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Diffusiophoresis, a ubiquitous phenomenon which induces particle transport whenever solute con-
centration gradients are present, was recently observed in the context of microsystems and shown to
strongly impact colloidal transport (patterning and mixing) at such scales. In the present work, we
show experimentally that this nanoscale mechanism can induce changes in the macro-scale mixing
of colloids by chaotic advection. Rather than the decay of the standard deviation of concentration,
which is a global parameter commonly employed in studies of mixing, we instead use multi-scale
tools adapted from studies of chaotic flows or intermittent turbulent mixing: concentration spectra
and second and fourth moments of the probability density functions of scalar gradients. Not only
can these tools be used in open flows, but they also allow for scale-by-scale analysis. Strikingly,
diffusiophoresis is shown to affect all scales, although more particularly the small ones, resulting in
a change of scalar intermittency and in an unusual scale bridging spanning more than 7 orders of
magnitude. By quantifying the averaged impact of diffusiophoresis on the macro-scale mixing, we
finally explain why the effects observed are consistent with the introduction of an effective Péclet
number.

I. INTRODUCTION

Diffusiophoresis is responsible for transport of large colloidal particles under the action of solutes [1, 2]. In the case
of electrolyte (salt) concentration gradients, as will be considered in this paper, two mechanisms are involved, both
connected to the presence of a nanometric electrical double layer on the surface of the colloid [1]: the first is purely
mechanical and can be explained as a consequence of the existence of gradients of excess of osmotic pressure inside
the double layer, while the second is due to electrophoresis of particles in the electric field induced by the difference
in mobility of positive and negative salt ions. Interestingly, both contributions lead to an additional transport term
for the colloids of the same form, proportional to ∇ logS [1], where S(x, t) is the salt concentration at position x

and time t; the total contribution is called the diffusiophoretic velocity, denoted vdp (equation 3). The equations of
motion are thus given by

∂S
∂t

+∇ · [Sv] = Ds ∇2S, (1)

∂C
∂t

+∇ · [C(v + vdp)] = Dc ∇2C, (2)

vdp = Ddp ∇ logS, (3)

where C(x, t) is the colloidal concentration, v(x, t) is the advecting velocity field, and Dc and Ds are the diffusion
coefficients of colloid and salt respectively; Ddp is called the diffusiophoretic diffusivity. This set of equations is valid
only if v is negligibly modified by the movement of the colloids (one way coupling), i.e. if the colloidal concentration
is not too large; this is the case here. From equation 2, it is clear that colloidal concentration is coupled to that of
salt via the diffusiophoretic drift velocity, while the salt concentration evolves freely according to equation 1.

In a recent article, Deseigne et al. [3] have studied how diffusiophoresis affects chaotic mixing in a micro-mixer
(the so-called staggered herringbone mixer [4], 200µm wide and 115µm high). Using a global characterization —the
normalized standard deviation of concentration, a classical tool in mixing studies— they observed a diffusiophoretic
effect that was interpreted in terms of effective diffusivity (or effective Péclet number). In [3], diffusiophoresis was
acting at micron scales and the question remains whether diffusiophoretic effects extend to chaotic mixing at the macro-
scale: will it be able to spread over all length scales or will it remain ineffectively confined at nano-to-micron small
scales? This requires the investigation of possible scale-to-scale coupling: while chaotic advection affects all scales
of the concentration field from the large scales of the macro-container down to the smallest ones, where diffusion
is effective [5–12], what happens when it is combined with diffusiophoresis, a mechanism which originates at the
nanoscale? In addition to the very existence of the effect, the quantification of its global impact on mixing also needs
to be further investigated.
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Figure 1: (a) Scheme of the experimental setup; the square Hele-Shaw cell (L = 50mm) lies horizontally in the xy plane. (b)
Time-periodic mixing protocol: i

O → j
O indicates that at this step the fluid enters at i

O and exits at j
O during a lapse of

time T/4, with T the period of the flow-field. The figure displays the instantaneous pattern of a typical concentration field
(colloids without salt). A movie showing the observed concentration patterns during the whole mixing process is also provided
as supplemental material [16].

In order to answer these questions, we study diffusiophoresis in a chaotic mixer at the macro-scale, that is, having
dimensions larger than those of microsystems by 2 to 3 orders of magnitudes (up to 5 cm overall scale). Also, as
noted in the abstract, rather than the decay of the standard deviation of concentration, which is a global parameter
commonly employed in studies of mixing, we instead apply a set of refined characterizing analyses, using multi-scale
tools available from the turbulence community, like concentration spectra (section IIIA), and second and fourth
moments of probability density functions (PDF) of scalar gradients (section III B). These more sophisticated tools
allow us to perform a scale-by-scale analysis and thus study how all scales of the concentration field are affected by
diffusiophoresis. Finally, after observing the propagation of diffusiophoretic effects up to the macro-scale, we discuss
the introduction of an effective Péclet number: indeed, diffusiophoresis is related to compressible effects through the
diffusiophoretic velocity, which is not divergence-free, as shown numerically in [13]. Thus, it has similarities with
preferential concentration of inertial particles in turbulent flows [14, 15].

II. DESCRIPTION OF THE EXPERIMENT

A. Experimental set up

Mixing takes place in a horizontal, square Hele-Shaw cell of side L = 50mm and height h = 4mm, fitted with 4
inlets/outlets (figure 1). Each inlet/outlet is pressure-driven using a flow controller (Fluigent, MFCS). The Hele-Shaw
cell is initially filled with water (or salted water, see later). At t = 0, 0.2 ml of a fluorescent solution (either dye or
colloidal suspension) is introduced via inlet 1 into the Hele-Shaw cell using a syringe pump. The four inlets/outlets
are then pressurized to 100mbar, and fluid motion is induced by successive pressurization and depressurization of the
inlets/outlets: a movie showing the mixing process is provided as supplemental material [16]. Successive deformations
of the concentration field are visualised using Planar Laser-Induced Fluorescence (PLIF): a continuous laser (Coherent
Genesis MX SLM-Series, λ = 488 ± 3 nm) coupled to a cylindrical lens forms a laser sheet with a typical thickness
of the order of the cell height, so that the whole volume of the cell is illuminated. The choice of such a thick laser
sheet, rather than a thin one localized at the mid-height of the cell, will be discussed at the end of section IIC.

The fluorescence signal is recorded with a 14-bit camera (Nikon D700, 4200 px × 2800 px) whose lens (zoom 105mm)
is equipped with a band reject filter (notch 488 ± 12 nm) corresponding to the laser wavelength. ISO sensitivity is set
to the lowest value in order to avoid noise, aperture is set to the highest possible (i.e. f/3.5), with a shutter speed of
12.5 ms. Image resolution in both horizontal directions (x or y) is about 19µm.px−1, while the depth of field is of the
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Species Diffusion coefficient [m2. s−1] Péclet number

Colloids 2. 10−12 6. 106

Dextran 3.6 10−11 3. 105

Fluorescein 4. 10−10 3. 104

Salt (LiCl) 1.4 10−9 9. 103

Table I: Species used, diffusion coefficients and corresponding Péclet numbers

order of 1mm. Calibration for different fluorescent species and different concentrations showed a linear relationship
between the light intensity and the concentration of the species throughout the range studied.

B. Flow rate and mixing

Chaotic advection is produced using the time-periodic protocol illustrated in Figure 1b, with four stages of duration
T/4. Efficiency of chaotic mixing in such a Hele-Shaw cell is qualified by the dimensionless pulse volume α:

α =
qT

L2 h
, (4)

where q is the flow rate; α represents the volume of fluid displaced during one period compared to the volume of the
chamber [17, 18]. For this particular mixing protocol, global chaos (no visible regular region) is obtained for α ≥ 1.2
[17, 19]. Because large values of α imply rather high flow-rates (hence large Reynolds numbers) or large periods T
(hence very long mixing time [20]), we chose to consider the smallest value of interest α = 1.2.
In a Hele-Shaw cell, the Reynolds number Reh is conventionally based on the height h of the cell, i.e., with typical

velocity q/(hL) and kinematic viscosity ν,

Reh =
q

Lν
. (5)

Note that the Reynolds number inside the pipes connected to the inlets/outlets,

Repipes =
4q

π d ν
, (6)

with d = 1mm the diameter of the pipes, is considerably higher. Because in the present case Repipes = 64 Reh,
we set Reh = 1 to avoid having too large a Reynolds number in the pipes and hence non-reproducible experiments.
This corresponds to a flow-rate q = 50µL s−1, and, providing α = 1.2, we obtain the period T = 120 s. Note that
with those parameters, the flow is laminar and deterministic, as can also be appreciated in the movie [16]. As a
consequence, the advecting velocity v in equations 1 and 2 is identical for all the cases considered here (except for
the short initial transient stratification, discussed in appendix A for cases with salt). Each of the experiments in this
article was carried out twice in order to verify that the indicators computed in section III were reproducible.

Since we are interested in mixing, the relevant parameter is the Péclet number, which measures the relative effect of
advection compared to diffusion. Because in a Hele-Shaw flow chaotic mixing essentially takes place in the horizontal
direction [21], we use the Péclet number based on the width L of the cell,

Pe =
q

hD
, (7)

where D is the diffusion coefficient of the species considered.
For this study we used colloids of diameter 200 nm (FluoSpheres, LifeTechnologies F8811), marked with a yellow-

green fluorophore (wavelength 505/515 nm). In order to characterize the efficiency of mixing as a function of the Péclet
number (at fixed geometry and flow forcing), other species have also been used, namely fluorescein isothiocyanate
(FITC) and fluorescent dextran 70 000 MW (LifeTechnologies D1823). For such molecular species diffusiophoresis is
not expected to play a role; they are only used to quantify the deviations induced by diffusiophoresis in the case of
colloids with salt. The diffusion coefficients and corresponding Péclet numbers for all species used in the experiment
are available in table I: the variation amplitude of the Péclet number is more than two orders of magnitude.
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C. Diffusiophoresis

In order to induce diffusiophoresis, we used a 20mM solution of salt (LiCl). Indeed, LiCl was shown in microfluidic
experiments to have a stronger diffusiophoretic effect than other salts [2]: for these species (colloid and salt), the
diffusiophoretic diffusivity is Ddp = 290µm2 s−1, and the diffusiophoretic motion of the colloids goes from low- to
high-salt concentration regions [2].
In the following, we discuss the interplay between mixing and diffusiophoretic drift by considering three different

cases:

� reference: the colloids are injected into pure water;

� salt-in: the salt is introduced together with the colloids into pure water; in this configuration diffusiophoresis
showed hypo-diffusion (delayed mixing) in the staggered herringbone micro-mixer [3].

� salt-out : the colloids are injected into salted water; in this configuration diffusiophoresis showed hyper-diffusion
(enhanced mixing) in the staggered herringbone micro-mixer.

Recall from equations 1 and 2 that, whereas the colloidal concentration is coupled to that of salt, the salt concen-
tration S freely evolves during the experiment. Thus, the salt is fully mixed for t ≥ L2 h ln(Pes)/(2q) [22, 23], with
Pes = q/(hDs) the Péclet number for salt, that is t ∼ 900 s with our parameters. After that time, diffusiophoresis no
longer affects the colloids (although the global effect is still visible, i.e. mixing enhancement or reduction [13]). In
what follows we will restrict attention to times where diffusiophoresis is fully effective.

Note finally that, because of buoyancy effects, the salt tends to rapidly stratify inside the cell (see appendix A).
Hence, although they have almost the same density as water, the colloids tend to flow from mid-height, where they
are injected, towards the bottom of the cell because of vertical diffusiophoresis induced by the salt concentration
gradient (appendix A). This “settling” of colloids, which is only visible when salt is present and which goes against
the effective buoyancy (more salted water in the bottom being denser than colloids), reveals a first macroscopic effect
of diffusiophoresis. Because it was difficult to follow the colloids over long times using a thin laser sheet (they would
eventually disappear below the sheet), and because the flow is quasi-2D, we chose to illuminate the whole cell. This
kind of height-averaging can result in a loss of signal at small scales, especially in the salt-in case. Note that the
coupling of the parabolic velocity-profile with diffusion also leads to a vertical homogenization of the concentration
field due to Taylor dispersion [24].

III. RESULTS

When measuring mixing efficiency, the quantity commonly used is the rate of decay of standard deviation of the
concentration Cstd(t) = 〈(C − 〈C〉)2〉1/2, or the non-dimensional standard deviation σ(t) = Cstd(t)/Cstd(t = 0) [25],
where 〈.〉 stands for the spatial average. Indeed, without diffusiophoresis, the rate of decay of Cstd(t) is related to the
presence of high scalar concentration gradients through the equation

dC2
std

dt
= −2D〈(∇C)2〉. (8)

Note that diffusion operates at all scales, but is much more efficient at small scale where the gradients are more
intense. In the following, as commonly done by fluid mechanicists, the quantity 1

2
(C −〈C〉)2 = 1

2
C2

std(t) is referred to
as scalar energy, by analogy with the kinetic energy.
Above all, chaotic advection involves a large range of scalar scales from the macro-scale of the experiment down to

the smallest length scale involved, while diffusiophoresis involves a mechanism at the nano-scale. Thus such a global

parameter as σ is not enough to explore this typically multi-scale coupled problem. For instance, does diffusiophoresis
strongly dissipate scalar energy at a very small scale, or else interact with the flow so as to dissipate more smoothly
at all length scales involved? In addition, let us note that even for a global characterization, σ would not be an
appropriate parameter here anyway since the flow is an open flow (marked particles go in and outside the chamber
through the inlet/outlets during the periodic mixing protocol, i.e. 〈C〉(t) 6= cst).

In order to investigate the multi-scale properties of the concentration field, we used different tools adapted for such
a multi-scale process:

� the scalar energy spectrum Eθ(k) is commonly employed in chaotic advection studies [8, 26–29]; it quantifies the
scalar energy contained at a given wavenumber k = 2π/ℓ, where ℓ can be seen as the physical scale at which the
scalar energy is calculated, i.e. the typical width of a scalar structure; it is linked to the global scalar energy
through the relation 1

2
C2

std =
∫∞

0
Eθ(k) dk.
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Figure 2: (a) Instantaneous spectra of scalar energy (time t = 160 s); (b) Instantaneous dissipation spectra, same time. Open
symbols stand for cases without salt. ◦: reference case (no salt); �: salt-in; �: salt-out; ▽: fluorescein. The scalar energy
spectrum and dissipation spectrum for fluorescein have been divided by 10.

� PDFs of scalar gradients (more widely encountered in turbulent mixing [30, 31], see also [8, 32]); while global

dissipation of scalar energy is linked to concentration gradients through equation 8, such a distribution does
allow to investigate whether dissipation occurs mainly with gradients quite close to the mean gradient (as can
be seen for instance with a gaussian distribution), or else is related to very intense local gradients, in which case
we refer to spatial intermittency. In the present study, each image (corresponding to a given time t) allows us
to obtain O(6. 106) values of the concentration gradient in each direction, further used to compute one PDF.

A. Scalar energy spectra

Instantaneous scalar energy spectra Eθ(k) are calculated from individual concentration fields at a given time by using

the 2D-Fourier-transform θ̂(kx, ky, t) of the reduced concentration field θ(x, y, t) = (C(x, y, t) − 〈C(x, y, t)〉)/Cstd(t);
in order to reduce aliasing due to non-periodic boundary conditions, a window-Hanning method was used. The 1D
isotropic spectrum was then obtained by averaging over each k = (k2x + k2y)

1/2.
Figure 2(a) shows typical instantaneous scalar energy spectra, plotted on log-log scale, for the three configurations,

reference case (without salt), salt-in and salt-out. Clearly, the small amount of salt visibly impacts the whole spectrum,
although small scalar scales are more affected than large scales (as for diffusion effects). In the salt-in case (solid
squares), the spectrum extends further towards large wavenumbers (small scales) than the reference spectrum. This
kind of behavior would also be observed if considering the concentration spectrum of a species that diffuses less than
the colloid we used. Indeed, since diffusion is directly related to scalar dissipation through equation 8, a smaller
diffusion coefficient D (therefore a larger Péclet number) implies that the final scalar dissipation occurs with larger
concentration gradients, i.e. at an even smaller lengthscale: the spectrum would also be shifted towards larger
wavenumbers. In the salt-out case, the effect is reversed, with a shift towards smaller wavenumbers. As a comparison
and in order to show the influence of a much smaller Péclet number, we have also plotted in the figure the spectrum
of fluorescein, although it was divided by 10 for clarity.
The effect is even clearer in figure 2(b) when looking at the term k2 Eθ(k), proportional to the scale by scale dissi-

pation budget: diffusiophoresis obviously affects all lengthscales ranging roughly from the centimeter (k ≥ 0.8mm−1)
down to the smallest scales resolved. Quite remarkably, this demonstrates that diffusiophoresis can indeed influence
mixing processes way beyond its nanometric roots or its micrometric classical influence. Combined with chaotic
mixing multi-scale process, it can spread over more than 7 orders of magnitude in length scales and affect the global
system.
However one should note that the previous diagnosis relies on an instantaneous analysis: while the flow is time

periodic, the large scale concentration patterns –and therefore the large scales of the associated spectra– also vary
with time, as can be appreciated on the movie included as supplemental material [16]. Indeed the effect is not always
as pronounced as in figure 2; at some (rare) moments of the periodic cycle the effect is even reversed, as also found
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Figure 3: Reference case with colloids (no salt); (a): instantaneous reduced gradient x-component, gx = (Gx − 〈Gx〉)/Gx|std,
where Gx = ∂C/∂x (at time t = 293 s). (b): time evolution of log(PDF) of all reduced gradient components gi, where gi stands
for gx and gy (PDF(gi) = 1/2[PDF(gx) + PDF(gy)]). The dotted line at t = 150 s corresponds to the moment when PDFs
become reasonably periodic in time, so that time-averaging is conceivable.

in our numerical simulations [13]. Because most of the scalar energy is contained in the largest scales (hence in the
smallest wavenumbers k), and because the large concentration scales vary with time, it is not easy to obtain from the
spectra a time-averaged parameter that would accurately measure a global effect of salt. As observed in the spectra,
small scalar scales are more affected by diffusiophoresis: we therefore propose to investigate the scalar gradients, so
as to obtain a quantitative comparison that considers a global effect over time.

B. Concentration gradients

In order to obtain the concentration gradients G = ∇C, a given image of the concentration field (corresponding
to a given time t) is first filtered using a Gaussian kernel to get rid of potential noise: filtering over two pixels
(≈ 40µm) is fairly enough to obtain the gradients with great accuracy. Then we measure the two components of the
concentration gradients, Gx = ∂C/∂x and Gy = ∂C/∂y at each point of the image. For component x (respectively
y), we calculate the mean gradient component over the whole image 〈Gx〉 (respectively 〈Gy〉), and also the standard

deviation Gx|std = 〈(Gx − 〈Gx〉)2〉1/2 (respectively Gy|std). In the following, we investigate the reduced gradient
component gi:

gi = (Gi − 〈Gi〉)/Gi|std , (9)

where i stands for x and y. In figure 3a we plot the reduced gradient x-component gx at a given time (t = 293 s,
which corresponds to 2 1/4 periods of the flow-field) in the reference case (no salt). Note the very large amplitude
range from −15 to 15, indicating that the spatial fluctuations of the scalar concentration gradient are not Gaussian
(events of large amplitude are more likely to happen than in a Gaussian case, which is commonly referred to as
spatial intermittency). This is reminiscent of the intense and intermittent concentration gradient fronts produced by
the mixing process, that are well captured when computing this quantity. This results in stretched PDFs of scalar
gradient as it will be shown later in figure 4b. While gx and gy have equivalent statistics, it is interesting to consider
the mean statistics that are even better converged: figure 3b shows the PDF of the normalized gradient component
gi, PDF(gi) = 1/2[PDF(gx) + PDF(gy)], as a function of time (one PDF every second). In the experiment, after a
transient mixing phase where the initial spot of marked dye begins to spread in the whole domain (roughly one period
of the flow-field T ), the global patterns become almost periodic with time (with period of the flow-field), i.e. have a
similar shape each period. This is also visible in figure 3b for times t ≥ 150 s (shown with a dotted line in the figure),
where the PDFs have a similar shape every period T = 120 s, with abrupt events occurring typically every T/4 , i.e.
associated with a different phase of the periodic protocol (figure 1b). In the sequel we consider time-averaged data,
denoted by an over-bar, averaged on the interval of time 150 s ≤ t ≤ 470 s. We can now compare cases with or without
salt.
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Figure 4: (a) Taylor scale of scalar gradients, λ̄, defined as the time-average of λ = 2Cstd/
√

G2
x|std +G2

y|std. The arrow

indicates the effective Péclet number defined as the corresponding reference Péclet number that leads to the same value of λ̄.
(b): time averaged PDF of reduced scalar gradients gi, PDF(gi). Open symbols stand for cases without salt. ◦: reference case
(no salt); �: salt-in; �: salt-out; ▽: fluorescein. For sake of clarity dextran is omitted in this plot.

For each image (i.e. for each time), we define the Taylor length scale associated with concentration gradients as

λ = 2Cstd/
√

G2
x|std +G2

y|std, and consider its time-average value λ̄ (averaged over 150 s ≤ t ≤ 470 s) in figure 4a.

When mixing without salt is considered (open symbols, corresponding to cases without any diffusiophoretic effect),
λ̄ roughly follows a decaying power-law with Péclet number. In the salt-out case, λ̄ is clearly greater than in the
reference case. We can define an effective Péclet number as the corresponding reference Péclet number that leads
to the same value of λ̄ (as suggested by the arrow); we obtain a much smaller effective Péclet number than for the

reference case, Pesalt−out
eff ≈ 8. 105, that has to be compared to Pe ∼ 6. 106. In the salt-in case, the effect is less

clear; this may be due to the very definition of this quantity, only based on std values of concentration and gradients
(second order statistics), which are not as sensitive to the intermittency of the concentration field as are higher order
moments. In order to check this hypothesis we plot in figure 4b the time-average of the instantaneous PDF(gi),
denoted by PDF(gi), with or without salt; for sake of clarity we omitted the plot for dextran. When first comparing
the cases without salt (open symbols, corresponding to colloids and fluorescein mixing statistics), we recover the
usual enhancement of small scale scalar intermittency with increasing Pe [30]: the wings of the PDF, plotted on a
semi-log scale, are much higher, suggesting that events of large amplitude are more likely to happen. When salt is
added (closed symbols), once again we recover (with a time-averaged plot rather than the instantaneous ones of figure
2) that the salt-out configuration corresponds globally to a smaller effective Péclet number. In the salt-in case, we
observe the effect of a larger Péclet number for strong values of gradients, although the plot is hardly distinguishable
from the reference case for −15 ≤ |gi| ≤ 15 (which explains indeed why the two corresponding points are so close
in figure 4a). Because the effect of intermittency is more visible on the fourth moment than on the second one, we
propose to calculate the flatness of this time-averaged distribution. Indeed, the quantity g4i PDF(gi), plotted in figure
5a, shows a much pronounced effect in the salt-in case. This is even more visible when considering the flatness F
of the distribution shown in figure 5b: while the flatness in the cases without salt remarkably follows an increasing
power-law with the Péclet number, the salt-out case rather corresponds to an effective Péclet number roughly the
same as the one found with the second moment of gradients (λ̄), Pesalt−out

eff ≈ 106 (Pesalt−out
eff /Pe ∼ 1/6), while the

salt-in case leads to Pesalt−in
eff ≈ 2. 107 (Pesalt−in

eff /Pe ∼ 3).

C. Discussion

Overall, our experimental results show that nano-scale diffusiophoresis affects large particles mixing at the macro-
scale. While the results were quantified above using an effective Péclet number, it must be kept clear that the
underlying mechanism is not diffusion. Rather, it is related to compressible effects through the diffusiophoretic
velocity which is not divergence-free: ∇ · vdp = Ddp ∇2 logS is generally not zero in the presence of salt gradients.
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Figure 5: (a): g4i PDF(gi), where PDF(gi) is the time-averaged PDF of gi for the cases under study. (b): flatness of the time
averaged PDF, F = (

∫

g4i PDF(gi) dgi)/(
∫

g2i PDF(gi) dgi)
2, with ‖gi‖ ≤ 30). The arrows indicate the effective Péclet numbers

defined as the corresponding reference Péclet numbers that lead to the same flatness. Open symbols stand for cases without
salt. ◦: reference case (no salt); �: salt-in; �: salt-out; △: dextran; ▽: fluorescein.

Thus, although the colloids are transported by the total velocity field v + vdp (equation 2), the effect is expected to
be more complex than a large scale effect through a large ratio of velocity amplitudes Vdp/V . Indeed, using an order
of magnitude estimate, one can prove this ratio to be less than 1% here: from equation 3, we obtain

Vdp ∼ Ddp

ℓs
, (10)

where ℓs is the typical length-scale of salt concentration gradients, which results from a competition of contraction
by the chaotic flow-field and diffusion. Because the salt is not coupled to the colloids, it obeys [22]:

ℓs ∼
L√
Pes

, (11)

where Pes is the Péclet number of salt. Finally, from equations 10 and 11, we obtain:

Vdp

V
∼ Ddp√

Dc Ds

Pe−1/2 ; (12)

this order of magnitude is in accordance with what we found numerically [13] (with the parameters used for our
numerical study we obtain from equation 12 that Vdp/V ∼ 4. 10−3 while we found numerically 6.5 10−3 at Pe =
6.5 104); in our experiment we obtain an even smaller ratio, Vdp/V ∼ 2.2 10−3.

Although useful and convenient, the effective Péclet approach is only approximate, and is more appropriate in the
salt-out configuration where mixing is enhanced. In that respect, it is quite remarkable that the effective Péclet for
the salt-out case is indeed robust against the experimental observable used, either the Taylor scale of scalar gradients
or the flatness of the distribution. In the salt-in case diffusiophoresis acts against diffusion, effectively inducing an
“anti-diffusion” that strengthens gradients at early times. Indeed we have shown in our numerical work [13] that
a global parameter like the standard deviation of concentration σ could increase at small times in the salt-in case,
whereas diffusion can only cause σ to decrease with time (equation 8). This is the reason why salt-in characteristics
are not easily observed in averaged quantities, and require going to the fourth order moment of the distribution of
gradients, rather than the Taylor scale associated to the second moment. Finally, because diffusiophoresis is related
to compressible effects, one could wonder if the use of an effective Péclet number is relevant here. A first hint can
be found in the concentration spectra in figure 2 (hence in the spatial structures of the concentration field): this
multi-scale approach shows that diffusiophoresis affects all scales of the concentration field, although small scales are
even more affected. Because the same could be said for diffusion, the effect of diffusiophoresis on the concentration
field has some similarities with diffusive effects. Another hint derives directly from equation 12: the relative transport
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Pe Ddp/
√
Dc Ds Pesalt−out

eff /Pe Pesalt−in
eff /Pe

Sine-flow (numerical) 104 1 1/2 3/2

Herringbone mixer (experimental) 9. 104 5.56 1/40 20

Present experiment 6. 106 5.56 1/6 3

Table II: Three cases where diffusiophoresis is combined to chaotic advection; for the numerical case and the micro-mixer, we
used a Péclet number in the middle-range of those investigated.

by diffusiophoresis compared to that by the velocity field decreases with the Péclet number. This is also true for
diffusion compared to advection from the very definition of the Péclet number! This provides a clue as to why it is
useful and meaningful to introduce an effective Péclet number when considering the long time effects, and to try to
quantify the combined effects of diffusiophoresis and diffusion with that effective approach.
In the following we collect results obtained with diffusiophoresis in chaotic advection with different velocity fields:

the herringbone micro-mixer [3], the sine-flow [13] and the present flow.
Although the flow-field in the herringbone micro-mixer is stationary and 3-dimensional, it may however be compared
favorably with what can be expected in a two-dimensional time-periodic flow: indeed, Stroock & McGraw [33]
proposed an analytical model in which the cross-section of the channel is treated as a lid-driven cavity flow; they
showed that this model was able to reproduce the advection patterns that were observed experimentally in their flow,
whose dimensions are about the same as in Deseigne et al. (roughly 200µm wide, 100µm high). Here, because of the
spatial periodicity in the axial direction, the corresponding coordinate plays the role of time. Correspondingly, the
Péclet number in the micro-mixer has to be based on the cross-sectional velocity rather than on the axial velocity.
With their model, Stroock & McGraw could also estimate the magnitude of the velocity ucross in the cross-sectional
flow relative to the axial velocity U : taking ucross ∼ 0.1U , with a channel width w = 200µm and U = 8.6mm/s, we
obtain a colloidal Péclet number Pe ∼ 9. 104.
All the results are summarized in table II. In order to compare numerical and experimental results, we introduced the
diffusiophoretic coefficient Ddp (equal to 290µm2 s−1 in both experiments) using a dimensionless parameter; because
of equation 12 , we chose to compare Ddp/

√
Dc Ds.

It is not easy to compare those three cases: not only are the Péclet numbers different, but also the diffusiophoretic
coefficient is higher in the experiments. Note also that the present flow is an open flow (〈C〉(t) 6= cst), while the others
are not: for the micro-mixer, 〈C〉(t) = cst in all planes perpendicular to the axial direction, and the sine-flow uses
periodic boundary conditions. However, in all cases, the effect is more important in the salt-out than in the salt-in
case. Moreover, for the two experiments where the same colloids and salts were used, we obtain quite a remarkable
result, i.e. Pe2 ≃ 2Pesalt−out

eff Pesalt−in
eff .

IV. SUMMARY

In this article we have studied experimentally the effects of diffusiophoresis on chaotic mixing of colloidal particles
in a Hele-shaw cell at the macro-scale. We have compared three configurations, one without salt (reference), one with
salt with the colloids (salt-in), and a third one where the salt is in the buffer (salt-out). Rather than the decay of
standard deviation of concentration, we have used different multi-scale tools like concentration spectra, second and
fourth moments of the PDFs of scalar gradients, that allow for a scale-by-scale analysis; those tools are also available
in open flows, when marked particles can go in and out the domain under study.

Using scalar spectra, we have shown qualitatively that diffusiophoresis affects all scalar scales. This demonstrates
that this mechanism at the nano-scale has an effect at the centimetric scale, i.e. 7 orders of magnitude larger. Because
the smallest scalar scales are more affected, this results in a change of spatial intermittency of the scalar field: using
second and fourth moments of the PDFs of scalar gradients, we have been able to quantify globally the impact of
diffusiophoresis on mixing at the macro-scale. Although diffusiophoresis is clearly induced by compressibility effects,
we have explained how the combined effects of diffusiophoresis and diffusion are consistent when averaging in time

with the introduction of an effective Péclet number: the salt-in configuration corresponds to a larger effective Péclet
number than the reference case, and the opposite for the salt-out configuration. Because this results from a time-
averaged study, and not from an instantaneous diagnostic, this demonstrates that diffusiophoresis, a mechanism which
originates at the nanoscale, has a quantitative effect on mixing at the macro-scale.
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Appendix A: Absence of gravity currents, stratification of salt and associated migration of colloids

It may be thought that given the density difference between pure and salted water, we could observe gravity
currents inside the Hele-shaw cell at the first stages of the time-periodic flow (before salt begins to mix due to chaotic
advection); the arguments given in this appendix prove that this is not the case.

A first –and indirect– proof is that such an additional velocity field would lead to an enhancement of mixing in all
cases, while both an enhancement (salt-out) and a suppression (salt-in) are observed.
A second argument can be obtained from the experiment of T. Séon et al. [34], who studied the relative inter-

penetration of two fluids of different densities in a nearly horizontal configuration. While their flow takes place in a
tube rather than a Hele-Shaw cell, they consider fluids of the same viscosity, just like in the present experiment. The
Atwood number in their case, At = (ρ2 − ρ1)/(ρ2 + ρ1), where ρ1 and ρ2 are the densities of the fluids, ranges from
10−3 to 4 × 10−2. In our case At = △ρ/(2ρ) = β△S/2, where ρ is density, and β is the expansion coefficient; with
β = 2.4 10−2M−1 for LiCl [35] and △S = 20mM, we obtain At ∼ 2.4 × 10−4, which makes our configuration more
stable from this point of view. In the particular case of a perfectly horizontal tube, they obtain a decelerating front,
whose initial speed is based on the viscous scales, that stops after some time. In our experiment, because of the ver-
tical parabolic profile of the Hele-Shaw flow, such a velocity vν would scale like △ρg ∼ 12µvν/h

2 (where g is gravity),
i.e. vν ∼ β△Sgh2/(12ν) ∼ 6mm.s−1, superimposed to the pressure-driven basic flow. While the mean velocity of the
front in the reference case is of order 2mm.s−1, this phenomenon (even if transitory) would lead to a velocity three
times higher that would significantly change the positions of the fronts, between reference case and salt-in or salt-out;
however we did not observe any shift in the positions of the front between those three configurations.

The reason may be found in an article by L. Talon et al. [36]: In their computational paper, the flow takes place in a
Hele-Shaw cell with a mean flow, like in our experiment, and fluids with different density and viscosity are considered.
Because of gravity, they observe that the displacement front experiences a transitory state of higher velocity before
reaching its stationary value; however, when the gravity parameter F = △ρgh2/(µU), which measures gravity versus
viscous forces, is decreased towards unity, the transitory disappears. In our experiment this parameter, based on the
velocity at the entrance of the chamber, is of order unity. Thus the flow-field in the three configurations (salt-in,
reference or salt-out) can be considered as identical, besides the density differences.
Past the first stages, the displacement front is stretched and folded by chaotic advection, which causes salt to begin
to mix and stratify through a competition between gravity and diffusion: a vertical gradient of salt appears, that can
settle a colloidal movement because of diffusiophoresis. Following equation 3, the vertical diffusiophoretic velocity
vdp is of order Ddp ∇S/S ∼ Ddp/h. The typical time scale τvertdp associated to vertical diffusiophoresis is the time

taken for a particle to go from half-depth where it is injected down to the bottom, hence τvertdp ∼ h2/(2Ddp) ∼ 8 h.

Although this is rather long, we could observe, when using a very thin laser sheet (300µm-thick) that colloids tended
to disappear below the sheet at large times in places of high stretching and folding rate. This is why we chose to
illuminate the whole cell.
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