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Abstract—Previous studies have confirmed the adverse im-
pact of fading correlation on the mutual information (MI) of
two-dimensional (2D) multiple-input multiple-output (MIMO)
systems. More recently, the trend is to enhance the system
performance by exploiting the channel’s degrees of freedom in the
elevation, which necessitates the derivation and characterization
of three-dimensional (3D) channels in the presence of spatial
correlation. In this paper, an exact closed-form expression for
the Spatial Correlation Function (SCF) is derived for 3D MIMO
channels. This novel SCF is developed for a uniform linear array
of antennas with nonisotropic antenna patterns. The proposed
method resorts to the spherical harmonic expansion (SHE) of
plane waves and the trigonometric expansion of Legendre and as-
sociated Legendre polynomials. The resulting expression depends
on the underlying arbitrary angular distributions and antenna
patterns through the Fourier Series (FS) coefficients of power
azimuth and elevation spectrums. The novelty of the proposed
method lies in the SCF being valid for any 3D propagation
environment. The developed SCF determines the covariance
matrices at the transmitter and receiver that form the Kronecker
channel model. In order to quantify the effects of correlation on
the system performance, the information-theoretic deterministic
equivalents of MI for the Kronecker model are utilized in both
mono-user and multi-user cases. Numerical results validate the
proposed analytical expressions and elucidate the dependence of
system performance on azimuth and elevation angular spreads
and antenna patterns. Some useful insights into the behaviour of
MI as a function of downtilt angles are provided. The derived
model will help evaluate the performance of correlated 3D MIMO
channels in the future.

Index Terms—3D multiple-input multiple-output (MIMO) sys-
tems, spatial correlation, power azimuth spectrum, power eleva-
tion spectrum, elevation beamforming, mutual information.

I. INTRODUCTION

Multiple-input multiple-output (MIMO) systems have re-
mained a subject of interest in wireless communications over
the past decade due to the significant gains they offer in terms
of spectral efficiency by exploiting the multipath richness
of the channel. The increased spatial degrees of freedom
not only provide diversity and interference cancellation gains
but also help achieve a significant multiplexing gain by
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opening several parallel sub-channels. Pioneer work in this
area by Telatar [1] and Foschini [2] realized that capacity
can potentially scale linearly with the minimum number of
transmit (Tx) and receive (Rx) antennas for channel matrices
with centered, independent and identically distributed (i.i.d)
elements. These MIMO systems were designed to support
antenna configurations capable of adaptation in azimuth only.
However recent measurement campaigns demonstrated that
elevation has a significant impact on the system performance
[3], [4]. Exploiting the channel’s degrees of freedom in
the elevation can further enhance the system performance
by benefiting from the richness of real channels. This has
recently become a subject of interest among researchers and
industrials. The reason can be attributed to its potential to open
up possibilities for a variety of strategies like user specific
elevation beamforming and cell-splitting. Encouraged by the
initial implementations of this technology [5], the 3GPP is now
working on defining future mobile communication standards
that would help evaluate the potential of three-dimensional
(3D) beamforming in the future [6].

The discussion on the conspicuous advantages of 3D MIMO
systems must be amalgamated with the observation that it is
the orthogonality of the subchannels constituting the MIMO
system that determines the extent of the multiplexing gain that
can be realized. Large capacity gains can only be realized
when the subchannels are potentially decorrelated. However
in realistic propagation environments, the promised theoretical
gains are not realized due to the significant spatial correlation
present in the MIMO channel [7]–[13]. Therefore assuming the
channel coefficients to be i.i.d is an oversimplification of the
problems encountered in realistic propagation environments.

The need to investigate the impact of spatial correlation on
the performance of MIMO systems is acknowledged and well-
known among researchers. However, the spatial correlation
models proposed in literature occasionally ignore the elevation
dimension and antenna patterns which can cause the simulated
results to be misleading. Most of these models are derived for
a particular distribution of the Angle of Departure (AoD) and
Angle of Arrival (AoA) such as uniform, Gaussian, Von Mises
or Laplacian [14]–[20], [9]. In [14], approximate closed-form
expressions for the spatial correlation coefficients for clustered
MIMO channel models were derived for Laplacian azimuth
AoA distribution. The proposed method makes small angle
spread approximation for uniform linear and circular arrays
and offers significant gains in terms of computational cost.
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In [19], the authors derived exact closed-form expressions for
the spatial correlation between Rx antenna elements for cosine,
Gaussian and Von Mises azimuth AoA distributions. The use
of Von Mises was shown to simplify the expressions and the
impact of mutual coupling on the correlation was studied. The
analysis in [21] uses spherical harmonic expansion (SHE) of
plane waves to compute the closed-form expressions for the
correlation that can be applied to a variety of angular distri-
butions. Although the tools presented are handy, the proposed
closed-form solutions require certain assumptions to be made
on the propagation environment. Even the simple assumption
that the angles are uniformly distributed resulted in integrals
involving Legendre polynomials that could not be expressed
in a closed-form. Such assumptions neither aptly represent the
characteristics of realistic propagation environments nor make
the proposed method truly generic in nature.

The notion of spatial correlation in 3D propagation envi-
ronments has been addressed in some research works. An
important contribution in this area appears in [15]. The authors
developed closed-form expressions for the spatial correlation
and large system ergodic mutual information (MI) for a 3D
cross-polarized channel model, assuming the angles to be
distributed according to Von Mises distribution. The authors in
[16], showed that elevation plays a crucial role in determining
the Spatial Correlation Function (SCF). The derivation is based
on the SHE of plane waves and assumes the distribution of
AoA to be 3D Von Mises-Fisher. The effect of nonisotropic
antenna patterns on correlation was studied using numerical
techniques. In [18], closed-form expressions for spatial fading
correlation functions of several omnidirectional antenna arrays
in a 3D MIMO channel were derived and used for the evalua-
tion of channel capacity. The derived results were expressed as
a function of angular and array parameters and used to study
the impact of azimuth and elevation angular spreads on the
MI. However, this work assumes the angular distributions to
be uniform. Such assumptions can lead to useful closed-form
expressions but do not accurately represent the characteristics
of realistic propagation environments.

In order to quantify the effect of correlation, it is important
to derive and simulate the correlated MIMO channels and
characterize the information-theoretic MI for them. There are
two widely used approaches to model these channels [14]. The
first one is the parametric approach, in which the propagation
paths are described using statistical parameters without being
physically positioned. Channel realizations are generated by
summing the contributions of multiple paths (plane waves),
with specific channel parameters like delay, amplitude, AoA
and AoD. The second approach is nonparametric, wherein
the SCF is used to determine the covariance matrices at the
transmitter and receiver. These matrices are then employed to
reproduce the spatial correlation across the MIMO channel.
An example is the Kronecker channel model, which is useful
for the evaluation of theoretical MI. In this context, well-
known results from Random Matrix Theory (RMT) have been
employed to characterize the distribution of the MI of these
channels in the asymptotic regime as the number of antennas
at the base station (BS) and mobile station (MS) tend to
grow large [22]–[24], [8]. Such theoretical results enable better

understanding of the impact of the correlation on the MI.
These so-called deterministic equivalents are reasonably tight
even at moderate values of the number of antennas.

The aims of this paper are fourfold. First is to develop
an exact closed-form expression for the SCF for 3D MIMO
channels that can be used for any arbitrary choice of antenna
patterns and distribution of azimuth and elevation AoD and
AoA. The parametric 3D channel model used in the derivation
is inspired from the models presented in standards like 3GPP
SCM [25], WINNER+ [26] and ITU [27]. To get an analyti-
cally tractable closed-form solution, the SHE of plane waves
and properties of Legendre and associated Legendre polynomi-
als are exploited. The final expression of SCF depends on the
underlying arbitrary angular distributions and antenna patterns
through the Fourier Series (FS) coefficients of Power Azimuth
Spectrum (PAS) and Power Elevation Spectrum (PES). To
the best of authors’ knowledge, a SCF that works for the
3D channel model without making any assumptions on the
underlying angular distributions and antenna patterns has not
been developed before. The second aim of this work is
to validate the proposed SCF via simulations for angular
distributions and antenna patterns specified in the standards.
The FS coefficients are computed and used to obtain the
correlation coefficients that coincide with the empirical results.
The third aim is to use the nonparametric Kronecker channel
model for the evaluation of MI in the mono-user case. The
developed SCF is used to determine the covariance matrices
at the transmitter and receiver that form the Kronecker model.
The pinhole phenomenon is discussed and illustrated as a
restriction to the nonparametric correlated channel model as
compered to the parametric channel model. The theoretical
analysis for the mono-user case makes use of the deterministic
equivalent of MI presented in [22] and studies the effect of
angular parameters parametrized by azimuth and elevation
angular spreads on the MI. An interesting interplay between
vertical antenna pattern and elevation spread is observed. The
final goal of this work is to provide a flavor of the performance
gains realizable through the meticulous selection of downtilt
angles in a multi-user scenario. The MI analysis makes use of
the deterministic equivalent of the signal-to-interference plus
noise ratio (SINR) in [28] with regularized zero forcing (RZF)
precoding at the BS to mitigate inter-user interference. The
researchers and industrials interested in using our correlation
model need to provide only the FS coefficients of the PAS and
PES they are using for the evaluation of their work.

This paper is organized as follows. The 3D channel model,
antenna configuration, PAS and PES are explained in Section
II. In section III, we present an analytical derivation of the
proposed closed-form expression for the generalized SCF for
a uniform linear array of antennas. In Section IV, we provide
simulation results that validate the developed SCF, adhering to
most of the guidelines provided in the standards. In section V,
we present the nonparametric Kronecker channel model and
recall well-known results on the deterministic equivalents of
the MI of this model in the mono-user and multi-user systems.
The performance of these systems is investigated as a function
of channel and array parameters through numerical results.
Finally in section V, some concluding remarks are drawn.
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II. CHANNEL MODEL AND POWER SPECTRUMS

Prior to proceeding into the derivation of the SCF for
MIMO channels, it is vital to explain the characteristics
of the 3D channel model and antenna configuration under
investigation. MIMO systems of current LTE releases do not
directly support antenna configurations that can adapt in the
elevation dimension. However, encouraged by the potential of
elevation beamforming to enhance system performance, some
standardized channel models have started to emerge that define
the next generation 3D channels. We base the evaluation of
our work on these channel models after making some realistic
assumptions on the channel parameters.

A. Standardized 3D Channel Model
The MIMO channel model for which the SCF is derived

is inspired from the standardized models like 3GPP SCM
[25], ITU [27] and WINNER [29]. These standards follow a
system level, stochastic channel modeling approach wherein,
the propagation paths are described using statistical parameters
without being physically positioned. Channel realizations are
generated by summing the contributions of multiple paths with
specific parameters like delay, amplitude, AoA and AoD.

Almost all system level based standards are 2D. However,
owing to the growing interest in 3D beamforming, extensions
of these standards to the 3D case have started to emerge
recently in [6], [26]. Based on the aforementioned standards,
the effective double directional radio channel between BS
antenna s and MS antenna u is given by [26], [30],

[H]su =

N∑
n=1

αn
√
gt(φn, θn, θtilt)

√
gr(ϕn, ϑn)[ar(ϕn, ϑn)]u

× [at(φn, θn)]s, (1)

where φn and θn are the azimuth and elevation AoD of
the nth path respectively, ϕn and ϑn are the azimuth and
elevation AoA of the nth path respectively and θtilt is the
elevation angle of the antenna boresight. Note that θtilt = 90o

corresponds to zero electrical downtilt. αn is the complex
amplitude of the nth path. The complex amplitudes are as-
sumed to be i.i.d zero mean, 1

N variance Gaussian RVs. Also√
gt(φn, θn, θtilt) and

√
gr(ϕn, ϑn) are the global patterns

of Tx and Rx antennas respectively where gt(φn, θn, θtilt) ≈
gt,H(φn)gt,V (θn, θtilt) and gr(ϕn, ϑn) ≈ gr,H(ϕn)gr,V (ϑn).
Note that gt,H(φ), gr,H(ϕ) are the horizontal antenna patterns
and gt,V (θ, θtilt), gr,V (ϑ) are the vertical antenna patterns.
Moreover, vectors at(φ, θ) and ar(ϕ, ϑ) are the array re-
sponses of the Tx and Rx antennas respectively whose entries
are given by,

[at(φ, θ)]s = exp(ikt.xs), (2)
[ar(ϕ, ϑ)]u = exp(ikr.xu), (3)

where . is the scalar product, xs and xu are the location vectors
of sth Tx and uth Rx antenna respectively, kt and kr are the
Tx and Rx wave vectors, where k = 2π

λ v̂, with λ being the
wavelength of the carrier frequency and v̂ being the direction
of wave propagation. Fig. 1 illustrates the 3D channel model
being considered. It is evident that θ, θtilt, ϑ ∈ (0, π) and
φ, ϕ ∈ (−π, π).

B. Antenna Configuration

If (êr, êθ, êφ) is the spherical coordinate system, then
vertical polarization refers to the polarization along êθ and
horizontal polarization refers to polarization along êφ. Each
antenna port comprises of vertically stacked antenna elements
that determine the effective antenna port pattern. For the
purpose of this work, vertically polarized antenna elements
are considered. The antenna ports are placed at fixed positions
along êy , with the elements in each port aligned along êz as
shown in Fig. 2. There are NBS and NMS antenna ports at
the BS and MS respectively. The same Tx signal is fed to all
the elements in a port with corresponding weights in order to
achieve the desired directivity. The MS sees each antenna port
as a single antenna because all the elements carry the same
signal. Therefore, we are interested in the channel between
the Tx antenna port and Rx antenna port. Although the global
antenna pattern of a port depends on the patterns of the
elements within it and their corresponding weights, however
to enable an abstraction of the role played by these elements
to perform elevation beamforming, standards like 3GPP and
ITU approximate the pattern of each antenna port by a narrow
beam in the elevation. The combined pattern considered in dB
is as follows [27], [30],

Ap(φ, θ, θtilt) = Gp,max −min{−(AH(φ) +AV (θ, θtilt)), 20},
(4)

where,

AH(φ) = −min

[
12

(
φ

φ3dB

)2

, 20

]
dB,

AV (θ, θtilt) = −min

[
12

(
θ − θtilt
θ3dB

)2

, 20

]
dB. (5)

Therefore the horizontal and vertical antenna patterns at the
transmitter can be approximated as,

gt,H(φn) = −12

(
φ

φ3dB

)2

dB, (6)

gt,V (θ, θtilt) = −12

(
θ − θtilt
θ3dB

)2

dB. (7)

Gp,max = 17 dBi, φ3dB is the horizontal 3 dB beamwidth,
and θ3dB is the vertical 3 dB beamwidth. The individual
antenna radiation pattern at the MS, gr(ϕ, ϑ), is taken to be 0

y

Multipath n

Azimuth plane

tilt

Antenna boresight

Fig. 1. 3D channel model.
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[H]su =

N∑
n=1

αn
√
gt(φn, θn, θtilt) exp (ik(s− 1)dt sinφn sin θn)

√
gr(ϕn, ϑn) exp (ik(u− 1)dr sinϕn sinϑn) , (8)

dB in the standards. Given the antenna configuration shown in
Fig. 2, v̂t.x̂s = sinφn sin θn and v̂r.x̂u = sinϕn sinϑn. The
effective radio channel given in (1) can hence be written as
(8), where s = 1, . . . NBS and u = 1, . . . NMS .

C. Power Azimuth and Elevation Spectrum

Power azimuth spectrum (PAS) and power elevation spec-
trum (PES) are important statistical properties of wireless
channels and are shown to play an important role in determin-
ing the spatial correlation present in the MIMO channel. They
provide a measure of the power distribution upon the azimuth
AoD and AoA and elevation AoD and AoA respectively.

Observing that the integral of the product of angular power
density function of the azimuth AoD/AoA and the horizontal
antenna pattern at the BS/MS yields the expected power
transmitted/received by the directional antenna in the azimuth
[31], we define PAS at the transmitter as follows,

PASt(φ) = gt,H(φ)pφ(φ), (9)

where the angular power density function pφ(φ)=fφ(φ), the
probability density function of azimuth angle. Therefore,∫ π

−π
pφ(φ)dφ = 1. (10)

Similarly PES at the Tx side is defined as,

PESt(θ, θtilt) = gt,V (θ, θtilt)pθ(θ). (11)

The elevation angular power density function, pθ(θ)= fθ(θ)
sin(θ) ,

which implies [32],∫ 2π

0

pθ(θ) sin(θ)dθ = 1. (12)

Antenna port Antenna port 

k

w2(  tilt)

w1(  tilt)

wM(  tilt)

Fig. 2. Antenna configuration.

The same definitions and conditions can be extended to PASr
and PESr. Note that the limits taken in (12) are (0, 2π) instead
of (0, π), which is the range over which θ is defined. This
extension in limits, which would later assist in expressing
SCF in terms of the FS coefficients of PES, entails that we
define fθ(θ) to be zero from π to 2π. This is generally
true because the elevation angular density spectrums used in
standards decay exponentially with θ.

Example: The PES can be well fitted by the Laplace distri-
bution [33]. The elevation angles are thus generated using,

fθ(θ) ∝ exp

(
−
√

2|θ − θ0|
σ

)
sin θ, (13)

where σ is the spread in the elevation direction and θ0 is
the mean AoD in the elevation. The density function decays
exponentially and is zero for θ /∈ [0, π]. Hence to determine
the constant of proportionality, we can use condition (12) and
the observation that fθ(θ) = 0 for θ /∈ [0, π],∫ π

0

A exp

(
−
√

2|θ − θ0|
σ

)
sin θdθ = 1, (14)

A =
2 + σ2

2
√

2σ sin θ0 + 2σ2e
− π√

2σ cosh
(√

2(π2−θ0)
σ

) . (15)

III. WAVEFIELD DECOMPOSITION AND SPATIAL
CORRELATION FUNCTION

In this section, we derive a generic analytical expression for
the SCF considering realistic antenna patterns and arbitrary
distributions of AoDs and AoAs. Before delving into the
derivation, it can be seen from (8) that for i.i.d zero mean,
1
N variance, α’s, the spatial correlation between the channels
constituted by any pair of Tx and Rx antenna ports can be
expressed as a product of the correlation between Tx antenna
ports and correlation between Rx antenna ports, i.e.,

SCF = E[HsuHH
s′u′ ] = ρt(s− s′)ρr(u− u′), (16)

where,

ρt(s− s′) = E
[
gt(φ, θ, θtilt) exp

(
i
2π

λ
dt(s− s′) sinφ sin θ

)]
(17)

ρr(u− u′) = E
[
gr(ϕ, ϑ) exp

(
i
2π

λ
dr(u− u′) sinϕ sinϑ

)]
.

(18)

We derive the closed-form expression for the correlation
between Tx antennas given in (17). This can be extended to
the correlation between Rx antennas and the product of the
two would yield the SCF between the channels.
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Pn(cos γ) = Pn(cos θ1)Pn(cos θ2) + 2

n∑
m=1

(n−m)!

(n+m)!
Pmn (cos θ1)Pmn (cos θ2) cos[m(φ1 − φ2)], (21)

exp

(
i
2π

λ
dt(s− s′) sinφ sin θ

)
=

∞∑
n=0

in(2n+ 1)jn

(
2π

λ
dt|s− s′|

)
Pn(sinφ sin θ). (22)

ρt(s− s′) = E
[
gt(φ, θ, θtilt)

∞∑
n=0

in(2n+ 1)jn

(
2π

λ
dt|s− s′|

)(
Pn(cosφ)Pn(0) + 2

n∑
m=1

(n−m)!

(n+m)!

× Pmn (cosφ)Pmn (0) cos
(
m
(
θ − π

2

)))]
. (23)

ρt(s− s′) = E[gt(φ, θ, θtilt)]j0 (βt|s− s′|) +

∞∑
n=1

(−1)n(4n+ 1)j2n (βt|s− s′|)P2n(0)E[P2n(cosφ)gt,H(φ)]E[gt,V (θ, θtilt)]

+

∞∑
n=1

4(−1)nj2n (βt|s− s′|)

(
n∑

m=1

(−1)mP̄ 2m
2n (0)E[P̄ 2m

2n (cosφ)gt,H(φ)]E[cos(2mθ)gt,V (θ, θtilt)]

)
(24)

+

∞∑
n=1

4i(−1)nj2n−1 (βt|s− s′|)
( n∑
m=1

(−1)mP̄ 2m−1
2n−1 (0)E[P̄ 2m−1

2n−1 (cosφ)gt,H(φ)]E[sin((2m− 1)θ)gt,V (θ, θtilt)]
)
,

A. Spherical Harmonic Expansion of Plane Waves

In a 3D propagation environment, the array responses of Tx
and Rx antennas can be expanded using spherical decompo-
sition for plane waves. Using the Jacobi-Anger expansion, a
plane electromagnetic wave can be expressed as a superposi-
tion of spherical waves [34],

eikx.v̂ =

∞∑
n=0

in(2n+ 1)jn(k||x||)Pn (x̂.v̂) , x ∈ R3, (19)

where k= 2π
λ is the wave number, v̂ is a unit vector in the

direction of wave propagation, x is a vector in R3, jn is the
spherical Bessel function of order n and Pn is the Legendre
polynomial function of order n.

We also state here the Legendre addition theorem of spher-
ical harmonics [34], [35] which will be employed later in the
derivation of the SCF. When γ is defined as,

cos γ = cos θ1 cos θ2 + sin θ1 sin θ2 cos(φ1 − φ2), (20)

where (θ1, φ1) and (θ2, φ2) are the spherical coordinates of the
vectors v̂ and x respectively, then the Legendre polynomial of
argument cos(γ) is given by (21), where Pmn are the associated
Legendre polynomials.

B. Spatial Correlation Function Using SHE of Plane Waves

These results are now employed to derive a closed-form
expression for the correlation between Tx antenna ports. The
SHE result for plane waves in (19) yields alternate expressions
for the array responses of Tx and Rx antenna ports. It can be
seen from Fig. 2 that for Tx antenna ports placed along êy
direction with ||x|| = dt|s − s′|, x̂.v̂ is given by sinφ sin θ.
Therefore the array response of the sth Tx antenna port can
be expressed alternatively as (22).

Also from Fig. 2, the spherical coordinates (θ1, φ1) of
the wave vector kv̂ are (φ, θ), and the spherical coordinates

(θ2, φ2) of x i.e., the vector along dt(s − s′) are (π2 ,
π
2 ).

Combining the addition theorem in (21) with (22), such that
cos γ=sinφ sin θ and using the resulting expression in (17)
would expand ρt(s− s′) to yield (23).

Proposition 1: For a uniform linear array of antenna ports
with arbitrary antenna patterns and for arbitrary angular dis-
tributions such that the φ, ϕ ∈ [−π, π] and θ, ϑ ∈ [0, π],
the correlation between any pair of Tx antennas ports can
be expanded in a systematic way to yield (24), where
P̄mn (x)=

√
(n+ 1

2 ) (n−m)!
(n+m)!P

m
n (x) and βt = 2π

λ dt.
The proof of Proposition 1 follows from the following

properties of Legendre and associated Legendre polynomials,
1) Pn(0) = 0 if n is odd,
2) Pmn (0) = 0 if (n+m) is odd,
3) P0(x) = 1.
The following trigonometric relations were also used,
1) cos(m′(θ − π

2 )) =(−1)m cos(2mθ) for m′ = 2m,
2) cos(m′(θ− π

2 )) =(−1)m−1 sin((2m−1)θ) for m′ = 2m−1,
where m = 1, . . . , n.

Defining P̄mn (x)=
√

(n+ 1
2 ) (n−m)!

(n+m)!P
m
n (x) and using the

properties just described, (23) can be expanded in a systematic
way. Finally, using the decomposition of gt(φ, θ, θtilt) ≈
gt,H(φ)gt,V (θ, θtilt), and taking the deterministic terms out
of the expectation operators yields (24).

The same approach would yield a similar expression for
ρr(u − u′) with gt(φ, θ, θtilt) replaced by gr(ϕ, ϑ) and the
AoDs replaced by AoAs. The expansion looks alarming at
first sight but it will now be shown to yield an interesting
closed-form expression.

C. Closed-form Expression for SCF in terms of Fourier Series
Coefficients of PAS and PES

The expansion in (24) exhibits several difficulties in deriving
a closed-form expression for the SCF. The random variables,
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ρt(s− s′) = π2aφ(0)bθ(1)j0 (βt|s− s′|) +

∞∑
n=1

(−1)n(4n+ 1)j2n (βt|s− s′|)P2n(0)

n∑
k=−n

pn−kpn+kπ
2aφ(2k)bθ(1)

+

∞∑
n=1

4(−1)nj2n (βt|s− s′|)

(
n∑

m=1

(−1)mP̄ 2m
2n (0)

n∑
k=0

c2m2n,2kπ
2aφ(2k)

1

2
[bθ(2m+ 1)− bθ(2m− 1)]

)
(27)

+

∞∑
n=1

4i(−1)nj2n−1 (βt|s− s′|)
( n∑
m=1

(−1)mP̄ 2m−1
2n−1 (0)

n∑
k=1

c2m−12n−1,2k−1π
2bφ(2k − 1)

1

2
[aθ(2m− 2)− aθ(2m)]

)

ρr(u− u′) = π2aϕ(0)bϑ(1)j0 (βr|u− u′|) +

∞∑
n=1

(−1)n(4n+ 1)j2n (βr|u− u′|)P2n(0)

n∑
k=−n

pn−kpn+kπ
2aϕ(2k)bϑ(1)

+

∞∑
n=1

4(−1)nj2n (βr|u− u′|)

(
n∑

m=1

(−1)mP̄ 2m
2n (0)

n∑
k=0

c2m2n,2kπ
2aϕ(2k)

1

2
[bϑ(2m+ 1)− bϑ(2m− 1)]

)
(28)

+

∞∑
n=1

4i(−1)nj2n−1 (βr|u− u′|)
( n∑
m=1

(−1)mP̄ 2m−1
2n−1 (0)

n∑
k=1

c2m−12n−1,2k−1π
2bϕ(2k − 1)

1

2
[aϑ(2m− 2)− aϑ(2m)]

)

AoD and AoA, with respect to which the expectations need to
be computed appear as the arguments of Legendre polynomi-
als. Several tables of Legendre and associated Legendre poly-
nomials exist that express the first few Legendre polynomials
as functions of its arguments. However, we need a general
representation that can be used for any order to facilitate the
development of the expectation terms. For this purpose, we
use the trigonometric expansion of Legendre polynomials pre-
sented in [36]. The following Lemma expresses the Legendre
and re-normalized associated Legendre polynomials with even
and odd orders as a linear combination of sines and cosines.

Lemma 1 (From [36]): For non-negative integers n and m,

P2n(cosx) = p2n + 2

n∑
k=1

pn−kpn+k cos(2kx),

P̄ 2m
2n (cosx) =

n∑
k=0

c2m2n,2k cos(2kx), (25)

P̄ 2m−1
2n−1 (cosx) =

n∑
k=1

c2m−12n−1,2k−1 sin((2k − 1)x),

where the coefficients pn, c2m2n,2k and c2m−12n−1,2k−1 are generated
using recursion relations in [[36], equations 2.8, 3.1-3.5].

This Lemma is the most important ingredient in the deriva-
tion of the SCF that gives it its generalized form that has not
been derived before. We now state Theorem 1 that describes
how the correlation between any pair of channels constituted
by distinct pairs of Tx and Rx antenna ports can be computed.

Theorem 1: For a uniform linear array of antenna ports with
arbitrary antenna patterns and for arbitrary angular distribu-
tions such that the φ, ϕ ∈ [−π, π] and θ, ϑ ∈ [0, π], the SCF
can be computed as,

SCF = ρt(s− s′)ρr(u− u′), (26)

where ρt(s − s′) and ρr(u − u′) are given by (27) and (28)
respectively, given that aφ(k), bφ(k), aθ(k) and bθ(k) are the

FS coefficients of PAS and PES respectively defined as,

aφ(k) =
1

π

∫ π

−π
PASt(φ) cos(kφ)dφ, (29)

bφ(k) =
1

π

∫ π

−π
PASt(φ) sin(kφ)dφ, (30)

aθ(m) =
1

π

∫ 2π

0

PESt(θ, θtilt) cos(mθ)dθ, (31)

bθ(m) =
1

π

∫ 2π

0

PESt(θ, θtilt) sin(mθ)dθ. (32)

The proof of Theorem 1 is postponed to Appendix A. Theorem
1 describes a novel method for obtaining the spatial correlation
coefficients for 3D MIMO channels for arbitrary choices of
antenna patterns and angular distributions which is often a dif-
ficult task. The proposed method is unique and is in contrast to
most of the previous work that assumes an underlying angular
distribution and form of antenna patterns. This derivation can
be generalized to other antenna topologies as well.

Remark 1: The proposed SCF in Theorem 1 involves an
infinite summation over n. However this infinite summation
can be truncated to a small finite number, N0, of terms
such that the truncation error has a bound that decreases
exponentially with N0. This has been proved through an
extensive analysis in [37] and [38]. The authors proved the
bound for the 3D multipath field in (19). We extend the
analysis to the correlation expressions in (27) and (28).

ρt(s− s′) =

∞∑
n=0

in(2n+ 1)jn(k||x||)E
[
gt(φ, θ, θtilt)Pn (x̂.v̂)

]
,

(33)

εN0 =
∑
n>N0

in(2n+ 1)jn(k||x||)E [gt(φ, θ, θtilt)Pn (x̂.v̂)]

≤
∑
n>N0

(2n+ 1)|jn(k||x||)| |E [gt(φ, θ, θtilt)Pn (sinφ sin θ)] |

≤
∑
n>N0

(2n+ 1)|jn(k||x||)|GP,max (34)
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since sup|x|≤1 |Pn(x)| ≤ 1 [39], leading to
|E [gt(φ, θ, θtilt)Pn (sinφ sin θ)] | ≤ GP,max. (34) is the
same as equation (10b) in [38] upto a scaling factor. The
analysis in [38] then uses the bound on spherical Bessel
function and the Stirling bound on the Gamma function to
show that for a finite ||x||, the multipath field and hence
ρt(s− s′) and ρr(u− u′) can be truncated to |n| ≤ N0, such
that the truncation error is bounded by

εN0 ≤ GP,maxη exp(−δ), (35)

where δ = N0 − dek||x||/2e, δ ≥ 0 and η ≈ .678481234. For
our analysis, to calculate the correlation between adjacent Tx
or Rx antennas for an antenna spacing of ||x|| = .5λ, given
that GP,max = 17dBi, N0=14 would suffice to bound the error
by approximately 0.5 %.

IV. VALIDATION OF THE SCF FOR STANDARDIZED 3D
CHANNEL MODEL

In the last section, we derived and presented a generalized
closed-form expression for the spatial correlation function
for the 3D channel, that works for any arbitrary choice of
antenna patterns and distributions of azimuth and elevation
AoD and AoA. Since this paper largely focuses on the
guidelines provided in the mobile communication standards
used globally, it is important that our model is validated using
the angular distributions and antenna patterns specified in
the standards. The theoretical correlation from (27) and (28)
should provide a very accurate fit to the empirical correlation
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Fig. 5. Correlation between Tx antenna ports for uniform azimuth angular
distribution and patterns from standards.

from (8) directly in order for us to establish the credibility
of our proposed method. In the standards, elevation AoD and
AoA are drawn from Laplacian elevation density spectrum
given in (13), where θ0 is the mean AoD/AoA and σ is the
angular spread in the elevation. The characteristics of azimuth
angles are well captured by Wrapped Gaussian (WG) density
spectrum [27], [32], [33]. However in the recent years, the
Von Mises (VM) distribution has received great attention in
modeling nonisotropic propagation due to its close association
with the WG spectrum [19], [40]. This distribution given by,

fφ(φ) =
exp(κ cos(x− µ))

2πI0(κ)
(36)

is related to the WG distribution through a straightforward
relationship obtained using their first circulant moments [41],

WG(µ, σ2) = VM(µ, κ), σ2 = 2[log I0(κ)− log I1(κ)],
(37)

where In(κ) is the modified Bessel function of order n, µ is
the mean AoD/AoA and 1

κ is a measure of azimuth dispersion.

In practice, directional antenna patterns are commonly used
so the incorporation of these patterns in this work is note-
worthy. As per the standards, the global antenna port pattern
is given by (4) for each Tx antenna port. However, in order
to obtain a closed-form expression for the FS coefficients of
PAS using VM distribution, the antenna ports are assumed to
be omnidirectional in the azimuth plane, i.e. gt,H(φ) = 0 dB.
From a propagation viewpoint, it is the downtilt angle that
determines the vertical antenna port pattern which would play
a crucial role in determining the antenna directivity and its
potential to change our perception on the physical distribution
of scatterers. Therefore assuming non-isotropy in the azimuth
will not affect the results to a considerable extent. The vertical
antenna pattern gt,V (θ, θtilt) is given by (7). The antenna port
pattern at the MS, gr(ϕ, ϑ) = 0 dB in the standards because
mobile terminals should not, in most cases, favor any direction.
Using these antenna patterns and angular densities, the FS
coefficients of PAS and PES are computed and provided in
Appendix B. The theoretical correlation between any pair of
Tx antennas ports and any pair of Rx antennas ports is then
computed using (27) and (28) respectively.

For the simulations, we set N0 = 15, θt = 95o, θ3dB = 15o,
φ3dB = 70o, σs = 7o, σu = 10o, θ0 = 90o, κs, κu = 5
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and µ = 2π
3 . The results are shown in Fig. 3 and Fig.

4. As expected, the correlation is seen to decrease as the
distance between the pair of antenna ports increases and more
importantly, it is apparent from the graphs that the theoretical
results provide a perfect fit to the empirical correlation for
as few as fifteen summations over n. The results are further
validated by using uniform angular distribution for azimuth
angles. Both the horizontal and vertical antenna patterns, i.e.
gt,H(φ) and gt,V (θ, θtilt) in (6) and (7) respectively, are
considered this time. The correlation obtained is real which
results from the symmetry of the uniform distribution and
horizontal antenna pattern causing bφ(k)’s to be equal to zero.
Fig. 5 illustrates the excellent agreement between our derived
and empirical results and establishes the credibility of the
proposed function.

V. EQUIVALENT CHANNEL MODEL AND MUTUAL
INFORMATION ANALYSIS

In this section we focus on the MI analysis of the 3D
channel model in order to quantify the effect of fading corre-
lation and measure the performance gains realizable through
potential elevation beamforming at the transmitter by careful
selection of the downtilt angles.

A. Kronecker Channel Model

The idea that multiple antennas at transmitter and receiver
can bring about remarkable improvements in the MI made
MIMO methods exceedingly popular. However this improve-
ment depends on the multipath richness since a large capacity
gain can be realized in the presence of potentially decorrelated
channel coefficients. It is therefore, important for channel
models to take this correlation into account to allow for a
more accurate performance analysis. There are two popular
approaches to model these correlated MIMO channels. The
first one is the parametric approach, which was discussed in
detail in Section II-A. This approach takes into account the
spatial characteristics of wireless channels quite meticulously.
The second approach is nonparametric, wherein the spatial
correlation in the MIMO channel is reproduced using theo-
retical Tx and Rx spatial correlation matrices. The latter is
more suitable for the information-theoretic analysis of MI.
One of the widely used nonparametric channel models is the
Kronecker model that relies on the two matrices describing the
correlation characteristics at both ends of the communication
link [7], [8], [10]. This model is defined as,

H = R
1
2

MSXR
1
2

BS , (38)

where X is a NMSxNBS matrix whose entries are indepen-
dently and identically distributed according to a complex cir-
cularly symmetric Gaussian distribution, i.e. CN (0,1), RMS is
the correlation matrix at the MS with [RMS ]u,u′ = ρr(u−u′),
RBS is the correlation matrix at the BS with [RBS ]s,s′ =
ρt(s − s′) and ρt(s − s′), ρr(u − u′) are obtained using the
derived expressions in (27) and (28). For antennas arranged in
a linear array, RBS and RMS are Toeplitz.

We consider the downlink of a single cell, where the BS is
equipped with NBS antenna ports and the MS is equipped with

NMS antenna ports. The channel is linear and time-invariant.
A time-division duplex (TDD) protocol is considered where
BS acquires instantaneous CSI in the uplink and uses it for
downlink transmission by exploiting the channel reciprocity.
The channel H is known only to the receiver but not to the
transmitter. Therefore power is distributed equally over all
Tx antennas instead of employing the water-filling scheme.
Moreover H is fixed during the communication interval, so
we do not need to time average the MI. The received complex
baseband signal y ∈ CNMS×1 at the MS is given by,

y = Hx + n, (39)

where x ∈ CNBS×1 is the Tx signal from the BS, H is the
NMSxNBS channel matrix generated using (38) and nNMS×1
is the additive white Gaussian noise (AWGN) with variance
σ2. The MI of the NMSxNBS MIMO system with equal
power-allocation is then given by,

I(σ2) = log det(INMS +
1

NBS σ2
HHH), (40)

where σ2 is the noise variance and the average total Tx power
is assumed to be 1.

The subsequent analysis in the next two subsections will
make use of the deterministic equivalents of MI available in
literature to study the behavior of the correlated 3D MIMO
channels through numerical results. In the numerical results
that follow hereafter, we set NBS = 20, NMS = 20,
N0 = 15, θtilt = 95o, θ3dB = 15o, φ3dB = 70o, σs = 3o,
σu = 10o, θ0 = 90o, κs = 5, κu = 5 and µ = 0.
For the mono-user systems, we work for the SNR level of
0 dB. A thousand independent Monte-Carlo realizations of
the parametric channel from (8) are generated to allow for
comparison wherever required. The azimuth angles are drawn
from VM distribution given in (36) and the elevation angles
are drawn from Laplacian distribution given in (13). The
vertical antenna pattern given in (7) is considered but again the
antennas are assumed to be omnidirectional in the azimuth to
allow for the calculation of FS coefficients of PAS in a closed-
form. The correlation coefficients are calculated using (27) and
(28). The developed SCF is used to determine the covariance
matrices at the transmitter and receiver which are needed for
the Kronecker model in (38).

B. Mutual Information Analysis of a Mono-User System

It is imperative to study the behaviour of MI of MIMO
channels in the presence of fading correlation to evaluate dif-
ferent beamforming techniques. The MI for every realization
of the channel can be viewed as a random variable and it
is interesting to study the statistics and distribution of this
random variable. Deriving closed-form expressions for the dis-
tribution of MI of the Kronecker model is a challenging task.
However in the large (NBS , NMS) regime, RMT provides
some simple deterministic approximations to this distribution.
These deterministic equivalents are quite accurate even for a
moderate number of antennas. The deterministic equivalent
for MI of Kronecker model was studied by [8], where it was
shown that I(σ

2)
NBS

converges to a deterministic quantity defined
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V (σ2) =
1

NBS
log det

(
I +

1

σ2
κ(σ2)RBS

)
+

1

NBS
log det

(
I +

1

σ2
κ̄(σ2)RMS

)
− 1

σ2
κ(σ2)κ̄(σ2), (42)
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as the fixed point of an integral equation. More recently,
Hachem et al derived a deterministic equivalent for the MI
of Kronecker channel model and rigorously proved that the
MI converges to a standard Gaussian random variable in the
asymptotic limit in [22]. The result is stated here and will be
used in our analysis.

Theorem 1 in [22], Theorem 4.1. in [23] suggests that under
mild assumptions, for H=R

1
2

MSXR
1
2

BS ,

1

NBS
E[I(σ2)]− V (σ2)

a.s−−−−−−−−−→
NBS ,NMS→∞

0, (41)

where V (σ2) is given by (42) and where, (κ(σ2), κ̄(σ2)) is
the unique positive solution of the system of equations given
by,

κ(σ2) =
1

NBS
tr

(
RMS

(
I +

1

σ2
κ̄(σ2)RMS

)−1)
, (43)

κ̄(σ2) =
1

NBS
tr

(
RBS

(
I +

1

σ2
κ(σ2)RBS

)−1)
. (44)

This theorem shows how the MI can be approximated by a
deterministic equivalent in the asymptotic regime. The result
remains relevant even for a moderate number of antennas as
will be confirmed through simulations. Before discussing the
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results, it is crucial to point out a restriction to Kronecker
channel model regarding the loss of information about the
number of paths. The rank structure of MIMO channel matrix
not only depends on the correlation present in the channel but
also exhibits a strong dependence on the structure of scattering
in the propagation environment. It is possible to have a rank
deficient channel matrix even if the fading is decorrelated at
both ends due to a small number of multipaths as compared to
the number of antennas. Therefore the MI is not just limited by
the correlations between antennas. This phenomenon, known
as pinhole or keyhole effect, is generally observed in mild
scattering conditions or when the communication link is very
long. It has been studied in [42], [43]. The pinhole effect
is captured by the parametric channel models that explicitly
depends on the number of propagation paths. However the
nonparametric model in (38) does not exhibit this phenomenon
as there is no information about the number of multipaths
involved. This has been illustrated in Fig. 6, where a reduction
in the number of paths can severely affect the channel MI as
confirmed by the results for the parametric model. However,
the MI obtained using the Monte-Carlo realizations of the
Kronecker channel model in (38) is unaffected and only
depends on the degree of spatial correlation present in the
channel. Next we verify the deterministic equivalent for the
MI of Kronecker channel model in (41). The result is shown
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Fig. 11. Effect of elevation angular spread on mutual information.

in Fig. 7 for N = 20 and is seen to coincide quite perfectly
with the MI obtained using the Monte-Carlo realizations of the
nonparametric Kronecker channel model. The fit is good even
for moderate number of antennas. The MI using parametric
model is also plotted and the pinhole effect is again apparent.

We now use the deterministic equivalent of MI to study
the impact of angular spreads on the MI. The effect of
azimuth angular spreads in 2D channel models has been
widely studied in the past and it has been observed that
a higher spread can cause the adjacent antennas to appear
close to uncorrelated. This has been confirmed in the results
shown in Fig. 8 and Fig. 9. An increase in κ corresponds
to a decrease in the spread which causes the correlation to
increase. A decrease in the channel MI is then evident. Only
the normalized theoretical MI for the nonparametric model in
(42) has been plotted for N = 40 to minimize the pinhole
effect. The number of antennas at BS and MS are increased
at the same rate as per Telatar’s finding that the MI scales
with min(NBS , NMS) [1]. It can be inferred from the results
that mild scattering conditions can have a serious impact on
the system performance. It has been clearly established that
the correlation function is not insensitive to elevation, so in
the context of 3D channels it is important to analyze the
behaviour of MI with changes in angular parameters in the
elevation. The correlation still decreases with an increase in
the elevation angular spread. However the result for MI reveals
an interesting interplay between the Tx power and spatial
correlation which is a consequence of the antenna pattern.
Note that the value of spatial correlation at 0 antenna spacing is
nothing but the average Tx power of the MIMO system. It can

be seen from Fig. 10 that an increase in the elevation spread
can undoubtedly cause the correlation to decrease. However at
the same time, the incorporation of the antenna pattern into our
channel model causes the Tx power to reduce with the increase
in the spread as seen through the values of ρt at dt/λ = 0.
This results in an overall decrease in the MI as shown in Fig.
11. This effect has not been observed in previous works that
deal with the elevation because they generally do not consider
antenna patterns in their results for SCFs and MI.

C. Mutual Information Analysis of a Multi-User System

A more robust system to channel correlation is the multiple
user MIMO system, wherein instead of using multiple anten-
nas for a single receiver, multiple users are served simulta-
neously. An obvious disadvantage of this system is the inter-
user interference which necessitates the use of an intelligent
precoding scheme at the transmitter. Regularized zero-forcing
(RZF) is one of the state-of-the-art scheme that we will employ
to mitigate inter-user interference in our analysis of multi-user
system. The RZF precoding matrix at the BS is given by,

G =
√
β
(
HHH + ζNBSIBS

)−1
H, (45)

where ζ is a strictly positive regularization parameter, β is a
scaling parameter such that tr(GHG) = P, where P is the
total available Tx power and K is the number of non co-
operating users such that NBS ≥ K to avoid user scheduling.
The channel vector for kth user hk ∈ CNBS×1 is given by,

hk =
√
%kR

1
2

BS,kzk, (46)

where zk has i.i.d zero mean, unit variance complex Gaussian
entries, RBS,k is the per user Tx correlation matrix and,

%k =
PTx × PLk × AG× SF

σ2
, (47)

where PLk is the path loss experienced by user k, SF is the
shadow fading, PTx is the transmitted power and AG is the
antenna gain. PLk is computed using the path loss model
proposed for Urban Macro (UMa) scenario in [27], SF=6 dB,
antenna gain=17 dBi and σ2=1.13× 10−13W [27], [44].

The BS uses linear precoding. The precoding vector for
the kth user is gk ∈ CNBS×1 and the data symbol is sk ∼
CN (0,1). Therefore the BS transmits the NBS × 1 signal,

x =

K∑
k=1

gksk = Gs. (48)

The SINR for the kth user is then given by,

γk =
hHk gkgHk hk

hHk GGHhk − hHk gkgHk hk + 1
. (49)

In this setting, a deterministic equivalent can be computed
for the SINR, γk for every user k using tools from RMT, such
that the convergence to the deterministic equivalent is almost
sure as the number of antennas at BS and K tend to infinity
[28]. This deterministic equivalent was derived in great detail
in [28] (Theorem II). The theorem says that,

γk − γok
a.s.−−−−−−−→

NBS ,K→∞
0, (50)



IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. XX, NO. X, XX 2014 11

Fig. 12. Multi-user scenario.
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Fig. 13. Effect of tilt angle on mutual information.

where γok is defined in [[28], equation (19) using equations
(20)-(25)]. Therefore the deterministic equivalent of MI of user
k in the multi-user case would be given by,

I(%k) = log(1 + γok). (51)

This convergence result holds even for a moderate number
of antennas and users and facilitates the analysis of the impact
of downtilt angles on the system performance in a multi-user
system. We analyze the multi-user scenario with K = 40 and
NBS = 60. The scenario is illustrated in Fig. 12. The users
are randomly positioned between radii of 100m and 250m
from the BS. %k is computed using (47) for every user and
the deterministic equivalent of SINR is computed based on
Theorem II in [28]. This helps us get a theoretical equivalent
for the MI for every user. The elevation line of sight (LoS)
angle with respect to the horizontal at the BS is computed for
each user using θLoS,k = tan−1 4h√

(x2
k+y

2
k)

, where (xk, yk) are

the coordinates of the user k and 4h is the height difference
between MS and BS. The mean elevation AoD used in the
computation of FS coefficients of PES is also equal to θLoS,k.
The users are located with θLoS,k ∈ [95.37o, 103o]. We plot
in Fig. 13, the normalized MI (Total MI of the system/K) of
this system using the theoretical deterministic equivalent from
(51) and also using the Monte-Carlo realizations of SINR in
(49) and see that the deterministic equivalent is quite accurate
even for a moderate number of users and BS antennas. More
importantly, the result shows that the performance of the users
at the cell edge is most sensitive to the value of downtilt angle.
The performance of the system is maximized when the antenna
boresight angles at the BS are set equal to the θLoS of the
user at the cell edge, i.e. θtilt ∼ 960. This result highlights
the prospects of elevation beamforming in enhancing system
performance of the future correlated MIMO systems.

VI. CONCLUSION

In this paper, we characterized the spatial correlation present
in a 3D MIMO channel, assuming a uniform linear array of
antennas. The conventional SCFs do not take into account
the effect of elevation and antenna patterns, which renders
them unsuitable for the evaluation of future correlated 3D
MIMO channels that are currently being outlined in the next
generation of standards. We derived the proposed SCF using
SHE of plane waves and properties of Legendre and associated
Legendre polynomials. This generalized function depends on
the underlying arbitrary antenna patterns and angular densities
through the FS coefficients of PAS and PES. Numerical results
show an excellent agreement between the derived theoretical
and empirical results for the spatial correlation. Furthermore,
to quantify the effects of correlation on the system perfor-
mance, we study the MI of the nonparametric Kronecker
channel model. This model confirms the existence of pinhole
channels and allows us to use the available deterministic
equivalents of the MI in the asymptotic limit for both mono-
user and multi-user cases. By expressing the SCF in a closed-
form as a function of channel and array parameters, the impact
of azimuth and elevation angular spreads on MI is inves-
tigated. The simulation results also provide useful insights
into the impact of antenna patterns and antenna tilt angles
on the achievable rate and confirm the potential of elevation
beamforming to enhance system performance.

APPENDIX A
PROOF OF THEOREM 1

To derive an analytical expression for the SCF, we use the
trigonometric expansion of the Legendre polynomial given in
(25) [36]. To this end, note that using the relations in (25), the
expectation terms in (24) can be written as follows,

E[P2n(cosφ)gt,H(φ)] =

n∑
k=−n

[
pn−kpn+k

∫ π

−π
cos(2kφ)

× gt,H(φ)f(φ)dφ
]
,

=

n∑
k=−n

pn−kpn+k

∫ π

−π
cos(2kφ)PASt(φ)dφ. (52)

E[P̄ 2m
2n (cos(φ))gt,H(φ)] =

n∑
k=0

[
c2m2n,2k

∫ π

−π
cos(2kφ)

× gt,H(φ)f(φ)dφ
]
,

=

n∑
k=0

c2m2n,2k

∫ π

−π
cos(2kφ)PASt(φ)dφ. (53)

E[P̄ 2m−1
2n−1 (cos(φ))gt,H(φ)] =

n∑
k=1

[
c2m−12n−1,2k−1

×
∫ π

−π
sin((2k − 1)φ)gt,H(φ)f(φ)dφ

]
,

=

n∑
k=1

c2m−12n−1,2k−1

∫ π

−π
sin((2k − 1)φ)PASt(φ)dφ. (54)

They express the expectations involving the azimuth angles
as a linear combination of the scaled FS coefficients of PAS.
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For the expectations involving elevation angles, we need to
employ (11) and invoke the condition given in (12),

E[cos(2mθ)gt,V (θ, θtilt)] =

∫ 2π

0

cos(2mθ)gt,V (θ, θtilt)

× p(θ) sin(θ)dθ,

=
1

2

∫ 2π

0

sin((2m+ 1)θ)PESt(θ, θtilt)dθ

− 1

2

∫ 2π

0

sin((2m− 1)θ)PESt(θ, θtilt)dθ. (55)

E[sin[(2m− 1)θ]gt,V (θ, θtilt)] =

∫ 2π

0

sin((2m− 1)θ)

× gt,V (θ, θtilt)p(θ) sin(θ)dθ,

=
1

2

∫ 2π

0

cos((2m− 2)θ)PESt(θ, θtilt)dθ

− 1

2

∫ 2π

0

cos(2mθ)PESt(θ, θtilt)dθ. (56)

As explained in section II-C, the limits in (55) and (56) have
been set to (0, 2π) as fθ(θ) is 0 outside (0, π). Doing this,
we have expressed these expectations as a linear combination
of scaled FS coefficients of PES. Defining the FS coefficients
of PAS and PES as,

aφ(k) =
1

π

∫ π

−π
PASt(φ) cos(kφ)dφ, (57)

bφ(k) =
1

π

∫ π

−π
PASt(φ) sin(kφ)dφ, (58)

aθ(m) =
1

π

∫ 2π

0

PESt(θ, θtilt) cos(mθ)dθ, (59)

bθ(m) =
1

π

∫ 2π

0

PESt(θ, θtilt) sin(mθ)dθ, (60)

one can immediately see the relationship between the terms
involving expectations and these coefficients. Plugging (57)-
(60) in (52)-(56) and using the resulting expressions in (24)
would result in a closed-form expression for ρt(s−s′) yielding
(27). A similar development would yield (28) by replacing
AoD with AoA and gt replaced with gr. This completes the
proof of Theorem 1.

APPENDIX B
FOURIER SERIES COEFFICIENTS OF PAS AND PES

A. FS Coefficients of PES at BS
The FS coefficients are computed assuming Gp,max = 0

dB. The value of Gp,max = 17 dBi will be incorporated in
the simulations as a scaling factor (Antenna Gain).

aθ,1(m) =
A

π

∫ π

θ0

exp

(
−
√

2(θ − θ0)

σ

)

× exp

(
−1.2

(
θ − θtilt
θ3dB

)2

log(10)

)
cos(mθ)dθ,

=
A

2
√
aπ
<
[

exp

(
−c+

2πajm+ b2 + 2bjm−m2

4a

)
×
(
erf

(
2aπ2 + b+ jm

2
√
a

)
− erf

(
2a(π2 − θ0) + b+ jm

2
√
a

))]
,

where a = 1.2 log(10)
θ23dB

, b =
−2.4(π2−θtilt) log(10)

θ23dB
+
√
2
σ and c =

1.2(π2−θtilt)
2 log(10)

θ23dB
−
√
2(π2−θ0)
σ and erf is error function.

aθ,2(m) =
A

π

∫ θ0

0

exp

(
−
√

2(θ0 − θ)
σ

)

× exp

(
−1.2

(
θ − θtilt
θ3dB

)2

log(10)

)
cos(mθ)dθ,

=
A

2
√
aπ
<
[

exp

(
−c+

2πajm+ b2 + 2bjm−m2

4a

)
×
(
erf

(
2a(π2 − θ0) + b+ jm

2
√
a

)
− erf

(−2aπ2 + b+ jm

2
√
a

))]
,

where a = 1.2 log(10)
θ23dB

, b =
−2.4(π2−θtilt) log(10)

θ23dB
−
√
2
σ and

c =
1.2(π2−θtilt)

2 log(10)

θ23dB
+
√
2(π2−θ0)
σ . Also bθ,1(m) and bθ,2(m)

have the same expressions as aθ,1(m) and aθ,2(m) respec-
tively with only < replaced with =. The FS coefficients are,

aθ(m) = aθ,1(m) + aθ,2(m), (61)
bθ(m) = bθ,1(m) + bθ,2(m). (62)

B. FS Coefficients of PES at MS

Note that gr(ϑ) = 1.

aϑ(m) =
A

π

∫ π

0

exp

(
−
√

2|ϑ− ϑ0|
σ

)
cos (mθ) dθ,

=
Aσ2

π(2 +m2σ2)

[2
√

2

σ
cos (mθ0)−

√
2

σ
exp

(
−π√
2σ

)
×

(
exp

(√
2(π2 − θ0)

σ

)
+ (−1)m exp

(
−
√

2(π2 − θ0)

σ

))]
,

bϑ(m) =
A

π

∫ π

0

exp

(
−
√

2|ϑ− ϑ0|
σ

)
sin (mθ) dθ,

=
Aσ2

π(2 +m2σ2)

[2
√

2

σ
sin (mθ0) +m exp

(
−π√
2σ

)
×

(
exp

(√
2(π2 − θ0)

σ

)
− (−1)m exp

(
−
√

2(π2 − θ0)

σ

))]
.

C. FS Coefficients of PAS

Since the antennas are considered omnidirectional in the
azimuth, so gt,H(φ) and gr,H(ϕ)=1. The VM distribution can
be expressed as a series of Bessel functions as,

PAS(φ) =
1

2π

1 +
2

I0(κ)

∞∑
j=1

Ij(κ) cos(j(φ− µ))

 , (63)

=
1

2π
+

1

πI0(κ)

∞∑
j=1

Ij(κ)[cos(jφ) cos(jµ) + sin(jφ) sin(jµ)]

(64)

aφ(m) =
1

πI0(κ)
Im(κ) cos(mµ), (65)

bφ(m) =
1

πI0(κ)
Im(κ) sin(mµ). (66)
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