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Abstract: We used mitochondrial DNA control region sequences to genetically identify 12 

to the species level 23 pilot whales (genus Globicephala) that stranded on French coasts 13 

between 1996 and 2011. Genetic analysis complemented morphological diagnoses, 14 

often hampered by an overlap in morphological characters between the two species or 15 

incomplete measurements. Mitochondrial DNA data allowed identification of 21 long-16 

finned pilot whales (Globicephala melas) and two unusual stranding events of the more 17 

tropical species (Globicephala macrorhynchus). In pilot whales as in most cetaceans, 18 

shifts in species range are expected to occur due to global climate change. In this 19 

context, our study contributes to the long-term monitoring of pilot whale stranding 20 

events, providing indirect information on species occurrence. 21 
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Every year, several hundreds to one thousand marine mammals strand on French 22 

coasts (Van Canneyt et al. 2012). Each stranding is recorded by the Joint Service Unit 23 

PELAGIS (La Rochelle, France). The French marine mammal stranding network 24 

(coordinated by PELAGIS) performs species identifications and necropsies of stranded 25 

animals in an effort to monitor the marine mammal biodiversity and to report evidence 26 

of potential anthropogenic impacts (e.g. marks from incidental catch from fisheries). In 27 

cases of badly decomposed carcasses, or whenever there is ambiguity in morphological 28 

identification, genetic data can aid in the species identification process (Alfonsi et al. In 29 

Press). In this short communication, we complemented morphological species diagnoses 30 

with genetic data to assist with the monitoring of pilot whale (genus Globicephala, 31 

Lesson 1828) stranding events. 32 

The genus Globicephala is comprised of two species that have opposite 33 

distribution patterns: the long-finned pilot whale (LFPW: Globicephala melas, (Traill 34 

1809)) and the short-finned pilot whale (SFPW: Globicephala macrorhynchus, Gray 35 

1846) (Wilson and Reeder 2005). The LFPW has an anti-tropical distribution and is 36 

present in cold temperate waters of the Atlantic Ocean, the Mediterranean Sea and the 37 

southern hemisphere (Fullard et al. 2000), while the SFPW inhabits tropical, and warm 38 

temperate waters all around the globe (Kasuya and March 1984). The two species co-39 

occur in a region of overlap in the North Atlantic Ocean, and the Bay of Biscay 40 

represents the northern limit of the SFPW’s distribution range (Nores and Pérez 1988; 41 

Gonzalez et al. 2000). Furthermore, two extant subspecies of LFPW are recognized: G. 42 

melas melas (Traill 1809) (North Atlantic LFPW) and G. melas edwardii, Smith 1834 43 

(Southern LFPW) (Wilson and Reeder 2005). Stranding events of LFPW on French 44 

coasts are a common phenomenon with 10 to 30 cases reported every year. 45 
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Comparatively, stranding events of SFPW are rare (Van Canneyt et al. 2012). Indeed, 46 

the first stranding event of a SFPW in France was reported in 1966 (Duguy 1968), 47 

followed by another one in 1988 (Van Canneyt et al. 2012). More recently, two 48 

stranding events have been reported on the French Atlantic coast: one in 2008, and one 49 

(pending species confirmation) in 2011 (Van Canneyt et al. 2012).  50 

In the current context of global climate change, shifts in distribution ranges are 51 

expected to occur for most cetacean species (MacLeod 2009). As pilot whales’ 52 

distribution is correlated with water temperature (e.g. Hoydal and Lastein 1993), their 53 

species range may indeed be indirectly affected by ongoing changes in sea-surface 54 

temperature. In this context, long-term monitoring of pilot whale stranding events can 55 

be used as a proxy to detect potential shifts in their distribution, especially to follow the 56 

evolution of the northern limit of the SFPW in the Atlantic Ocean. 57 

Morphological features used to identify pilot whales to the species level are the 58 

number of teeth per half jaw (LFPW: 9-12; SFPW: 7-9), and the ratio of the length of 59 

the pectoral fin to the total length of the body (LFPW: 18-27%; SFPW: 14-19%) (Van 60 

Bree 1971; Robineau 2005). However, the range overlap in these morphological 61 

features hampers species diagnosis. Thus, genetic analysis appears to be a good 62 

complementary tool to the morphological approach. We re-examined species 63 

identification of past pilot whale stranding events using genetics to complement 64 

morphological diagnoses and confirm some of the recent unusual stranding events of 65 

SFPW that occurred on French coasts.  66 

The mitochondrial DNA (mtDNA) control region can be used to reliably 67 

distinguish between the two species of pilot whales thanks to six diagnostic 68 

substitutions (Oremus et al. 2009). Thus, we sequenced a portion of the mtDNA control 69 
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region to genetically identify the species of 23 pilot whales that stranded on French 70 

coasts between 1996 and 2011 and for which tissue samples had been collected (Table 71 

1: voucher information provided by PELAGIS). DNA extractions were performed from 72 

approximately 25 mg of skin, muscle or kidney tissue preserved in ethanol using a 73 

Nucleospin Tissue kit (Macherey-Nagel EURL, Hoerdt, France) following the 74 

manufacturer’s protocol. PCR amplifications were performed using primers L15824 75 

(5’-CCTCACTCCTCCCTAAGACT-3’) (Rosel et al. 1999) and H16498 (5’-76 

CCTGAAGTAAGAACCAGATG-3’) (Rosel et al. 1994), and the PCR profile 77 

described in Vollmer et al. (2011). The 50 µL reactions included 50 ng genomic DNA, 78 

0.3 µM for each primer, 0.15 mM dNTPs (Euromedex, Mundolsheim, France), 10 mM 79 

Tris-HCl (pH 8.3), 50 mM KCl, 0.1% Triton X-100, 1.5 mM MgCl2, and 2 U Taq 80 

polymerase (VWR, Fontenay sous Bois, France). PCR products were sent to 81 

Genoscreen (Lilles, France) for purification and Sanger sequencing (in both directions). 82 

Sequences were edited and aligned by eye using the BioEdit Sequence Alignment 83 

Editor v. 7.1.11 (Hall 1999). Mitochondrial DNA control region sequences from 84 

Oremus et al. (2009) published on Genbank were used as a reference dataset to identify 85 

the species and haplotype of each sample. Thus, the final sequence alignment was 86 

reduced to 345 base-pairs (bp) to match the portion analyzed in Oremus et al. (2009).  87 

Among these 23 individuals, morphological information was either not available 88 

or incomplete for 18 individuals. For the remaining specimens, the species could not be 89 

determined using morphology for three individuals, as their measurements lay in the 90 

range of overlap between the two species, or the ratio and number of teeth used in the 91 

key were in contradiction yielding ambiguity in species diagnosis (Table 1). For the 92 

latter specimen however, we considered measurements as unreliable due to the 93 
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advanced state of decomposition of the body (Table 1), which prevented accurate 94 

morphometric analysis. A map of stranding locations for the 23 specimens was 95 

constructed using the marmap package v. 0.5 (Pante and Simon-Bouhet 2013) in R v. 96 

3.0.1 (R Development Core Team 2013). 97 

A complete haplotype of the mtDNA control region (345 bp) was successfully obtained 98 

for all individuals. The 23 individuals were characterized by 4 different haplotypes: 2 99 

LFPWs haplotypes referenced by Oremus et al. (2009) as haplotypes R (GenBank: 100 

FJ513345) and S (GenBank: FJ513346), and 2 SFPWs haplotypes referenced as 101 

haplotypes A (GenBank: FJ513328) and D (GenBank: FJ513331). Species 102 

identification made using genetic data matched morphological identification (when 103 

applicable) suggesting that the morphological key is reliable when measurements are 104 

not within the range of overlap between the two species. Sequences allowed us to 105 

genetically identify or to confirm the species of all individuals, resulting in 21 LFPWs 106 

and 2 SFPWs (Table 1 and Figure 1). Thus, genetic analysis appears to be a 107 

complementary tool to the morphological key, and this highlights the importance of 108 

collecting tissue samples after every stranding event to allow genetic analysis whenever 109 

morphological identification is ambiguous or impossible. It is important to note, 110 

however, that unless nuclear loci are analyzed, one cannot rule out hybrid ancestry for 111 

individuals presenting morphological characters in the zone of overlap or of ambiguous 112 

phenotype, as illustrated by a recent study reporting an interspecific hybrid between the 113 

two Globicephala species (Miralles et al. 2013). 114 

To place our sequences in a worldwide phylogeographic context, we compared 115 

mtDNA control region haplotype frequencies observed in this study, with those 116 

obtained by Oremus et al. (2009). For LFPWs we sequenced 2 different haplotypes, R 117 
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(n=3) and S (n=18), while Oremus et al. (2009) reported 3 haplotypes for LFPWs in the 118 

North Atlantic Ocean: S (n=56), X (n=3) and P (n=11). Thus, haplotype S was the most 119 

common haplotype for North Atlantic LFPWs in both studies.  Interestingly however, 120 

haplotype R had only been reported in LFPWs from the southern hemisphere (i.e., G. 121 

melas edwardii). Thus, we report an additional shared haplotype between the two G. 122 

melas subspecies compared to Oremus et al. (2009), and our study elevates to four the 123 

number of haplotypes found in LFPWs from the North Atlantic. The two haplotypes 124 

sequenced in our study for SFPWs (haplotype A: n=1; haplotype D: n=1) had been 125 

previously reported in Oremus et al. (2009) for individuals sampled in the North 126 

Atlantic. However, haplotype A had been mostly sequenced in individuals from the 127 

Pacific Ocean (n=21) and was found for a single individual from the Atlantic Ocean 128 

(Oremus et al. 2009). Comparatively, a recent study conducted on SFPWs biopsy-129 

sampled from 14 groups around Madeira reported that all 29 individuals sequenced 130 

shared haplotype A (Alves et al. 2013).  131 

In conclusion, our study constitutes a first step toward genetic monitoring of the 132 

two species of pilot whales along French coasts, a region of particular importance as it 133 

constitutes the northern limit of the SFPW’s species range. 134 
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Table 1: Voucher information for 23 pilot whales genetically analysed in this study. For 204 

each individual, the voucher number, stranding date and location (latitude and 205 

longitude), and body state of decomposition are shown (State: 1: stranded alive and 206 

died within 48 hours; 2: freshly dead; 3: dead and decomposed; 4: dead and highly 207 

decomposed; NA: not available.). Morphological data (M.) were categorized as: 208 

available and unambiguous (A), incomplete (I), available but characters were in the 209 

zone of overlap (O), ambiguous due to characters in contradiction (*), not available 210 

(NA). The last columns report the species identification made using morphology 211 

(M. ID) when possible, the genetic species identification (G. ID), and the 212 

individual’s mtDNA control region haplotype (Hap: names according to Oremus et 213 

al. 2009). LFPW: Globicephala melas; SFPW: Globicephala macrorhynchus. 214 

Voucher   Date Lat. Long. State M. M. ID G. ID Hap 

9601009 30-Jan-96 44.9855 -1.2052 2 A LFPW LFPW S 

9706105 22-Jun-97 45.9696 -1.3899 2 NA  LFPW S 

9904034 19-Apr-99 45.8777 -1.2666 3 NA  LFPW S 

9912065 17-Dec-99 46.2049 -1.5359 2 NA  LFPW S 

10104070 13-Apr-01 46.6406 -1.8977 2 NA  LFPW S 

10206217 20-Jun-02 44.5894 -1.2398  3 I  LFPW S 

10404055 21-Apr-04 44.8933 -1.2171 2 I  LFPW S 

10505023 01-May-05 46.4940 -1.8127 NA NA  LFPW S 

10512100 28-Feb-05 43.8181 -1.4047 NA O  LFPW S 

10602023 21-Feb-06 44.2144 -1.2987 3 I  LFPW S 

10706033 27-Jun-07 46.5400 -1.8273 3 NA  LFPW S 

10712119 13-Mar-07 44.0395 -1.3407 4 *  LFPW R 

10803050 16-Mar-08 44.6463 -1.1999 2 O  LFPW S 

10804078 25-Apr-08 44.8933 -1.2171 2 I  LFPW R 

10809120 16-Sep-08 43.3895 -1.6643 1 A SFPW SFPW A 

10902053 11-Feb-09 44.0395 -1.3407 3 I  LFPW R 

10903073 11-Mar-09 43.5562 -1.5028 1 I  LFPW S 

10903078 11-Mar-09 44.0921 -1.3257 1 I  LFPW S 

10907116 09-Jul-09 47.8111 -3.9489 3 NA  LFPW S 

11007041 19-Jul-10 46.0020 -1.3203 2 NA  LFPW S 

11108074 02-Aug-11 45.4126 -1.1604 1 I  SFPW D 

11111087 24-Jun-11 43.4405 -1.5939 2 NA  LFPW S 

11112093 21-Dec-11 47.0204 -2.2461 1 NA  LFPW S 
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Figure legend 215 

Figure 1: Stranding locations of 23 pilot whales (Globicephala spp.) genetically 216 

identified using mtDNA control region sequences. 217 

218 
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Figure 1. 219 
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