remarks 6f [1
Section 4], the authors anticipated a change of behavi@hpf
versus the normalized SCM for deterministic outlier dataisT
was revealed here both in Sect{on IV and in Sedfidon V where
it is made clear that, unlike the normalized SCM, the robust
estimators of scatter smartly detect the outliers, essgnby
evaluating and comparing the quadratic form%(];vly for
each column vectoy of Y. Larger yTCJT,Iy imply more
attenuation ofy within the observed samples. However, an
incidental consequence of this behavior®f; is that small
values ofyTCley enhance the effect of even though it
might not comply with the legitimate sample distributionus
increasing the probability of inducing false alarms. Thish
led us to conclude that the functianshould be adequately
tuned to avoid such a phenomenon. Another consequence is
that matrice< y with legitimate data of covariand@y close
to the identity will have very poor outlier rejection profies.

As expected,Cy induces a bias in the mean. For fair When the outliers are few, the empirical spectral measure

comparison with the normalized SCM, which estimaes

FC~ of Cy is asymptotically the same as that of the SCM,



normalized SCM, and oracle estimators. As such, if onese based on local information (isolated eigenvalue, §ipeci
interest is on functionals of the eigenvalues@f;, such as eigenvectors, etc.) or global information (functional tiet
moments, and only few outliers are expected, sophisticateidenvalues, projections on large subspaces, etc.) abgut
robust estimators come to no avail. This being said, the outill entail significant differences in the wa§, through the
liers may naturally engender extra isolated eigenvaluaky (o weight functionu, must be tailored. Such considerations are
finitely many) in the spectrum o{;—YYT which Cx might left to future investigations.
suitably remove while the normalized SCM may not (recall
Figure[1). For subspace detection and estimation aplitsti
where the information often lies in the eigenvectors ofased
eigenvalues, discarding such outlying information isicait
and thus robust estimators may bring important performanceThe main technical difficulty of the article lies in the proof
gains. For instance, applications in finance and biosiegistof Theorem[ L which extends the methods developed lin [9]
(where data are often assumed to contain outliers) healify rto multiple sample types. The present section is dedicated t
on isolated eigenvalue-eigenvector pairs, see e.g., [0The this proof. Some auxiliary random matrix results will berthe
experimenter must however keep in mind that, according to digted in AppendixB, while AppendikIC will deal with the
analysis,Cy is most effective at automatically suppressin€father immediate) proof of Corollaty 2.
isolated outliers (the less of these relative to the legitimate
samples the better) and loses discriminatory power as theThe proof of Theorerfill is divided in two parts. First, we
outliers approach one another. show that the system of fixed-point equatiohf (4) admits a
The observation made in Sectibh V that the distribution (imnique vector solution and that such solution is bounded as
particular through its first order moment&8}} is much closer n — oo. This then defines unequivocally the matBx;. We
to the oracle estimator than would the (normalized or naf)en show in a second part thi€ y — S| == 0.
SCM be leads to some interesting applications when it comes
to designing improved estimators f@ry that both account for
the fact thatu is not large compared t&y and for the fact that
the observed data are prone to outliers. Such investigation To prove existence and unigueness, we use the framework
were successively made in_[22] for the finifé n regime of standard interference functions [24].
and later in [10] for the largeN,n regime where hybrid Definition 1. A functionh = (ho, ..., hs) : RHS RHS .

Ledoit-Wolf [23] and Tyler([3] estimators were proposedttha standard interference function if it sat|sf|es the corums
improve the estimation of iy by providing an extra degree of?

APPENDIXA
PROOF OFTHEOREM[I]

A. Existence, uniqueness, boundedness of the soluti@) to

freedom (a regularization parameter) which is selectedoso t1) Positivity: if qo,...,qs = 0, thenhi(qo, ..., gs) > 0 for
minimize the expected Frobenius norm betwé&exn and the all z.

estimator under study. Since the Frobenius norm is nothihg b 2) Monotonicity: if go > qf,...,qs > ¢; then, for all 4,
a functional of second order moments, the observation made i (o, - - -+ as) > hi(qp. - -, q3)-

the table of Figurél5 strongly suggests that the Ledoit-Wolf3) Scalability: for all § > 1 and all i, 6h;(qo, - - -,qs) >
estimator alone (being based on the SCM) would be quite hi(dqo, - - -, dgs).
sensitive to deterministic outliers while the estimatdrsiged
in [10, [22], which are essentially of a similar class @s;,
would be much more resilient to such outliers. =

When the number of outliers is much larger, even in thgr all 4, then the system of equations = hi(qo, ---, ¢s),
random outlier scenario studied in Sectloh V, very littlenca’ 0,...,s, has a unique SO'“E‘E? lbenn
be said. However, we noticed an interesting symmetry in theD flneh = (hos -+ heyn) t R —= RS with

By [24, Thm. 2], ifh is a standard interference function for
which there existgqo, ..., ¢s) such thatg; > h;(qo,...,¢s)

equations defining the weightgl® and o of Corollary[3, ho(qos -+ Geun) =
which reveals that the asymptotic proportienof outliers " 1
versusl — ¢ of legitimate data could tip foe > .5 towards 1 c (1 —e)v( nh
letting the outliers be considered as the truly legitimadéad N trCn 1+ cv(qo qO Z (4;) aJ

In summary, the present study provides a first step towards h;(qo, - - -, e,.n) =
a better understanding of the behavior of (classical) robus -1
estimators of scatter against arbitrary outliers. Our figdi Loy (—e)u( _

~;, | m—————Cn + — Z qj aJ a;

underline several key aspects of such estimators of profoun N 1+ cv(qo qo
practical relevance, such as the importance of the populati "
covariance matrixC of the legitimate data in the rejectionfori = 1,...,e,n. Let us prove thah meets the conditions of
power of the estimator, as well as the risks inherent to usiigfinition[d and that, fo = 0,...,e,n, hi(qgo, .-, @e,n) <
weight functionsu of the Tyler type. Nonetheless, this study;; for some(qo,...,q.,»), which will then prove existence

remains at the theoretical level of the estimator itself dads and uniqueness.
not consider the implications when used as a plug-in estimat From Assumptiorf]1l and the fact thatis bounded, we
in detection or estimation methods. Whether these methadearly haveh; > 0 for all i. To show monotonicity, let us



first define

By P LICT) PO Zﬂ a;a
N\405---5Ge,n 1+C’U(QO q0 q] J
and takeqo, ..., q,n andqp,...,q. , such thatg; > ¢} for

all 4. Then, sincev is non-increasing an@(z) = zv(x) is
increasing,

BN(qo,- -5 Genn) T BN(Gys -G, 0)-
From [17, Cor. 7.7.4], this implies
— —1
(BN(0,---+Genn)) = (Bu(dhs-- -1 dL,m))
from which ho(qo,---,¢c,n) > ho(qp,---,4.,,). By the
same argumentsh;(qo,...,qe,n) > hi(q,--..4q., ,) for

i =1,...,e,n, thus proving the monotonicity di. Finally,
to show scalability, let us rewritg, as

) QEnn) =

O(qo) 1R (q) .
1—e)——=Cxn + — —=’a.al
( ) % N n; 4 J

ho(qO, e
-1

1
—tI‘CN

N J

where@®(z) = 11&;()@-
and, for anyd > 1,

h0(5q07 ey

itrCN (1 —6)@(5410)chL lizﬂ@qi)a t

N ) ni g

Sincey(z) is increasing, so i®(x)

(Sqén’ﬂ,)
—1

< 6ho(qos - - Gen)-

We show similarlyh;(dqo, . - -
i=1,...,

a6(Iann) < 5hi(q0, .
enn, thus proving the scalability df.

) QEnn) for

Therefore, takingy; = w; fori = 1,...,e,n, we also have
hi(qo,---,q:,n) < g;. Altogether, we have shown that the
function h satisfies the conditions of [24, Thm. 2] implying
that there exists a unique solution (4). As suBh; as
introduced in the statement of Theoréi 1 is well-defined.

We now turn our focus to the boundedness of the solution
to (4). From [6) and[{7), along with Assumptibh 1, we imme-
diately have thatv,,, a1, . .., e, n.n) is uniformly bounded
in n, i.e., limsup,, v, < co andlimsup,, maxi<i<e,n Qin <
oco. Furthermore,y, can be shown to be uniformly away
from zero as follows. By monotonicity of thé function,

ho(go, ceey QEnn) > ho(o, .. ,O), i.e.,
1 1 1 1
h e Gen) > ——trHY > —— ,
ol teon) 2 gy Y S0 TR
where the matrixH y is defined as
EnM
Hy 2 (1—e)Iy + ~ ZC‘W jalCy2,

g 1

By Assumptior{]l we havéim sup,, |Hy|| < oo and, conse-
quently,lim inf,, v,, > 0.

B. Convergence o y — Sy

Having proved thaiSy is well defined, we now turn to
the core of the proof of Theoreld 1. The outline of the proof
follows tightly that of [9, Thm. 2] but for a model that is
(i) simpler in its assuming the legitimate data to be esaénti

Thus,h is a standard interference function and it remains ®aussian instead of elliptical, but (i) made more comple& d

show thath;(qo, - .., ¢-,n) < gq; for some(qo,...,q.,») and
for all 4. Fori = 0,
1 _
ho(g0, -+ @en) = 7 1 ON (BN (G, -1 0e,)) "
where
(1 —¢)v(qo)
B goeeey n E 70
W@, dean) ¥ 4 + cv(q0)qo
and thus, by definition of),
1+c¢
h’O(q07 RS QEnn) S w(qO) (6)

(1= 2)(a0) ™
As a consequence, we need to find some for which
% 1 or, equivalently,i)(qo) > =t Such
choice of ¢y is always possible smce& is mcreasmg
n [0,00) with image [0,1s,) Where ;—— < 9 (this
unfolds from ¢ > %E). Therefore, for anyg, such that

1
L < 9Y(q) < v, We haveho(qo, ..., ¢n) < qo.
) and consider now the

l—e—
Take for instanceyy = ¢~ (—1—
functionsh;, i = 1,...,e,n for which, using [25, Lemma
10] and similar arguments as above,
1+ cb(qo)
h"i PR nn S 1 N 7N
(90, -+ Qeun) © T 0 (q0)

1
—qONalc a; _w’L

1
TC a;

()

to the deterministic addition of the vectass, ..., a. ,. Our
way to deal with (ii) is by controlling in parallel the quatitis
asymptotically approximated by,, and those asymptotically
approximated by; ,,. Since some parts of the proof mirror
closely those inl[9, Thm. 2], we shall mainly focus on the
significantly differing aspects.

First note that we can assun@y = Iy by studying
C,'/?€nCy'/? instead of €y, in which case we have
C,'/?a; in place of the originak;. This can be seen from
(@), the implicit equation solved b§ 5. Hence, from now on
we assumeCy = Iy without loss of generality. Using the
definition v(z) £ u (g, *(x)), with g, (z) = /(1 — c,¢(z)),
and following the same steps as in [9], let us write

vyith d; £ Nx C( x; andb; = a C( a;, whereC(I ) =

Cn—v(d; )XZXI andC(ai) = CN v (b; )alaz. Further define

U(di)
v(n)’

with v, and «; ,, as in the statement of Theordmh 1 but for

v(bi)

v(ag )

L L

fi =

€; )



Cy =1y, i.e., v, andqa; , are the positive solutions to
—1

1 (1 —e)v(
n — —t S — n
¥ N 8 1+cv(7n Wn Nt Z (@, aj
-1
_ 1 [ (A=eu(y
o = Nai 1+ CU('Yn 'Yn N 72751 aj " aj o

The core of the proof is to show that

max  |e; — 1] 2250 (8)
1<i<(l—e,)n
Jax |fi =1 == 0. ©)

Let us first relabek; and f; such thate; < ... < enq_..)n
andf; < ... < f.,n and denote),, = max(eq—_c,n; fe,n)-
Foranyi=1,...,(1 —e,)n, we have

-1
Enmn
v %XI <% > v(dj)xjx; + % > v(bj)aja;) X;

J#i Jj=1
e; =
' v(Yn)
—1
v 5n1NXI <1 ; ('yn)xjx + = Z (ozjyn)aja;> X;
J7FT Jj=
n v(Yn)

where we uset(d;) = v(vn)e;, v(b;) = v(ajn)f; and
the inequality arises frome;, f; < 6,, from v being non-
increasing, and from_[17, Cor. 7.7.4]. For readability, let

1 1R
Fy )2 - Z v(vn)xjx;- + - Z v(ajm)aja;.
JFi j=1
From the random matrix result, Lemrh 1 of Appendix B,

1 a.s.
max NXIFNl(z) — Y| — 0.

1<i<(l—en)n

Thus, for¢ > 0, with probability one, we have for all large

o(£0m-0)

_ (10)
v(Yn)

We can proceed similarly to bounf] from above as

1
U(5 NaZG (l)al)

€(1—en)n <

fi < (o)
foranyi=1,...,e,n, with
p 1
Gy = " Z v (’Yn)xjx;r' + n Z” (@jn) aja;r'
j=1 j#i

and we now use Lemnid 2 in Appendix B which states

a.s.
max —= 0.

1<i<enn

—alGy 1l)aZ Qi

Therefore, for the sam¢ > 0 and for all largen a.s.,

v (i(ai,n - C)) .

v(ep) (11)

Jeun <

10

We now consider separately the subsequence: aiver
which e _., ), > fe.n» and that over whicke(,_. ), < fe,n
(these subsequences may be empty or finite).

Subsequence; ), > fe,n: On this subsequence, (10)

becomes
v (= —0)

v(7n)
or alternatively, since(,_. ), is positive,

L@s0-8)
- 7/)('771)(1_7%)

We want to prove that, for any > 0, e(;_), < 1+ ¢ for
all largen a.s. Let us assume the opposite, i®;, ), >
1+ ¢ infinitely often, and let us restrict ourselves to a (furjher
subsequence where this always holds. Then,

@ O-) ()
- Y(ym) (1 - ’Y_n) - Y(yn) (1 - ’Y%)

From the uniform boundedness of away from zero and
infinity (see AppendiXx_A-A), considering yet a further subse
qguence over which,, — v, > 0, we obtain in the limit

$(%0) (1— %) < <1Yf£).

This being valid for eacly > 0, a contradiction is raised in
the limit g‘ — 0. Therefore, either the subsequence over which
€(1—ep)n = fenn is finite ore_.), < 1+ ¢ for all largen
a.s. Assumlng the former, then,_. ), < f.,. for all large
n, which is considered next.

Subsequence; ), < fe,n: On this subsequence, (11)
becomes

E(1—en)n <

F < v (ﬁ(asnn,n - C))
o ’U(a5nn7n)

for all largen a.s. Again, we wish to prove that with, say, the
samel > 0 as abovef. , < 14/ for all largen a.s. Consider
first the caseliminf, ac, ., = 0 and restrict ourselves to
those converging subsequences over whigh,, , — 0. In

the limit, v(ae,nn) — v(0) so that, for anyd > 0 and

for n large enoughy(ae, n.n) > v(0) — 6. This, along with
v(1/ fepn(@e,nn —¢)) < v(0) gives f, < v(0)/(v(0) — 0)

for all largen implying that, for any/ > 0, f,, < 1+ ¢ for all
largen a.s. Consider now the rest of subsequences for which
liminf, ac, ., > 0 and rewrite [(IR) as

v (% (1- 52)
| < Fern enn,mn '
w(aEnnvn) (1 B O‘Encnvn)

As above fore;;_., ),, we assumef. , > 1 + £ infinitely
often, and restrict ourselves to a further subsequenceewnher
this holds for alln. Then,

a w(asnn,n) (1 - - )

Cepnyn

(12)
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From the boundedness of . ., (see Appendik’A-A), we can APPENDIXB
take a converging (further) subsequence over whigh, ,, — RANDOM MATRIX RESULTS

ag > 0. In the limit, In this section we list several intermediary results needed

a in Appendix[A.
vl (1- ) <w (122, | |
o I+ Lemma 1. Let Assumptiongl@}-2 hold. Define
which is contradictory for sufficiently smafl. Thus, necessar- 1 (1—en)n | enn
) N T T
ily f..n <1+¢foralllargen a.s., unless we have, ., > Fy 2~ S v xxt+ - > v(ajn)ajal

fe.n I Which case, as shown abowg, , < eq_c,)n) < 1+4
for all largen a.s.

Altogether, we necessarily have andFy ;) = Fy — 2o(y,)xix], with v, and a;,, given in
Theoren{IL. Then, as — oo,

j=1 j=1

max{e(lfsn)na fsnn} < 1+ 12

1 a.s.
. . - max XFN(Z — Yn| — 0.
for all largen a.s. All the same, by reverting the inequalities, 1<i<enn | N
we prove that, for all large a.s.
min{er, fi} >1— /¢ Proof: We fir;t need to establish a result on
M (Fn ), for WhICh we know that \;(Fy ;) >
and therefore, altogether, A (v(ym) 2 Y., x;x1). Then, [18, Lemma 1] along with
Assumption[2 and the boundedness~of show that there
max |e; —1| </ :
1<i<(1—e)n exists¢ > 0 such that, for all larger a.s.,
122}){ lfi—1]1<¢ min A1 (FN,(i)) > & (13)

1<i<(l—en)n

for all largen a.s., which eventually prove](8) arld (9) b¥yith this acquired, the outlne of the proof is

taking a countable sequencefajoing to zero. This establishesgivided into two main steps. We first prove that
the main result, from which Theorelm 1 unfolds. Specifically;, a.s.

1 Tp—1 1 -1
. 1<i<-eon | wXiFy X — ytrFy | — 0
from (8)-(8) and by uniform boundedness f and », using quadratic form—c?ose—to-the trace and rank-one

max  [o(di) — v(yn)] 25 0 perturbation arguments. Then, using![25, Thm 1], we show

1<i<(1—en)n that | & tr Fy' — 7| =25 0
max  |v(b;) — v(ovn)| 22 0 The triangle inequality allows us to write
1<i<enn ‘ o ) 1
Thus, for any? > 0 and for all largen a.s. NXIFX/,l(i)Xi N F'l <
1-0)8Sy=<C 1+0)8 L —1 1 1 —1
( )Sn N=(1+0)SNn ‘NXiFN,(i)Xi_Ntr FN(l) —|—‘NtrFN(l) NtrFN
and, thereford|Cy — Sy|| < 2¢||Sx||. Using the triangle (14)

inequality and the fact that is non-increasing, we have Let us bound the two terms on the right hand side[af (14).

HCN — SNH Denote byEy, the expectation with respect to; (i.e., con-
1 =Oen 1enn ditionally onFy (;)) andx; = 1{A1(FN @)=€} With ¢ defined
< 20v(0) - Zi:l XX, || + - Zi:l a;a; in (I3). For the first term, we can apply [27, Lemma B.26]

(sincex; is independent okzl/pFN_li ), so that forp > 2,
From [26] and Assumption]2,| Z(l en)n o T|| <

=1 p
4(1 — ¢) for all large n a.s. and from Assumptloﬁl 1, E, { TF;[ (X — 1 trF_ 1(1) }
limsup,, ||1 Yoot aa T|| < oo. Then, sincel is arbitrarily N

Vop -p
Nr2 trF )

_ K, 2\ P/2
small, |[Cy — Sy|| tends to zero a.s. as — oo, which <K l( i (F 1(1)) ) L (15)

concludes the proof of Theorem 1. FﬁrN # In we simply — Np/2
need to shoW|Cl/2( —Sn)C 1/2|| 224 0, which follows ; q di | ith |
from ||Cl/2(c ~8y)C 1/2H < ICx 1€ N — S| since, by or some constank’,, depending only omp, with v, any value

. k
assumptionim sup,y | Cv|| < oo such thatE [|z;;]] < . Using w7 trBF < (ftrB)" for
B € CV*¥ nonnegative definite ankl > 1 leads to

For the random outliers scenario, Assumpfién 1 holds a.s. E P
by virtue of [26], provided thatimsup |[DyCRy'| < oo. xi | i
Then, the proof of Corollary]3 follows from applying standar K, 1 p/2
random matrix arguments to the model®f; in Theoren{1L, Fs 7 ( p/2 + VQP) ( tr FN2(1)>
considered now as a random matrix in bogh and a;. NP N
The result may be straightforwardly obtained from, e.g5, [2 < K p/2 V2p 16
Thm. 1] (see AppendikIB for similar applications). PN N

1
< F-1 _ 1
G N0 Xi tr Fy NG
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where for the second inequality we have use® < ||B| According to the definition ofy,, exn = cv(Yn)¥n With v,
for B € CV*N nonnegative definite and the fact thathe solution to
“iHF;V.l(i)H < ¢71, which holds from the definition ofs;. 1 (1= &)o(vn) ~1
' ing i i , = —tr [ —— T+ A
The bound[(I6) being irrespective Bfy (;, we can now take 7y N (1 o) N+ N)

the expectation oveF y (;) to obtain
which has been proven to be unique. Altogether,

R S L 1
E{’“ NaEvoX -y ENv G| | =0\ e ) L Fy — | 250, (21)
(17) N
Combining [20) and{21) concludes the proof. [ |

For the second term in[(14), we can wriley ; = _ _
(Fy.) — $In) + STy with Fyy ;) — $Ix > 0 and we have Lemma 2. Let Assumptions|I}2 hold and define

from [19, Lemma 2.6] (rank-one perturbation lemma) 1 (1—en)n 1
1 1 1 2\ Gy == > vm)xx+ =) vlagn)asa)
Elw|—trFt, — —trFt| | < — (= (18) "= " i
"IN N.G@) N N = Np \¢

with ,, and ¢ ,, defined as in Theoref 1. Then, as— oo,
From [I4), we can now use Holder's inequality and the

. 1 as
- T —1 . a.s.
bounds[(1I7)£(18) to obtain  Jnax |a Gy (i — Qin| — 0.
1 1 P 1
E [m —xIFX,ll. X; — —trF;,1 } = (—) . (19)
N ' N Ne/2 Proof: Since A1 (G, ;) > A(v(yn) 2 25,1:’15")” xjx;),
Then, we have that we can use [18, Lemma 1] along with Assumptidn 2 and the
) ) uniform boundedness of,, to show that there exists > 0
Up | 2 ip-1 . _ = —1 such that, for all large: a.s.
Pr L<i<rr(11axsn)n K; inFNM.)xl I trFy | > Q} g
(1—en)n ol 1 e ) 1 1§11n§1£1nn)\1 (Gn.i) > &
< Prig/" | =xFy Xi— =trFy|> . - S
Z: { NN N N 4 Denoter; 2 11y, (g ...)>¢1- Using similar derivations as for
i=1 {AM(GnN, (1)) >€}
. P 28, Lemma 3] adapted to the present model, we have
(1—en)n 1 1 P P
< " F |k —xIF ! X; — —trFX,1 »
¢ NTEROTN E || —alGy! —o( 22
(9( ! ) sG] | =0\ e ) (2
B Np/2-1 Then
where we have used (in order) Boole’s inequality, Markov’s 1/p fa—1
' i : p U wa, Gy i — Qi
inequality, and[{19). Recall frori.{(L5) that the entriescpfare P | NN T Y| 2 ¢
required to have finit&p-th order moment and that, by our enn Ul 1 4
initial assumption E[|z;;|8*"] < oo for somen > 0. Then, < ZPF [Hi g N Gy (i@ = Qin| > C]
taking p > 4, the Borel Cantelli lemma along with the fact i=1 )
thatming «;<(1_.. yn ki —> 1 ensure EnM 1 4 1
tfp—1 —1| a.s.
max —x.F, . x;— —=trF - 0. 20 1
1<i<(1—e)n | N7 N7y TN ) =0 (W)

It 1remains to show thaty, is a deterministic equivalent yhere we used (in order) Boole’s inequality, Markov's inafju

—1 H . .
for & trFy". From [I3) and the fact that any subtractiofty, and [22). Taking > 4, the Borel Cantelli lemma ensures
of a nonnegative definite matrix cannot increase the small-

est eigenvalue, we have that(Fy) > ¢ for all large n max ,iz?/i’
a.s. Then, we can writdy = (Fy — $In) + $In with 1<i<enn

liminf,_l M(Fy — %IN) > 0 a.s. and we are in position towhich then proves Lemnid 2 usingin; <<, #; A5 m
apply (25, Thm. 1] which ensures

1

1 T _ a.s.
NaiGN,(i)ai — | — 0

1 1 1-¢) ) -1 APPENDIXC
—trFy' — —tr wh\, + Ay 2250 ASYMPTOTIC MOMENTS
N N 1+en . . .
In this last appendix, we derive the moments of the deter-

ministic equivalents studied in_[25]. We provide in full the
generic result, which may be used for independent purposes.
We first recall [25, Thm. 1].

—1
en = cnv('yn)itr <(1 —E)U(%)IN +AN) . Theorem 2 (Wagner et al.,|[25]) Let Y € CY*" have
N I+en independent columny; = H;x;, wherex; € Ci has

Whe_rg Ay = %Zj;’{v(aj,n)aja; and ey is the unique
positive solution to



i.i.d. entries of zero mean, variance/n, and 4 + n mo-
ment of orderO(1/n?*7/2), and H; € CN*N: such that
R, & HlHI has uniformly bounded spectral norm overN.
Let alsoA y € CV*N pe Hermitian non-negative and denote
Fy = YY" + Ay. Then, asN, Ny,...,N,, andn grow
large with ratios ¢; = N;/n, and ¢y N/n satisfying
0 < liminf, ¢; < limsup,, ¢; < oo for 0 <4 < n, we have

1

—tr (Fy —2In) "' —my(z) 2250
n

(3]

(4]
(5]
(6]
(7]

(8]
9

my(z) = —tr R, + Ay —zIy

n

1 Z 1
n 1+en,i(z)

= 110]

(23)

whereen 1(2),...,en.n(z) form the unique solution of (11]

-1

1O 1
(z)=—trR,; [ = E —— R, + Ay —zI
en,;(2) SR |~ TF ena(2) + AN —zly [12]

=1
_— . [13]
such that alle v ;(z) are Stieltjes transforms of a non-negative

finite measure oR+.

From Theorem12, the distribution functidiy with Stieltjes
transformmy (z) is a deterministic equivalent for the eigeny;s
value distribution ofFy. We next describe the successive
moments of the distribution functiofy . This generalizes the
asymptotic moment results in_[29], valid only féxy = 0.

(14]

[16]

Theorem 3. Let Fy be the distribution function associated[17]
with the Stieltjes transforni_(23), and dendtéy o, My 1,... [18]
the successive momentsof, i.e., My p £ [ aPdFy. Then,

(=1)r 1

pl N

[19]

MN,p = tr Tp

with Ty, T, ... defined recursively from (0]
P p i o\ /i [21]
Ty = —Z Tp—iANTi+ZZ i)y T, Qi j11 T
i=0 i=0 j=0

P11 22
Qpi1="—— ;fk,ka =

p i ; ’ [23]
fep+1 = Z Z (I;) (j) (p— 1+ 1) frjfri-jBrp—i
i=0 j=0 [24]
1
Brp+1 = " tr [ReTpi1]

[25]
and Ty = I, fk,O =-1, [‘3]%0 = %tI‘Rk fork € {1, . ,TL}

Proof: Follows the same steps as the proof of [29, Thm. ﬁ6]

with proper modifications to account faxy # 0. [ ]
[27]
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