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Abstract—This paper considers the problem of energy effi-
ciency maximization in the uplink of a cluster of multiple-antenna
coordinated access points. A framework for energy efficiency
optimization is developed in which the signal-to-interference-
plus-noise ratio takes a more general expression than existing
alternatives so as to encompass most 5G candidate technologies.
Two energy efficiency optimization problems are formulated,
also considering QoS constraints: 1) network global energy
efficiency maximization; 2) worst-case energy-efficient design.
These fractional, non-convex problems are tackled by means of
fractional programming coupled with sequential convex optimiza-
tion, and two low-complexity resource allocation algorithms are
designed, which are guaranteed to converge to Karush-Kuhn-
Tucker points of the non-convex problems. Numerical results
show that the proposed algorithm can efficiently balance between
the goals of maximizing the energy efficiency and meeting the
QoS constraints. Moreover, it is shown that a small sum-rate
reduction allows large energy savings.

I. INTRODUCTION

Currently, the percentage of the global world CO2 emissions
due to the information and communications technology (ICT)
is estimated to be 5% [1]. While this may seem a small
percentage, it is rapidly increasing, and the situation will
escalate in the near future with the advent of 5G cellular net-
works. Credited sources (e.g., [2], [3]) foresee the number of
connected devices to reach 50 billions by 2020. If no counter-
measure is taken, the energy demand to operate and serve this
massive number of devices will become unmanageable, and
the resulting greenhouse gas emissions and electromagnetic
pollution will exceed safety thresholds. A promising answer
to this issue lies in optimizing the energy efficiency (EE) of
the system, i.e., in minimizing the amount of energy required
to transmit data. Moreover, EE is of paramount importance for
operators (e.g., to save on electricity bills), and for end-users
(e.g., to prolong the lifetime of batteries).

This paper aims to develop a framework for energy-efficient
resource allocation in cellular networks employing candidate
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5G transmission technologies [4], [5]. Specifically, we con-
sider the uplink transmission in a heterogeneous network
consisting of a cluster of coordinated access points, possibly
with the presence of an amplify-and-forward (AF) relay [6].
Each access point is equipped with multiple antennas, and
orthogonal frequency division multiple access (OFDMA) with
universal frequency reuse is assumed. A non-exhaustive list of
recent works dealing with energy-efficient resource allocation
with coordinating base stations includes [7]–[11]. Fractional
programming theory is employed and different performance
metrics are considered. In [7], the global energy efficiency
(GEE) of the cluster is considered, whereas the sum and the
minimum of the individual EEs are maximized in [8] and [9],
respectively. In [10], the GEE as well as the sum and the
product of the individual EEs are optimized. In [11], fractional
programming is used to design beamforming techniques for
maximizing the weighted sum EEs in single-stream multiple-
input multiple-output (MIMO) systems.

We extend the aforementioned works in different directions.

1) A more general expression of the signal-to-interference-
plus-noise-ratio (SINR) is considered so as to extend
the developed framework to those 5G technologies
that cannot be tackled with existing solutions. This
includes heterogeneous, multi-hop networks [10], prac-
tical, hardware-impaired massive MIMO systems [12],
full-duplex systems [13].

2) Within the above setup, we consider two different EE
problems in which the maximization is performed with
respect to subcarrier assignment and transmit power al-
location. The first is focused on the network GEE while
the second aims at maximizing the users’ minimum EE
so as to guarantee some fairness. Unlike most previous
contributions, our formulation also considers quality-
of-service (QoS) constraints in terms of minimum rate
requirements.

3) Both formulations are shown to lead to non-convex frac-
tional problems. We propose the joint use of fractional
programming [14] and sequential convex optimization
[15] to design low-complexity resource allocation al-
gorithms that are guaranteed to converge to a point
fulfilling the Karush-Kuhn-Tucker (KKT) conditions, by
only solving a sequence of convex problems.



The rest of the paper is organized as follows. Section II
introduces the signal model. Section III formulates the two
EE problems and provides algorithms to solve both. Numerical
results are shown in Section IV to validate the performance of
the proposed algorithms, while some conclusions are drawn
in Section V.

II. SIGNAL MODEL

Consider a wireless network with K transmitters, S re-
ceivers, and N available resource blocks. Assume that the
SINR experienced by transmitter k at its intended receiver
on resource block n takes the following general form:

γk,n =
αk,npk,n

1 + φk,npk,n +
∑
j 6=k ωj,npj,n

(1)

where pk,n is the k-th user’s transmit power over resource
block n, and αk,n, φk,n, ωk,n are positive quantities that
do not depend on the users’ transmit powers, but only on
system parameters and propagation channels (that are assumed
without loss of generality to be normalized to the noise power).
By simply specializing these coefficients, the expression in (1)
may account for the SINR experienced by users in several
relevant instances of communication systems. More details on
this will be provided in Section II-B and II-C.

A. Energy-efficiency formulation

Given (1), the bit/Joule EE of the k-th user is defined as
[16]

ηk =

∑N
n=1 log2(1 + γk,n)

pc,k +
∑N
n=1 pk,n

(2)

with pc,k being the circuit power dissipated to operate the k-th
transmitter. While (2) is a user-centric EE function, two more
relevant performance metrics (from a system perspective) are
the network GEE ψ given by

ψ =

∑K
k=1

∑N
n=1 log2 (1 + γk,n)

pc +
∑K
k=1

∑N
n=1 pk,n

(3)

with pc denoting the total circuit power dissipated in the
network, and the weighted minimum of the EEs defined as

η = min
k=1,...,K

wkηk. (4)

The above two metrics represent the two extreme points in
the trade-off between global performance and fairness. In
particular, ψ can be seen as the benefit-cost ratio of the system,
as it is defined as the ratio between the sum achievable rate
and the total consumed power. However, it does not directly
depend on the users’ EEs, and therefore it does not allow
to tune the individual EE according to user needs as might
be the case in heterogeneous networks. On the other hand,
maximizing the (weighted) minimum of the EEs allows us to
achieve a more fair resource allocation policy. In particular, it
is known that maximizing (4) yields a Pareto-efficient point
where each quantity wkηk is the same for all k = 1, . . . ,K.
The whole Pareto-boundary can be simply achieved by varying
the weights {wk}. However, this usually comes at the price

of a performance loss in terms of the benefit-cost ratio of the
system.

Both problems will be addressed in this work, by providing
algorithms that maximize either (3) or (4) when power and
QoS constraints are imposed. In these circumstances, the GEE
maximization problem can be mathematically formulated as:

max
{pk,n≥0}k,n

ψ (5)

s.t.

N∑
n=1

pk,n ≤ P k ∀k

N∑
n=1

log2 (1 + γk,n) ≥ θk ∀k

whereas the minimum-EE maximization problem can be writ-
ten as:

max
{pk,n≥0}k,n

η (6)

s.t.

N∑
n=1

pk,n ≤ P k ∀k

N∑
n=1

log2 (1 + γk,n) ≥ θk ∀k

where P k and θk denote user k’s maximum power and
minimum achievable throughput, respectively.

Due to the fractional nature of the performance metrics in
both formulations, we will make use of fractional program-
ming, which is a branch of optimization theory concerned with
the properties and optimization tools of fractional functions
[14]. For completeness, a brief background on fractional
programming is provided in the Appendix with the attempt
to describe the main tools and results that will be useful to
solve the problems at hand.

Before turning to the analysis of the optimization problems,
we should provide more details on the SINR expression in
(1). As already mentioned, it is general enough to lend itself
to several relevant applications for different expressions of the
coefficients αk,n, φk,n, ωk,n. A few illustrative examples are
given in the sequel.

B. Two-hop multi-cell multiple-antenna OFDMA network

Consider the uplink channel of a two-hop multi-cell
OFDMA network, with K single-antenna users, N available
subcarriers, S base stations, each equipped with M antennas,
where the users communicate to the base stations via a single-
antenna AF relay . Denoting by hk,n the channel from user
k to the relay on subcarrier n, by wr,n the relay thermal
noise, the signal received at the relay on subcarrier n is
rk,n =

√
pk,nhk,nbk,n +

∑
j 6=k
√
pj,nhj,nbj,n + wr,n. The

power of the received signal on subcarrier n can be computed
as

Pt,n =
∑K
j=1 pj,n|hj,n|2 + σ2

r,n (7)

with σ2
r,n being the relay noise power. In order to avoid

amplifier saturation, the received signal needs to be normalized



by its received power Pt,n before it can be amplified. Then,
the resulting signal is amplified by √pr,n, with pr,n denoting
the available power on subcarrier n. The signal received at
base station a(k) is

yk,a(k),n = wa(k),n +

√
pk,npr,n
Pt,n

hk,nbk,nga(k),n

+
∑
j 6=k

√
pj,npr,n
Pt,n

hj,nbj,nga(k),n +

√
pr,n
Pt,n

wr,nga(k),n ,

(8)

where ga(k),n is the M -dimensional channel vector from the
relay to user k’s base station on subcarrier n. After linear
reception by the filter ca(k),n and upon plugging (7) into
(8) the resulting SINR takes the form (1) with αk,n =
pr,n|hk,n|2|cHa(k),nga(k),k|2/zk,n, φk,n = σ2

k,n|hk,n|2/zk,n,
ωk,n = (pr,n|cHa(k),nga(k),k|2 + σ2

k,n‖ca(k),n‖2)|hj,n|2/zk,n,
and zk,n = σ2

r,n(pr,n|cHa(k),nga(k),k|2 + σ2
k,n‖ca(k),n‖2).

C. Hardware-impaired massive MIMO network

Consider a single-cell massive MIMO system wherein K
transmitters communicate with an access point equipped with
M >> K antennas where low-power and low-cost circuitry
is deployed1. This translates into hardware impairments that
might largely impact the system performance especially for
small values of SNR, if not accounted for. A possible received
signal model for hardware-impaired massive MIMO links is
provided in [12], where it is shown that the overall effect
of hardware impairments can be modeled as an additional
Gaussian interference term, whose power is proportional to the
useful signal power. In particular, the signal vector r received
at the access point can be written as:

r =

K∑
k=1

hkxk +w + η , (9)

wherein hk and xk are the k-th user’s channel to the access
point and information symbol with power pk, w is the white
thermal noise at the receiver with covariance matrix σ2IM ,
while η is the hardware-impairment term, also modeled as a
zero-mean Gaussian random vector, but with covariance matrix
τ
∑K
j=1 pjDj , wherein Dj = diag({|hj(m)|2}Mm=1) and τ is

a proportionality coefficient related to the particular employed
hardware [12]. The resulting SINR enjoyed by the k-th user,
after linear reception by the filter ck, is thus written as in (1),
with αk = |cHk hk|2/(σ2‖ck‖2), φk = τcHk Dkck/(σ

2‖ck‖2),
and ωk = (

∑
j 6=k |cHk hj |2 + τcHk Djck)/(σ

2‖ck‖2).
There exist other applications in which the SINR takes the

form in (1). Among them, we mention ultra-wideband systems
[17] and transmissions affected by inter-symbol interference,
as well as other key technologies for 5G networks such as
full-duplex devices [13] and two-hop MIMO systems [10].

1This is the typical operation condition envisioned for massive MIMO
systems, due to the large amount of required hardware.

III. PROPOSED SOLUTION

As described in the Appendix, fractional programming pro-
vides efficient tools to maximize ratios in which the numerator
is a concave function and the denominator is a convex one.
Unfortunately, neither (3) nor (4) have a concave function at
the numerator. For this reason, aiming at providing compu-
tationally efficient optimization algorithms, we will leverage
the tool of sequential convex programming [15], [18], [19].
Roughly speaking, the idea is to solve (5) and (6) by solving
a sequence of approximate easier problems whose solutions
converge to a (possibly local) solution of the original problem.
Formally speaking, assume P is a maximization problem with
objective f0(x) and constraint functions {fi(x)}Ii=1. Let us
then consider a sequence of Problems {Pj}j with objective
f̃0,j(x), constraints {f̃i,j(x)}Ii=1, and optimal solution x̃j . We
require that, for any j and i = 0, . . . , I , f̃i,j(x) enjoys the
following properties.

P1) f̃i,j(x) ≤ fi(x), for all x
P2) f̃i,j(x̃j−1) = fi(x̃j−1)
P3) ∇f̃i,j(x̃j−1) = ∇fi(x̃j−1)
As we will see, these properties ensure that the sequence
{x̃j}j of the solutions to the approximated problems {Pj}j
converges to a point x̃, which fulfills the KKT optimality
conditions of the original problem P . This gives us a way
to find local solutions to (5) and (6), provided we can find
suitable approximations that fulfill properties P1-P3. The next
two subsections show how to accomplish this for (3) and (4),
respectively.

A. GEE maximization (5)

Let us consider the following bound of the logarithm
function [20]. Specifically, for any γ, γ̃ ≥ 0 we have

log2(1 + γ) ≥ a log2 γ + b , (10)

with a = γ̃
1+γ̃ and b = log2(1 + γ̃)− γ̃

1+γ̃ log2 γ̃ (11)

The right-hand side (RHS) and left-hand side (LHS) of (10)
are equal at γ = γ̃, and the same holds for their derivatives
with respect to γ evaluated at γ = γ̃. Then we have

ψ ≥
∑K
k=1

∑N
n=1 [ak,n log2 (γk,n) + bk,n]

pc +
∑K
k=1

∑N
n=1 pk,n

=

∑K
k=1

∑N
n=1 [bk,n + ak,n log2 (αk,npk,n)]

pc +
∑K
k=1

∑N
n=1 pk,n

−
∑K
k=1

∑N
n=1

[
ak,n log2

(
1+φk,npk,n+

∑
j 6=k ωj,npj,n

)]
pc +

∑K
k=1

∑N
n=1 pk,n

= ψ̃ (12)



Next, using the variable change pk,n = 2qk,n , for all k =
1, . . . ,K and n = 1, . . . , N , (12) becomes

ψ̃ =

∑K
k=1

∑N
n=1 [bk,n + ak,n log2 (αk,n) + ak,nqk,n]

pc +
∑K
k=1

∑N
n=1 2

qk,n

−
∑K
k=1

∑N
n=1

[
ak,n log2

(
1+φk,n2

qk,n+
∑
j 6=k ωj,n2

qj,n
)]

pc +
∑K
k=1

∑N
n=1 2

qk,n

(13)

A similar approach can be used to approximate the QoS
constraint in (5), which yields, for all k = 1, . . . ,K,

R̃k =

N∑
n=1

[bk,n + ak,n log2 (αk,n) + ak,nqk,n]

−
N∑
n=1

ak,n log2
1+φk,n2

qk,n+
∑
j 6=k

ωj,n2
qj,n

 ≥ θk
(14)

Then, we can approximate (5) as

max
{qk,n}k,n

ψ̃ (15)

s.t.

N∑
n=1

2qk,n ≤ P k ,∀k

R̃k ≥ θk , ∀k .
Note that for any fixed {ak,n}k,n and {bk,n}k,n, the numerator
and the denominator of (13) are both differentiable, and
respectively concave2 and convex in {qk,n}k,n, whereas the
QoS constraint is concave. Moreover, both the denominator
and the numerator are non-negative.3 As a consequence,
Problem (15) is a fractional problem with a pseudo-concave
objective function and convex constraints, and therefore can
be globally and efficiently solved by means of Dinkelbach’s
algorithm [16], [21]. Finally, a general resource allocation
algorithm can be formulated as Algorithm 1.

Algorithm 1 GEE maximization
Initialize pk,n to feasible power values; Set j = 0;
For all k = 1, . . . ,K and n = 1, . . . , N , set x̃

(j)
k,n =

γ
(j)
k,n({p

(j)
k,n}k,n), and compute a(j)k,n and b(j)k,n as in (11);

repeat
j = j + 1;
Solve (15) by Dinkelbach’s algorithm and set {p(j)k,n}k,n as its
solution;
For all k = 1, . . . ,K and n = 1, . . . , N , set x̃(j)k,n =

γk,n({p(j)k,n}k,n);
Update a(j)k,n and b(j)k,n as in (11);

until convergence

Proposition 1: Algorithm 1 monotonically increases the
GEE value and converges to a point fulfilling the KKT
conditions of the original non-convex problem (5).

2The log-sum-exp function is convex.
3The numerator is ensured to be non-negative on the feasible set due to the

QoS constraints.

Proof: For the sake of brevity, here we give a sketch of the
proof. We have already shown that ψ ≥ ψ̃ for all {pk,n}k,n. It
is also easy to verify that for any given {p̃k,n}k,n, the bound
and its derivative can be made tight at {p̃k,n}k,n if ak,n and
bk,n are set according to (11), for all k = 1, . . . ,K and n =
1, . . . , N . Then, at the j-th iteration of Algorithm 1 we have

ψ
(
{p(j)k,n}k,n

)
≥ ψ̃j

(
{p(j)k,n}k,n

)
≥ ψ̃j

(
{p(j−1)k,n }k,n

)
= ψ

(
{p(j−1)k,n }k,n

)
, (16)

wherein the first inequality follows by virtue of property
P1, the second inequality holds because {p(j)k,n}k,n is the
solution of Problem Pj whose objective is ψ̃j , and the equality
follows from property P2. Finally, by a similar reasoning and
exploiting property P3, we can show that upon convergence
the KKT conditions of the original problem are fulfilled.
Before closing this section, it should be remarked that the
proposed framework can be straightforwardly modified to
optimize the sum-rate instead of the GEE. Indeed, the system
sum-rate is the numerator of the GEE, which can be turned
into a concave function by means of the same approach used
for GEE. In Section IV, the performance of GEE and sum-rate
optimization will be compared.

B. Min-EE maximization (6)

The main challenge of Problem (6) with respect to Prob-
lem (5) is that it involves more than a single fractional
function. In particular, (6) falls within the framework of
generalized fractional programming. In this section we will
show how the generalized Dinkelbach’s procedure described
in the Appendix together with sequential convex optimization,
can be successfully applied to tackle (6).

Exploiting the fact that the min(·) function is increasing,
we can use the bound (10) and the substitution pk,n = 2qk,n ,
to lower-bound η as

η ≥ min
k=1,...,K

wkη̃k = η̃ (17)

where

η̃k =

∑N
n=1 [bk,n + ak,n log2 (αk,n) + ak,nqk,n]

pc,k +
∑N
n=1 2

qk,n

−
∑N
n=1

[
ak,n log2

(
1 + φk,n2

qk,n +
∑
j 6=k ωj,n2

qj,n
)]

pc,k +
∑N
n=1 2

qk,n

.

(18)

We see that each ratio in (18) has a concave numerator and a
convex denominator. Then, Problem (6) can be approximated
by the problem

max
{qk,n}k,n

η̃ (19)

s.t.

N∑
n=1

2qk,n ≤ P k ,∀k

R̃k ≥ θk , ∀k ,



with R̃k defined in (14), which can be solved by means of the
generalized Dinkelbach’s algorithm. Finally, we can formulate
a resource allocation procedure as Algorithm 2.

Algorithm 2 Min-EE maximization

Initialize {p(j)k,n}k,n to feasible power values; Set j = 0;
For all k = 1, . . . ,K and n = 1, . . . , N , set x̃

(j)
k,n =

γ
(j)
k,n({p

(j)
k,n}k,n), and compute a(j)k,n and b(j)k,n as in (11);

repeat
j = j + 1;
Solve (19) by the generalized Dinkelbach’s algorithm and set
{p(j)k,n}k,n as its solution;
For all k = 1, . . . ,K and n = 1, . . . , N , set x̃(j)k,n =

γ
(j)
k,n({p

(j)
k,n}k,n);

Update a(j)k,n and b(j)k,n as in (11);
until convergence

Proposition 2: Algorithm 2 monotonically increases the
value of η and converges.

Proof: We have already shown that η ≥ η̃. The rest of the
proof follows along the same lines of Proposition 1. However,
note that in this case we do not claim convergence to a point
fulfilling the KKT conditions of the original problem (6), since
the objective of (6) is not differentiable and therefore we can
not consider KKT conditions. For this reason, property P3 is
not needed in this case.
Since for all users the numerator of the EE coincides with
the achievable rate, Algorithm 2 can be easily adapted to
maximize the minimum of the users’ achievable rates, just as
Algorithm 1 could be adapted to maximize the system sum-
rate.
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Figure 1. MIMO-OFDMA, two-hop, cellular scheme.

IV. NUMERICAL RESULTS

The two-hop multi-cellular OFDMA system shown in Fig-
ure 1 is considered for numerical simulations. Three cells
coordinate their transmissions over N = 16 subcarriers with
bandwidth B = 180 kHz, and are equipped with M = 3
antennas each. An AF relay is placed at the intersection of
the cells, to serve K = 3 cell-edge users, which are placed at
a distance from the relay randomly generated in the interval

[100; 300]m. All mobiles have the same maximum feasible
power P and hardware-dissipated power pc = 10 dBmW,
while the relay has a maximum feasible power of P r = 0 dBW
on each subcarrier. The noise power at each receiver and
at the relay is σ2 = FBN0, with F = 3 dB being the
receiver noise figure, and N0 = −174 dBW/Hz being the
noise power spectral density. The minimum rate to be granted
to each user is θk = Nθ, with θ = 2.5 bit/s/Hz being the
minimum average rate per sub-carrier. For all k = 1, . . . ,K
and all n = 1, . . . , N , the channel from mobile k to the
relay on subcarrier n is generated as hk,n =

√
Lkδk,n, where

δk,n is a realization of a zero-mean, unit-variance complex
Gaussian random variable accounting for Rayleigh fading, and
Lk = L0 (d0/dk)

4, accounts for the path loss, wherein dk is
the user-relay distance, d0 = 100m, and L0 is the free-space
attenuation at d0 [22]. A similar channel model is used to
generate each entry of the vector channel gj,n from the relay
to receiver j on subcarrier n. The presented results have been
obtained averaging over 103 independent system scenarios.
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Figure 2. N = 16;K = 3;M = 3. Achieved GEE versus Pmax for: a) Al-
gorithm 1 for GEE maximization; b) Algorithm 1 for GEE maximization with
relaxed QoS constraints; c) sum-rate maximization by adapted Algorithm 1;
d) uniform power allocation over each subcarrier.

In Figure 2, the achieved GEE versus P is illustrated for
the following resource allocation algorithms:

a) Algorithm 1 for GEE maximization.
b) Algorithm 1 for GEE maximization, in which the QoS

constraints have been relaxed;
c) Sum-rate maximization by adapting Algorithm 1 as ex-

plained in Section III-A;
d) as a baseline scheme, we consider uniform power alloca-

tion, i.e. pk,n = P/N for all k, n.
It should be mentioned that, for a given minimum rate to be
guaranteed, in general the GEE resource allocation problem
might turn out to be unfeasible, depending on the particular
channel realizations and especially on the maximum feasible
power P . When this happens in Algorithm 1, we relax
the constraints and adopt the solution obtained without QoS
constraints.

Figure 2 indicates that, when P ≤ −24 dBW, allocations a),



b), and c) all result in the same power allocation policy. This
shows that, for P ≤ −24 dBW, the sum-rate at the numerator
of the GEE is more significant than the corresponding con-
sumed power at the denominator, and maximizing the GEE is
equivalent to maximizing its numerator. Instead, the situation
changes for higher values of P . If the GEE is maximized
without enforcing any QoS constraint, i.e. allocation b), the
achieved GEE remains constant, since a maximum feasible
power of P = −24 dBW already allows to attain the maximum
GEE value and further increasing the transmit power would
only decrease the achieved GEE. Indeed, we see that the
GEE achieved by sum-rate maximization degrades, since sum-
rate optimization requires a larger transmit power than GEE
maximization. The performance of Algorithm 1, i.e. allocation
a), is between these two extremes. For P > −24 dBW, the
GEE decreases a little, because more transmit power is used
in order to increase the rate and meet the QoS constraints.
However, once the QoS constraints are met, further increasing
the transmit power is not necessary and the achieved GEE
remains constant for higher P .
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Figure 3. N = 16;K = 3;M = 3. Achieved sum-rate versus Pmax

for: a) Algorithm 1 for GEE maximization; b) Algorithm 1 for GEE maxi-
mization with relaxed QoS constraints; c) sum-rate maximization by adapted
Algorithm 1; d) uniform power allocation over each subcarrier.

In Figure 3 and Figure 4, the same allocations as in Figure 2
are compared, but the shown performance metrics are the
achieved sum-rate in bits/s and the average transmit power
per user, respectively. Similarly to Figure 2, all allocations
perform similarly for P ≤ −24 dBW. For larger values of P ,
it is seen that sum-rate optimization requires a larger transmit
power, thus achieving a higher sum-rate. Instead, Algorithm 1
requires to increase the transmit power only up to the point
when the QoS can be met. Finally, if no QoS is enforced,
the transmit power remains constant for P > −24 dBW, but
this also means that the sum-rate does not increase further and
remains below that achieved by Algorithm 1. Thus, Algorithm
1 is able to balance between the need for a high rate and of
saving power. Moreover, comparing Figure 2-4, we observe
that in general a moderate sum-rate reduction allows saving a
large amount of transmit power, thus granting a much higher
energy efficiency compared to the maximization of the sum-
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Figure 4. N = 16;K = 3;M = 3. Required transmit power versus
Pmax for: a) Algorithm 1 for GEE maximization; b) Algorithm 1 for GEE
maximization with relaxed QoS constraints; c) sum-rate maximization by
adapted Algorithm 1.

rate.

Table I
PROBABILITY OF UNFEASIBILITY Pu OF ALGORITHM 1 WITH QOS

CONSTRAINTS, AND AVERAGE NUMBER OF ITERATIONS Nit NEEDED TO
REACH CONVERGENCE, VERSUS THE NUMBER OF ACTIVE USERS.

P [dBW] −50 −40 −30 −25 −20 −15 −10

Pu 1 1 0.96 0.63 0.36 0.02 0

Nit 6.7 8.3 9.4 11.5 13.6 14.1 14.3

In Table I we report the number of iterations Nit required
for Algorithm 1 to reach convergence, and the probability Pu
that the GEE maximization problem with QoS is unfeasible,
for different values of P . We can see that Algorithm 1 con-
verges in an affordable number of iterations, which increases
as P increases. This is expected since increasing P increases
the dimension of the feasible set of the optimization problems.
Moreover, as expected, the GEE maximization problem is
likely to be unfeasible for low values of P , whereas Pu
approaches 0 as P increases.

Here we have focused on the performance of Algorithm 1
for GEE maximization. Similar numerical simulations have
been carried out with reference to the performance of Algo-
rithm 2 for Min-EE maximization and its comparison with the
maximization of the minimum of the users’ rate. The results
are not shown here due to space constraints, but the curves
show a similar general behavior as for Figs. 2-4, providing
similar insights as in the remarks made for Algorithm 1.

V. CONCLUSION

We have considered the problem of EE maximization in the
uplink of a cooperative multi-point (CoMP) system, consider-
ing a more general SINR expression which models important
candidate 5G technologies, such as heterogeneous, small-
cells networks, hardware-impaired massive MIMO, and full
duplex transmission. Fractional programming and sequential
convex optimization have been used to tackle the non-convex



problems of GEE and max-min EE optimization, also consid-
ering QoS constraints. We proposed two resource allocation
algorithms that, despite requiring only the solution of convex
problems, are guaranteed to converge to points fulfilling the
KKT conditions of the original non-convex problems.

APPENDIX

Definition 1 (Fractional program): Let C ⊆ Rn be a convex
set, and consider the functions f : C → R+

0 and g : C → R+.
A fractional program is the optimization problem

max
x∈C

f(x)

g(x)
(20)

The following result relates the solution of (20) to the auxiliary
function F (λ) = maxx∈C {f(x)− λg(x)}.

Proposition 3 ( [21], [23]): An x∗ ∈ C solves (20) if and
only if x∗ = argmaxx∈C {f(x) − λ∗g(x)}, with λ∗ being
the unique zero of F (λ).
This result allows us to solve (20) by finding the zero of F (λ).
An efficient algorithm to do so is the Dinkelbach’s algorithm
[21], reported in Algorithm 3 for the reader’s convenience.

Algorithm 3 Dinkelbach’s algorithm
Set ε > 0; λ = 0;
repeat

x∗ = argmaxx∈C {f(x)− λg(x)}
F = f(x∗)− λg(x∗);
λ = f(x∗)/ g(x∗);

until F ≤ ε

If f(x) and g(x) are concave and convex, respectively,
then the Dinkelbach’s algorithm requires to solve one convex
problem in each iteration. Moreover, the convergence rate of
Dinkelbach’s algorithm is known to be super-linear [21].

A considerable extension of (20) is to consider more than
a single fractional function. The case we are interested in
here, is the maximization of the minimum of a set of ratios
fi(x)/gi(x), with i = 1, . . . , I . This problem is usually
referred to as generalized fractional programming, and has
been first studied in [24]. There, an optimization procedure
is provided, based on a modification of Dinkelbach’s algo-
rithm. Specifically, the auxiliary function to be considered is
F (λ) = min1≤i≤I {fi(x)− λgi(x)}, and the algorithm works
as shown in Algorithm 4.

Algorithm 4 Generalized Dinkelbach’s algorithm
Set ε > 0; λ = 0;
repeat

x∗ = argmaxx∈C {min1≤i≤I [fi(x)− λgi(x)]};
F = min1≤i≤I {fi(x∗)− λgi(x∗)};
λ = min1≤i≤I fi(x

∗)/ gi(x
∗);

until F < ε

Similarly to the original procedure described by Dinkelbach,
if each ratio has a concave numerator and a convex denom-
inator, then we can solve the generalized fractional problem
by solving a sequence of convex problems.4 In this case the
convergence rate is linear [24].

4Recall that the minimum of concave functions is also concave.
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