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I. COMPUTATIONAL DETAILS FOR
GRAPHANE AND h-BN

All calculations have been done in a plane-wave ba-
sis using a supercell approach. For graphane we have
adopted the crystal structure optimized in Ref. 1. For
the h-BN monolayer we have fixed the atoms in their ex-
perimental bulk positions. The single layers have been
separated by 20 Å vacuum space in h-BN and 15 Å in
graphane to prevent artificial interactions between peri-
odic replicas. DFT calculations in the LDA, for which we
have used standard Troullier-Martins pseudopotentials2,
are converged with a plane-wave cutoff of 40 Hartree
for graphane and 50 Hartree for h-BN. We have used
a Γ-centered 45×45×1 k-point grid for graphane and
48×48×1 for h-BN.

In GW calculations, in order to facilitate the con-
vergence with the number of empty states (which be-
comes prohibitively expensive with the increase of vac-
uum space), we have adopted the effective-energy tech-
nique (EET)3. This allows obtaining converged results
for both systems by using only 90 bands for the cal-
culation of the screened Coulomb interaction W and
60 bands for self-energy corrections within the one-shot
G0W0 framework4. The dielectric function ε in recipro-
cal space is converged with 11.5 and 15 Hartree cutoff for
graphane and h-BN, respectively. In this way the G0W0

correction to the fundamental gap is 2.85 eV in graphane
and 2.80 eV in h-BN. This yields a QP band gap of 6.22
eV and 7.36 eV, respectively.

In BSE calculations, to converge the spectra in the con-
sidered energy range, we have included five valence and
five conduction bands for graphane, while for h-BN we
used three valence and four conduction bands. To take
into account crystal local-field effects4, we have consid-
ered a dielectric function of size 589 G vectors for both
systems.

For DFT and GW calculations we have used a modified
version of Abinit5. For BSE calculations we have used the
EXC code6.

II. COULOMB INTERACTION

We have used the 2D Coulomb cutoff proposed in Ref.
7. For a single layer oriented perpendicular to the z axis,
the effective Coulomb interaction in reciprocal space thus
reads:

ṽc(k) =
4π

k2

[
1 + e−k‖z0

(
kz
k‖

sin(kzz0)− cos(kzz0)

)]
(1)

with k2 = k2‖+k
2
z (where k = q+G is the sum of a vector

q belonging to the first Brillouin zone and a reciprocal-
lattice vector G). Setting the cutoff distance z0 = Lz/2
(where Lz is the interlayer distance) and using 2D k-
point grids, the sin(kzz0) term in Eq. (1) vanishes7 in all
Gz 6= 0. Hence expression (1) is regular in every k point
of the mesh, except in k = 0, where it diverges as k−2.

The truncated Coulomb interaction (1) is then used
whenever sums over G are performed, as in the solu-
tion of the RPA Dyson equation χ = χ0 + χ0ṽcχ, in
the calculation of W = ε−1ṽc and of the matrix ele-
ments of the BSE kernel. On the contrary, spectra are
calculated8,9 with the untruncated Coulomb interaction
vc as: ε−1 = 1 + vcχ since in this case the Coulomb
interaction enters as an external potential.

Matrix elements of W = ε−1ṽc are needed in both GW
and BSE calculations that require Brillouin-zone summa-
tions including the q = G = 0 singular term of ṽc (1).
Following Ref. 10, we remove the Coulomb singularity
by an analytical integration of ṽc in a small volume Q0

around q = 0. The leading term of (1) for G = 0 and
in-plane q→ 0 is:

ṽc(q→ 0) =
4πz0
q2

(2)

By defining:

Isz =
Nk
Ω

∫
Q0

dq
4πz0
q2

, (3)

we obtain9:

Isz = 4π
6 log(3)

121/4
Hz0
Q0

√
A0, (4)

where Q0 = Ω/Nk = HA0, Ω is the volume of the first
Brillouin zone, Nk is the number of k points, A0 is the
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hexagonal area laying on the xy plane and centered in
q = 0, H is height of Q0. Additionally in Eq. (4) we
have made use of the approximation

∫
Q0
≈ H

∫
A0

.

III. EXCITON ANALYSIS
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FIG. 1. Absorption spectrum of (a) graphane and (b) h-BN.
The red dashed lines represent the position of the QP band
gap in the two systems.

Figs. 1(a)-(b) display the absorption spectra ImεM
at vanishing momentum transfer along ΓM for graphane
and h-BN respectively. The lowest excited state gives
rise to a peak inside the QP gap that is located at 4.6
eV in graphane and 5.3 eV in h-BN. In both systems the
onset of the spectrum is related to two degenerate bound
excitons: only one is visible along this direction while the
other one is dark. In the following, we will focus on the
analysis of the bright excitons.

The wavefunction for the exciton λ expanded in the
basis of independent valence-conduction (v-c) transitions
for q = 0 reads:

Ψλ
q=0(rh, re) =

∑
vck

Aλvckφvk(rh)φck(re), (5)

where the sum is over the k points of the first Brillouin
zone. The mixing coefficients Aλvck are the eigenvectors
that are obtained as the solution of the Bethe-Salpeter
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FIG. 2. Excitonic eigenvectors |Aλvck| for the top-valence v
and bottom conduction c bands as a function of k for the
bright exciton of h-BN (on the left side) and graphane (on
the right side).
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FIG. 3. LDA band structures of hBN (upper panel) and
graphane (bottom panel).

equation4. For both graphane and h-BN the two lowest-
energy degenerate excitons are related to transitions be-
tween top-valence and bottom-conduction bands. Fig. 2
shows, for those bands, the modulus of the coefficients
|Aλvck| as a function of k for the bright excitons of the
two systems. In the left panel of Fig. 2 we see that for
hBN the largest weights are found around the K point
and along the KM line of the hexagonal first Brillouin
zone. In this part of Brillouin zone both valence and
conduction bands are flat (see the upper panel of Fig.
3). For graphane (see the right panel of Fig. 2), on the
other hand, |Aλvck| is larger for k around the Γ point,
where both valence and conduction bands are parabolic
(see the bottom panel of Fig. 3). This suggests that in
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h-BN the exciton is Frenkel-like, while in graphane it is Wannier-like. We found a similar behaviour for the other
degenerate dark excitons at q = 0.

IV. EXCITONIC HAMILTONIAN IN A BASIS OF LOCALIZED WAVEFUNCTIONS

In the following we consider a two-band system and write the corresponding BSE excitonic Hamiltonian4 in a basis
of electronic wavefunctions localized on lattice sites11–13:

Ĥex =
∑
R,S

hcR,Sa
†
RaS −

∑
R,S

hvR,Sb
†
RbS +

∑
R,S,P,Q

(vS,PQ,R −W
S,P
Q,R)a†Rb

†
QbSaP, (6)

with:

vS,PQ,R =

∫
dr

∫
dr′ψ∗c (r−R)ψ∗v(r′ − S)vc(r, r

′)ψv(r−Q)ψc(r
′ −P) (7)

WS,P
Q,R =

∫
dr

∫
dr′ψ∗c (r−R)ψ∗v(r′ − S)W (r, r′)ψc(r−P)ψv(r

′ −Q). (8)

Here the boldface letters indicate the lattice vectors, a† (a) and b† (b) are creation (annihilation) operators for
electrons and holes, respectively; hc is the single-particle hamiltonian describing the motion of independent electrons:
hcRi,Sj = EcδRi,Sj + tcRi,Sj , where Ec is the electron level and tc is the electron hopping integral, which gives rise to

the dispersion of the electronic band in the periodic crystal (hv, Ev and tv are defined correspondingly for holes).
Suppressing the hopping terms is equivalent to considering bands without dispersion, i.e. completely flat. In the
integrals in Eqs. (7)-(8), the bare Coulomb interaction vc and the statically screened Coulomb interaction W act as
an exchange and a direct electron-hole interaction, respectively14. The former is absent for triplet excitations15.

In this representation the excitonic wavefunction can be written as a superposition of electron-hole pairs localized
on different sites:

|Ψex〉 =
∑
R

eiq·R
∑
S

Cq
Sa
†
Rb
†
R+S|0〉, (9)

where the coefficient Cq
S are given by solution of the secular problem:

∑
S′

[
hcR,R+S−S′eiq·(S−S

′) − hvR+S,R+S′ +
∑
R′

(
vR

′+S′,R′

R+S,R −WR′+S′,R′

R+S,R

)
eiq·(R

′−R)

]
Cq

S′ = Eex(q)Cq
S . (10)

To better understand the role played by the different terms in the excitonic hamiltonian we rewrite Eq. (6) in the
following form:

Ĥex =
∑
R

Eca
†
RaR −

∑
R

Evb
†
RbR +

∑
R,S

(vS,SR,R −W
S,S
R,R)a†Rb

†
RbSaS −

∑
R,S

(1− δS,R)WS,R
S,R a

†
Rb
†
SbSaR+

∑
R,S

tcR,Sa
†
RaS −

∑
R,S

tvR,Sb
†
RbS +

∑
R,S,P,Q

(1− δR,P)(1− δQ,S)(1− δQ,R)(1− δP,S)(vS,PQ,R −W
S,P
Q,R)a†Rb

†
QbSaP+

∑
R,S,P

(1− δP,S)(vS,PR,R−W
S,P
R,R)a†Rb

†
RbSaP +

∑
R,S,Q

(1− δR,Q)(vS,SR,Q−W
S,S
R,Q)a†Rb

†
QbSaS +

∑
R,S

(1− δS,R)vS,RS,Ra
†
Rb
†
SbSaR.

(11)

The first four terms (i.e. the first line) can be interpreted
as the sum of a Frenkel (FR) and a charge-transfer (CT)
hamiltonian describing respectively pure Frenkel excitons
(with the electron and the hole localised on the same lat-
tice site) and delocalised charge-transfer excitons (with
the electron and the hole localised on different lattices

sites). The fifth and sixth terms, related to the hopping
tv and tc, contribute to FR-CT and CT-CT coupling.
The other remaining terms involving overlap integrals be-
tween electronic wavefunctions localized on different sites
also contribute to CT-CT and FR-CT coupling. If the
overlap between the electronic wavefunctions localized on



4

different sites is small, these terms are in general smaller
than the hopping terms. Thus, in the following we will
neglect them. This approximation does not introduce a
loss of generality since in Eq. (11) hopping and overlap
integrals, having similar mathematical expression, play
the same role: they couple excitons of different nature.
As a consequence, the small overlap contribution would
only renormalize the hopping without introducing new
effects. Therefore, in the following we limit the discus-
sion to the effect of the hopping.

Neglecting also the hopping terms tv and tc, the ex-
citonic hamiltonian (11) factorizes in a FR and a CT
hamiltonian [only the first line of Eq. (11) is left] so that
the neutral excitations of the systems are pure FR and
pure CT excitons (localised on the site Ri 6= 0):

|ΨFR〉 =
∑
R

eiq·Ra†Rb
†
R|0〉 (12)

|Ψ(i)
CT 〉 =

∑
R

eiq·Ra†Rb
†
R+Ri

|0〉. (13)

We note that for both FR and CT states the square mod-
ulus of the excitonic wavefunction for fixed position of
the hole (i.e. for fixed R in this representation) is inde-
pendent of the wavevector q. The corresponding energy
levels are given by the following equations:

EFR(q) =Ec − Ev −W + I(q)−W ′(q) (14)

E
(i)
CT =Ec − Ev − W̃i, (15)

where we have introduced the excitation transfer
interaction16 due to the exchange e-h interaction:

I(q) =
∑
R′

vR
′,R′

R,R eiq(̇R
′−R), (16)

the on-site direct e-h interactionW = WR,R
R,R , and the off-

site direct e-h interaction W̃i = WR+Ri,R
R+Ri,R

. They derive

from the third and fourth term in Eq. (11) respectively.
In addition, the term

W ′(q) =
∑

R′ 6=R

WR′,R′

R,R eiq(̇R
′−R) (17)

derives from the third term in the first line of Eq. (11)
as well. W ′ involves overlap integrals between electronic
wavefunctions on different sites and, similarly to I, in-
duces scattering processes of an e-h pair from one site
to another. We emphasize that, in contrast to the other
terms involving overlap integrals in Eq. (11) [not consid-
ered in Eq. (14)], W ′ always couples e-h pairs with the
electron and the hole located on the same site. Hence,
in principle there is no reason to neglect it. However,
contrarily to the exchange e-h interaction I, this term
involves overlap integrals so that it is a short-range in-
teraction. Thus, the sum in Eq. (17) can be restricted
to the first nearest neighbours. Moreover, the exponen-
tial in Eq. (17) is actually a sum of cosine functions

only, as the corresponding antisymmetric sine function
terms sum to zero. So W ′(q) at small q is just a con-
stant term independent of q plus a quadratic term in q:
W ′(q) ∼ A+Bq2 + o(q4).

This analysis implies that the effect of the direct inter-
action on the exciton dispersion at small q is negligible
with respect to the exchange e-h interaction which is lin-
ear (see sectionV). We can conclude that the termW ′(q)
in Eq. (14) can be neglected. Therefore, from Eqs. (14)-
(15) we find that pure CT excitons do not disperse as a
function of q, while for a FR exciton the dispersion is set
by the exchange e-h interaction through I. In the triplet
channel, for which there is no exchange e-h interaction in
the hamiltonian, the dispersion is zero for both FR and
CT excitons.

So far we have neglected the hopping terms. In this
picture, the effect of the hopping can be treated as a
perturbation. Here we focus on its effect on the lowest
excited state that we assume to be a FR exciton. At
first order in the perturbation, the exciton wavefunction
is given by:

|ψλq〉 = |ψλFR〉+
∑
i

Cλi (q)|ψ(i)
CT 〉, (18)

where |ψFR〉 and |ψ(i)
CT 〉 are pure FR and CT states that

depend on q only through a phase factor. The larger
the mixing coefficients Cλi (q), the more delocalised the
Frenkel exciton becomes.

In perturbation theory, the mixing coefficients Ci(q)
can be expressed in terms of the hopping integrals of the
valence and conduction bands tv and tc, the energy of
the FR exciton EFR, the energy of the CT exciton EiCT ,
and the lattice vector Ri that define the CT state:

Cλi (q) =
tcR,R+Rie

iq·Ri − tvR,R+Ri

EFR(q)− EiCT
. (19)

These mixing coefficients are hence strongly dependent
on the wavevector q. As a consequence, the exciton wave-
function |ψλq〉 changes its shape as a function of q due to
the coupling between FR and CT states. In particular,
we can identify two effects.

The first one is related to the q dependence of the FR
state energy through the exchange e-h interaction. As
q = |q| increases, the linear behavior of I(q) increases the
energy EFR(q) of the FR exciton (see sectionV), which
becomes closer to the energies EiCT of CT states (that are
independent of q). Since the differences EFR(q) − EiCT
become smaller at the denominator of Eq. (19), this en-
hances the coupling between the two excitations. This
causes an isotropic delocalization of the wavefunction of
the Frenkel exciton, since the coupling with the CT exci-
tons identified by different Ri changes in the same man-
ner.

The second effect is related to the explicit q-
dependence of the hopping term at the numerator of Eq.
(19), where the scalar product q ·Ri appears in the expo-
nential. As q = |q| increases, the scalar product is always



5

zero for Ri perpendicular to q, hence the exponential
is always 1, while for all the other Ri the exponential
changes. This induces a different coupling with the CT
excitons identified by different Ri, causing an anisotropic
variation of the wavefunction of the Frenkel exciton as a
function of q.

Finally, the first non-trivial term in the perturbative
expansion of the exciton energy is the second-order one:

∆E(q) =
∑
i

|tcR,R+Ri|2 + |tvR,R+Ri|2

|EFR(q)− EiCT |2
−

∑
i

tcR,R+Rit
v
R,R+Ri cos(q ·Ri)

|EFR(q)− EiCT |2
, (20)

which at small q is quadratic in q for the cosine function
in the numerator of the second term. As a consequence,
in the optical limit, the effect of this term on the exciton
dispersion is negligible with respect to the exchange e-h
interaction I(q) which is linear in q. On the other hand

it becomes important at large q when the exchange e-h
interaction is constant (see sectionV).

V. EXCHANGE ELECTRON-HOLE
INTERACTION

Assuming that the electronic wavefunctions can be fac-
torized in an in-plane φ(ρ) and out-of-plane χ(z) compo-
nents so that ψ(r) = φ(ρ)χ(z) and writing the Coulomb
potential vc in terms of its 2D partial Fourier transform:

1

|r− r′|
=
∑
q′G

2π

|q′ + G|
ei(q

′+G)·(ρ−ρ′)e−|q
′+G|(z−z′),

(21)
the matrix elements (7) of the Coulomb potential be-
come:

vR
′R′

RR =
∑
q′G

2πβ(q′ + G)

|q′ + G|

∫
dρ

∫
dρ′φ∗c(ρ−R)φ∗v(ρ

′ −R′)ei(q
′+G)·(ρ−ρ′)φv(ρ−R)φc(ρ

′ −R′)

=
∑
q′G

2πβ(q′ + G)

|q′ + G|

∫
dρφ∗c(ρ)ei(q

′+G)·ρφv(ρ)

∫
dρ′φ∗v(ρ

′)e−i(q
′+G)·ρ′

φc(ρ
′)ei(q

′+G)·(R−R′) (22)

where:

β(q′ + G) =

∫
dz

∫
dz′χ∗c(z)χ

∗
v(z
′)e−|q

′+G|(z−z′)χv(z)χc(z
′). (23)

Inserting Eq. (22) into Eq. (16) we obtain the following
expression:

I(q) =
∑
G

2πβ(q + G)

|q + G|
〈c|ei(q+G)·ρ|v〉〈v|e−i(q+G)·ρ|c〉.

(24)
For small momentum transfer inside the first Brillouin

zone the dominant term in Eq. (24) is G = 0. Thus we
neglect the terms G 6= 0, which is equivalent to neglect
the in-plane crystal local fields4. Moreover we take the
dipole approximation for the matrix elements in Eq. (24).
Under these conditions the expression for the excitation
transfer interaction becomes:

I(q) = 2πqβ(q)(q̂ · µcv)(q̂ · µvc) (25)

where q̂ is the unitary vector which defines the direction
of the momentum transfer,

µcv =

∫
dρφ∗c(ρ)ρφv(ρ) (26)

is the dipole matrix element and q = |q|. Finally, if
we take for χ(z) the simplest form (i.e. constant inside

the 2D slab and zero elsewhere): χ(z) = 1/
√
d for |z| <

d/2 and χ(z) = 0 for |z| > d/2 we obtain the following
expression for β(q):

β(q) =
2

qd

[
1− 1

qd
(1− e−qd)

]
(27)

and I becomes:

I(q) =
4π

d
(q̂ · µcv)(q̂ · µvc)

[
1− 1

qd
(1− e−qd)

]
(28)

which has a linear behaviour for q � 1/d and reaches a
constant value for q � 1/d (see Fig. 4).

We emphasize that this result is general since the
asymptotic behaviour of I is independent of the detailed
structure of χ(z). At small momentum transfer the slab
behaves as a 2D lattice of zero thickness (χ(z) is a Dirac
delta centered at zero). This means that the exchange
e-h interaction can be obtained using in Eq. (22) the 2D
Coulomb potential that is responsible for the linear be-
haviour in the optical limit. In the opposite limit when q
is very large respect to 1/d the electronic density normal
to the plane is seen as a uniform distribution.



6

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  2  4  6  8  10  12  14  16  18  20

qd

I/I0

FIG. 4. The function I(q)/I0 where I0 = 4π/d (q̂ · µcv)(q̂ ·
µvc).

A more realistic expression for I can be obtained tak-
ing an exponential decay for χ(z): χ(z) = 1√

λ
e−|z|/λ. In

this case we obtain the following expressions for β and I:

β(q) =
4 + qλ

(2 + qλ)2
(29)

I(q) = 2π(q̂ · µcv)(q̂ · µvc)q
4 + qλ

(2 + qλ)2
(30)

which, taking λ = d/2, have the same asymptotic be-
haviour as Eq. (27) and Eq. (28).

VI. EXCITON DISPERSION IN h-BN AND
GRAPHANE

The lowest-energy peak in the spectrum of both
graphane and h-BN for q → 0 is related to two degen-
erate bound excitons in the singlet channel. In partic-
ular along the ΓM direction only one is visible and the
other one is dark. At finite q the exciton degeneracy
is removed. However, one exciton remains dark also at
q 6= 0.

By definition a dark exciton is not visible in the mea-
sured spectra. However, by diagonalising the excitonic
hamiltonian HexcΨ

λ
q = EλqΨλ

q, it is possible to obtain the

corresponding exciton eigenvalue Eλq and investigate its
dispersion as a function of q.

In Fig. 5 we show the dispersion for the dark and
bright excitons of graphane which can be modeled as
Wannier excitons. In the Wannier model16–18, the ex-
citon energies Eλ(q) are:

Eλ(q) = Eλ(q = 0) +
q2

2(me +mh)
, (31)

where Eλ(q = 0) is the exciton energy at q = 0, and
me and mh are the effective masses of the electron and
the hole, respectively. The center of mass of the Wannier
exciton behaves a free particle with a parabolic dispersion
and an effective mass that is me +mh.

By a parabolic fit of the dispersion we have obtained
the effective mass of the two excitons in graphane, which
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FIG. 5. Dark and bright exciton dispersion along the ΓM line
in graphane in a two-band model. The dashed lines represent
the parabolic fit.

is 1.6 and 1.8 for the bright and dark states, respec-
tively. For the case of degenerate Wannier excitons, as
in graphane, a direct link between the exciton mass and
the electronic band structure is in principle more com-
plicated than in Eq. (31)19,20. However, in the present
case, since the two excitons have similar masses, we can
directly compare the average value 1.7 of the effective
mass with the sum me + mh = 1.3 of the effective elec-
tron mass me and the average value mh of the effective
masses of the heavy and light holes at the Γ point in the
electronic band structure. The two values match well
confirming the Wannier character of the lowest excited
states of graphane.
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FIG. 6. (a) Dark and bright exciton dispersion along the ΓM
line in h-BN in a two-band model with flat bands and (b)
with the real electronic band structure.

We now consider the case of h-BN. On the basis of our
model discussed in the previous section, the long-range
part of the exchange e-h interaction I is proportional
to the dipole matrix elements µvc between valence and
conduction states. As a consequence, the dark exciton
of h-BN, for which µvc = 0, does not feel the long-range
part of exchange e-h interaction [see Eq. (25)]. Thus,
when the hopping is neglected, we expect that the dark
exciton does not disperse as a function of q. This is
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confirmed by the solution of the BSE with flat bands.
Indeed, Fig. 6(a) shows that, while the bright exciton
has a linear dispersion at small q and then reaches a
constant value, the energy of the dark state is almost
constant. This also means that the short-range part of
the exchange e-h interaction [the terms with G 6= 0 in
Eq. (24)], which has been neglected in the evaluation of
I and that in principle is felt by both dark and bright
excitons, does not have remarkable effects on the exciton
dispersion. Finally, the hopping term [see Fig. 6(b)]
modifies the dispersion of the bright exciton and induces
a dispersion for the dark exciton. In practice, we see that,
due to the lack of the long-range part of the exchange e-h
interaction [see Eq. (25)], the dark exciton behaves like
a triplet state.

VII. PHOSPHORENE

In Fig. 2 of the main article we have compared the
exciton wavefunctions of the single layer of h-BN and
graphane, which are representative cases for localised
and delocalized excitons, respectively. BSE calculations
in the literature have shown that also other classes of
2D semiconductors like transition-metal dichalcogenides
(such as the monolayers of MoS2

21,22, MoSe2
23, WS2

24),
phosphorene25,26 (i.e. the single layer of black phospho-
rus), and hydrogenated or fluorinated group-IV 2D sheets
(such as silicane,27 germanane27 or fluorographene28,
fluorosilicene,29 etc.) in the optical limit display bound
excitons whose wavefunctions for q → 0 are spread over
several unit cells.

Γ M Y Γ X
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FIG. 7. LDA band structure of phosphorene.

In order to stress the materials-independent features of
our studies, we show phosphorene as an additional exam-
ple. Here we provide more details about our phosphorene
calculations (the dispersion of the lowest exciton is shown
in Fig. 3 of the main article). We have calculated the
crystal structure of phosphorene (see Fig. 8) in the GGA
(each layer was separated by 25 Å vacuum space). The
lattice parameters (3.30 and 4.62 Å) that we have found
are in very good agreement with those reported in the

recent literature30–32. In the GW calculations5, we have
used a Γ-centered 44×44×1 k-point grid, 60 bands with
the EET method3, and a 6 Hartree cutoff for the dielec-
tric function. The G0W0 correction to the fundamental
gap of the LDA band structure (see Fig. 7) is 1.4 eV,
amounting to a direct QP gap at the Γ point of 2.2 eV
(which is in excellent agreement with experiment25). In
the BSE calculations6, we have included two valence and
four conduction bands.

X

Y 

Z

FIG. 8. Anisotropic crystal structure of phosphorene.
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FIG. 9. Absorption spectum of phosphorene. The red dashed
line marks the QP gap.

In Fig. 9 we show the absorption spectra at q → 0
momentum transfer evaluated along the X and Y direc-
tions. The anisotropic structure of phosphorene (see Fig.
8) is reflected in its optical properties. In the X direction
the onset of the optical spectrum (peak at 1.64 eV) is set
by the lowest-energy exciton involving top-valence and
bottom-conduction bands, while along Y all the bound
excitons inside the QP gap are dipole forbidden. The
anisotropy is also responsible for the different dispersion
of the lowest excited state along the ΓX and ΓY lines (see
Fig. 10). In particular, as expected for a Wannier exci-
ton, the dispersion is parabolic in both directions even
though it is characterized by a different effective mass.
This is related to the different dispersion of the valence
and conduction bands along ΓX and ΓY (see Fig. 7) and
demonstrates that in this system, like in graphane, the
exciton behaviour as a function of the momentum trans-
fer is set by the band structure also at small q. Only
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the optical limit along the two directions is qualitatively
different. Along ΓY , due to the lack of the exchange e-h
interaction [for a dark exciton µvc = 0: see Eq. (25)],
the parabolic behaviour is preserved, hence ∇qE

λ
q = 0

for q→ 0. Instead, along ΓX ∇qE
λ
q 6= 0 for q→ 0: the

exchange e-h interaction induces a linear dispersion as
in the case of h-BN. However, due to the delocalization
of the electronic wavefunction, the contribution coming
from the exchange e-h interaction is so small with respect
to the hopping, that its effect is visible only close to the
optical limit. 0 0,1 0,2 0,3 0,4 0,5

Momentum transfer (A-1)

1

1,5

2

2,5

3

En
e

rg
y 

(e
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ΓY

FIG. 10. Exciton dispersion along the ΓX and ΓY lines in
phosphorene.

In conclusion, we have presented a general picture of
the exciton dispersion as a function of its wavevector q
for 2D semiconductors that consistently explains the re-
sults of the BSE calculations for h-BN, graphane and
phosphorene. At small q the dispersion is set by the ex-
change e-h interaction and it is linear, while at large q
it is set by the electronic band structure. The crossover
between the two regimes is determined by the relative
strengths of the exchange e-h interaction related to the
dipole matrix element µvc, the hopping parameter and
the effective thickness of the system. When the electronic
wavefunctions are strongly delocalized, the contribution
coming from the exchange e-h interaction becomes neg-
ligible and the hopping term dominates the dispersion
(except for very small q), as predicted by the Wannier
model.
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