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1 Introduction
The reader should see [K2] for the notation used in this paper.

Definition 1.1 We say that a map f : 2<% — [0, 1] is a martingale if f(s) = w for each
s €25, The set of martingales is denoted by M and is a compact subset of [0, 1]2<w (equipped with
the usual product topology).

This terminology is not the standard one, but the set M can be interpreted as the set of all discrete
martingales (in the classical sense) taking values in [0,1], as follows. If s € 2<%, then

Ng:={Be2”|sCp}

is the usual basic clopen set. Let f € M. If n € w, then let S,, be the o-algebra on 2% generated by
{Ns | s€2"}, and f,,:2* — |0, 1] be defined by f,, () := f(B|n). Then the sequence (fy,)new is a
discrete martingale taking values in [0,1] with respect to the sequence of o-algebras (S,,)necw and the
usual Lebesgue product measure A on 2¢. Conversely, if (fy,)ncw is any such martingale, it can be
viewed as an element of M by setting f(s) := f|(c) if & € Ns. This definition is correct because
J|s|> as a function measurable with respect to S|, has a constant value on N.

Definition 1.2 Let f be a martingale and 5 € 2%. The oscillation of f at (3 is the number

osc(f, B)=infnen supy g>n | f(Blp)—f(Bla)l.
The set of divergence of f is D(f):={8€2“ | osc(f,3)>0}.

By definition, if f is a martingale, then
BeD(f) & Irew VNew Ip,q=N |f(Blp)—f(Bla)|>27"

This shows that D(f) € 9. Moreover, D(f) has A-measure zero, by Doob’s convergence theorem
(see Chapter XI, Section 14 in [D]). So it is natural to ask whether any Zg subset of 2“ with \-
measure zero is the set of divergence of some martingale (this question was asked by Louveau). We
answer positively:

Theorem 1.3 Let B be a subset of 2“. Then the following are equivalent:
(a) B is 2% and has \-measure zero,
(b) there is a martingale f with B=D(f).

Definition 1.4 Let I be a class of subsets of Polish spaces, X,Y be Polish spaces, and U CY x X.
(a) We say that U is Y -universal for the I subsets of X if U/ cT'(Y x X ) and T'(X)={U, | yeY'}.

(b) We say that U is uniformly Y -universal for the I" subsets of X if I/ is Y -universal for the T’
subsets of X and, for each S € T'(w*” x X), there is a Borel map b:w” —Y such that S, = Uy for
each acw”.

Corollary 1.5 Let G be a G subset of 2¥ with \(G) =0. Then the set {(f,5) e MxG | € D(f)}
is M-universal for the 28 subsets of G.



In fact, we prove an effective and uniform version of the implication (a) = (b) in Theorem 1.3.
In particular, we can associate, via a Borel map F’, a martingale to a code « of an arbitrary (G5 subset
G of G (as in the previous corollary), in such a way that G = D(F (a)). A consequence of this is the
following:

Theorem 1.6 The set P of everywhere converging martingales is TI1-complete.

These statements are in the spirit of some results concerning the differentiability of functions due
to Zahorski and Mazurkiewicz (see Section 4 for details). In fact, P is H%—complete in a uniform
way, which allows to derive some universal and complete sets for the whole projective hierarchy, in
spaces of continous functions, starting from P. More precisely, let P; := [0, 1]2@ and C:=P. We
define, for each natural number n>1,

e the space P,,1:=C(2“, P,,) of continuous functions from 2* into P,,, equipped with the topology
of uniform convergence (inductively),

e Cpi1:={h€P,11|V3€2¥ h(B)¢C,} (inductively),
o U,:={(h,B)€Pri1x2¥ | h(B)€Cy}.
We prove the following:

Theorem 1.7 Let n>1 be a natural number. Then
(a) the set U, is uniformly P, 1-universal for the HTll subsets of 2%,
(b) the set C,, is TI. -complete.

In fact, our method is more general and works if we start with a IT{ set which is complete in a
uniform way.

Let f be a martingale. As D(f) has A-measure zero, we can associate to f the partial function
(f) defined A-almost everywhere by ¥ (f)(5) :=1lim;_o f(B|l). The partial function ¢ ( f) will be
called the associated partial function. The martingale f is in P if and only if ¢(f) is total, in which
case 1(f) is called the associated function. Using the work in [B-Ka-L] and [K2] about spaces of
continuous functions, we prove the following:

Theorem 1.8 (a) The set of sequences of everywhere converging martingales whose associated func-
tions converge pointwise is TI3-complete.

(b) The set of sequences of everywhere converging martingales whose associated functions converge
pointwise to zero is H%-complete.

(c) The set of sequences of everywhere converging martingales having a subsequence whose associ-
ated functions converge pointwise to zero is X3-complete.



2 33 sets of measure zero

Notation. In the sequel, B will be a Borel subset of 2¥, and M will be a \-measurable subset of 2%,
If 3 € 2, then the density of M at 3 is the number d(M, ) :=1im;_; o %jﬁ)u) when it is defined.

Note that d(B, ) =1 if f € B and B is open. We first recall the Lebesgue density theorem (see 17.9
in [K2]).

Theorem 2.1 (Lebesgue) The equality A\(M) = X({8 € M | d(M,53) = 1}) holds for any X-

measurable subset M of 2%.

The reader should see [C] for the next lemma. We include a proof to be self-contained and also
because we will prove an effective and uniform version of it later.

Lemma 2.2 (Lusin-Menchoff) Let F be a closed subset of 2, and M O F' be a A\-measurable subset
of 2% such that d(M, ) =1 for each B € F. Then there is a closed subset C of 2* such that

(1) FCCCM,
(2) d(M, B)=1 for each f€C,
(3) d(C,B)=1 for each BEF.

Proof. If F'is 2¢, then we can take C':= F. So we may assume that F'is not 2*. We set s~ :=s|(|s|-1)
if ) # s € 2<%, Note that —F is the disjoint union of the elements of a sequence (Ns,, )nc., Where
N-N F # () for each n € w. Fix n € w. By Theorem 2.1,

MM NNy )=A({BeM NN, | d(MNN,,,B)=1}).

The regularity of \ gives a closed subset F), of 2* contained in {5€ M N Ny, | d(M N N, ,B)=1}
such that A\(F},) > (1-27")A(M NN, ). Weset C:=FULJ, ., I, which is closed since |s,,| — oo.

As Conditions (1) and (2) are clearly satisfied, pick 5 € F. Note that

AN\ C)=2s, 551 A(Ns, \C)
< Esngﬁu )‘(Nsn \Fn)

<X, 2801 27" ANsy )+ AN\ M).
This implies that the limit of /\()\]z[]@i;‘\l)c) is zero since d(M, §)=1. O

The next topology is considered in [Lu-Ma-Z], see Chapter 6.
Definition 2.3 The 7-topology on 2% is generated by
F:={M C2¥| M is \-measurable N\NGeM d(M,5)=1}.

The next result is proved in [Lu-Ma-Z], but in a much more abstract way. This is the reason why
we include a much more direct proof here, since it is not too long.
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Lemma 2.4 The family F is a topology. In particular, any T-open set is \-measurable.

Proof. Note first that F is closed under finite intersections, so that it is a basis for the 7-topology.
Indeed, let M, M’ be in F, and 3€ M N M’. Then we use the facts that

)\(MﬂMlﬂNB”):)\(MQNB”)—)\((MﬂNﬁu)\M/)
and A((M N Ng)\M') <A(Ng\M').

Let H be a subfamily of F, and H :=U7. We claim that there is a countable subfamily C of H
such that m := sup{\(UD) | D C H countable} = A(UC). Indeed, for each n € w there is D,, C H
countable such that A\(UD,,) >m—2"", and C:=J D,, is suitable. Let C:=UC.

new

Let € H, and M in H with 8 € M. Note that \(M U C) = \(C) (consider the family C U {M }).
Thus AM(M\C)=0. As d(M, ) =1, the equality d(M N C,3) =1 holds, and d(—C, ) =0. This
implies that H \ C' is contained in {5 ¢ C' | d(—C, ) < 1}, which has A-measure zero by Theorem
2.1. Therefore H\C has A\-measure zero and H=C U (H\C) is \-measurable.

Pick s € H, and M € H with 5 € M. Then d(M, ) =1, and thus d(H, 5)=1. Therefore H € F.
This finishes the proof. U

The next lemma is in the style of Urysohn’s theorem (see [Lu] for its version on the real line). We
include a proof to be self-contained and also because we will prove an effective and uniform version
of it later.

Lemma 2.5 Let C' be a closed subset of 2°, and G be a Gs subset of 2% disjoint from C such that
A(G)=0. Then there is a T-continuous map h:2* — [0, 1] such that hjc =0 and hig=1.

Proof. Let (F},),c. be an increasing sequence of closed subsets of 2* with union =G and Fy = C.
We first construct a sequence (C’ )new of closed subsets of 2% with F}, C C Cc-G,C 5 cC 1,

2n+1
and d(C L ,B) =1 for each e CL We first apply Lemma 2.2 to F':= FO and M := ﬂG which
on 2n
gives Fy C C'y C —G. Then, inductively, we apply Lemma 2.2 to F':=C 1 U F, 41 and M := -G,
on

which gives C 1 U F, 11 CC 1 C C =G such that d(C’ a ,B8)=1foreach f€C 1 .
on on on

Then we construct Czk+1 ,for 0 <k < 2"~ ! and n>2. This will give us a family (C 3 Jnew,0<k<2n
of closed subsets of 2¢. We want to ensure that C- C C¢r and d(C¢r, 3) =1 for each 5 eCeif ¢'<(.
We proceed by induction on n. We apply Lemma 2.2 to F':=C et and M := C _E , which gives

02k+1 such that C k41 CC2k+1 C C k ko d( ,,3) =1 for each 56 C2k+1, and d(C2k+1,ﬂ) =1

on—1

for each pselC et . This allows us to deﬁne h by

- [ 0ifBeG,
h(ﬁ)'_{ sup{¢ | BeC,}if B¢G.

It remains to see that & is 7-continuous (and then we will set h(3) := 1—h(8)). So let b € (0,1],
and 3 € 2¢ with h(8) < b. Note that there is ¢ < b with 2(8) < ¢, so that 8 ¢ C¢. If v ¢ Ct, then
h( ) < <b, so that =C¢ is an open (and thus 7- open since the 7-topology is finer than the usual one)
neighborhood of 3 on which < b. In particular,  is Borel.



~ Nowleta€[0,1). Itis enough to see that B:= {y €2 | h(7) > a} is T-open. So assume that
h(7) > a. Note that there are { >(’>a with h() > (, so that y € C; CC¢r € B. Thus d(Cyr, ) =1,
by construction of the family. As h is Borel, B is Borel, d(B, ) is defined and equal to 1. O

Remark. We in fact proved that / is lower semi-continuous.

h dX
Notation. If .:2* — [0, 1] is a \-measurable map and s € 2<“, then we set f h d\:= f]:\’S( N

Lemma 2.6 Let h:2¥ — [0, 1] be a T-continuous map, and 3 € 2“. Then

lim h dA=h(B).
l—o00 le

Proof. Let ¢ >0,and € M :=h"! (B (h(B), 5)). Note that d(M,~) =1 for each v € M since h is
T-continuous. As h is A-measurable, we can write

/ hd)\:/ hd)\+/ h dA.
Naji MNNg); Naji\M

AN \M)
Note that 0< [\ h AN ANy \M), s0 that 0= f b dA < 2GR

_ )\(M N N6|l) )\(Mﬂle)
][MmthdAe L(h(5)=e) AN (hB)+2) AN )

) A(MNN,
and we are done since (/\(Nimf)“) tends to 1 as { tends to oo. O

— 0. Similarly,

Now we come to our main lemma, inspired by Zahorski (see [Za]).

Lemma 2.7 Let G be a Gs subset of 2% with A-measure zero. Then there is a martingale f with
G=D(f) and {osc(f,B) | €2} {0} U [3,1].

Proof. Let (G),)e., be a decreasing sequence of open subsets of 2* with intersection G and Gy =2%

e We construct g, : 2 — [0, 1], open subsets G, G;* of 2, and a sequence (s7);er, of pairwise
incompatible finite binary sequences, by induction on n € w, such that, if S, :=X,<, (—1)7 9j»
(1) GGy 1 CG=Ujes, N CCLCGy A Gy=2",
(2) 9niG = L' A gnj-g: =0,
(3) gy, is T-continuous,
(4) 9n+1 < 9n,
(5) MGy N Neg) <27 3A(Np).
(6) \fN Sy, dA— S (B)|<273 if B€ G N Ngn.
We set go:=1, G, G :=2%, Io :={0} and sJ:=). Assume that our objects are constructed up to n.
We first construct an open subset G}, | | of 2 with GC G}, | CG* N Gyy1 such that
MGhia N Ng) <27 A(Nyg)
if j € I,. For each j € I,,, there is an open set O; with G N NS;L CO;CGpi1 N Ns? such that

MO;) <273\ (N n). We then set G}, 1 :=Ujeq, Oj-



We now apply Lemma 2.5 to C':= -G, ; and G, which gives a 7-continuous map £ :2% — [0, 1]
with h|ﬁG2+1 =0 and hjg=1. We set gn1:=min(gy, h), so that g, 11 satisfies (2)-(4).

By Lemma 2.6, lim;_, mel Sn+1 dX=S,1+1(B) for each 3 € G. This gives [(3) € w minimal
with |fNB\l(ﬁ) Spi1 dXN—S,1(B)| <273 and Ngjgy € G 41- The set G}y is the union of the

Ngji(s)’s, which defines I, and (s?“)je]nﬂ (Sn+1(8) is 0 if n is even and 1 otherwise when
BeQ).

e We then define a partial map foo : 2% — [0,1] by foo :=jew (—1)7g;. If BE€ G, then S,,(B) takes
alternatively the values 1 and 0, depending on the parity of 7, so that f, (/) is not defined. If 5 ¢ G,
then there is n such that 3 € =G}, | € =G 5 C ... This implies that f(/3) is defined and equal to
Sn(B). As 0<Zp<q (92p — g2p+1) = S2+1 < S2g = go+L1<p<q (92p —92p—1) < 9o, foo takes values
in [0, 1]. So f is a partial A\-measurable map defined A-almost everywhere since A(G) =0 (we use
Lemma 2.4).

e This allows us to define f:2<“ —[0,1] by f(s):= st foo dX. As A\(Ng)=2\(N,,) for each e € 2,

o dA o dA
f(s) :st foo dA= Iy I A(;{J)Vsl !/ = f(go) + f(gl) and f is a martingale.

o If 3¢ G, then there is n with € G, \ G, , so that f(5) =S, (3). By Lemma 2.6, k>n implies
that lim;_, fNﬁ” Sk+1 dA=Sk1+1(8)=Sn(B) since Sk is T-continuous. Note that, for each k >n,

‘ mel(foo_SkJ,_l) d)\| <G N Ngpp)
S Eﬁ‘lg85+1 )\(GZ-"-Q ﬂ NS§+1)
S Xgjigghe 2%74)‘(]\78?“)
SA(Ng)27
Moreover,

|f(ﬁ|l)_foo(ﬁ)|:|f]\[3“ Foo dA— foo(B)] :|fNB\l (foo—Sk41) d)\+mel Sk+1 AA—Sk1(5)|
<o kg fNB\l Sk+1 dA—=Sk+1(8)],

so that Timy_oq f(8]1)= fo(B), 05c(f, §)=0 and B¢ D(F).

o If € G and n € w, then there is j cw with S € Ns?. Note that

fM=F fodr=1 S, d>\+][ (foo=Sn) dA
NS;L NS;L Ns

n
J

and | [y (foo=8n) AN < X(Gjpq N No) < gA(Nep), s0 that | fy  (foo —5n) dA| < 5. By (6),
J J

|f(s7)—Sn(B)] < t+1=1. As S,(3) takes infinitely often the values 1 and 0, osc(f,3) > % and
BeD(f). 0

The main result will be a consequence of the main lemma and the following.



Lemma 2.8 Let (fy,)new be a sequence of martingales such that

fosc(fu, 6) | (n, ) €wx 2} €{0} L[5, 1]
Then there is a martingale f with D(f)=J,c., D(fn).
Proof. We first observe the following facts. Let g, h:2<“ — R be bounded, 3 €2“ and a € R.
(1) osc(g+h, 8) <osc(g, B)+osc(h, B).
This comes from the triangle inequality.
(2) osc(ag, B) = al-osc(g, ).
(3) osc(g+h, ) =osc(h, B) if osc(g, B)=0.

By (1), osc(h, B) <osc(g+h, B)+osc(—g, B) =o0sc(g+h, B) <osc(g, B)+osc(h, ) =osc(h, ),
so that osc(h, ) =osc(g+h, ).

(4) osc(g, B) <a if g(B]l) €0, a] for each | € w.
e We set D,,:= D(f,) foreachncw, and f:=%, ¢, 47" f,. Note that f is defined and a martingale.

o If 3¢&|J,,c., Dn.thenosc(fy,3)=0 for each n €w. In particular, osc(4~" f,,, ) =0 for each n € w,
by (2). Let e >0, and M €w with X537 47" <e. By (1), osc(X,<pr 47" fn, ) =0. By (3) and (4),
osc(f,B)=o0sc(Xpsnr 47" fn, B) <Xpsnr 47" <e. As e is arbitrary, osc(f, 3) =0, S ¢ D(f), which
shows that D(f) CU,c, Dn-

olf pe UnEw D,,, then let m be minimal such that 8 € D,,,. Note that
[=2nem 4 ot 47" fn+ Ensm 47"
By (2) and (3), osc(f, 8) =0sc(4™"™ fr+Zp>m 47" fn, 8). By (1), (2) and (4),
05e(f, 8) 2 054 o, ) =056 (Ssm 4" o, ) 247 47250,

Thus 5 € D(f). O

3 Effectivity and uniformity

- We refer to [M] for the basic notions of effective descriptive set theory. We first recall some material
present in it.

e Let (pn)new be the sequence of prime numbers 2, 3, ...

e If I cwand s €W, then 5:=< 5(0), .. Dy €w codes s (if [ =0,

then <>:=1).

o If o €w” and | €w, then a( ):=< a(0),...,a(l—1) >€ w codes a|l €w', and o* is defined by
removing the first coordinate: o™ := («a/(1 ,a(2),...).



o If K € {2,w}, then < .,. >: (k)% — k¥ is a recursive homeomorphism with inverse map
o ((@)o, (@)1) defined for example by (). (n):=a(2n+e) if (n,e) Ew x 2 (we will also consider
recursive homeomorphisms < ., .,. >:(k*)3 = k% and < ., ., ... >: (k%)% — k).

e If u € w, then Seq(u) means that there are [ € w and s € w' (denoted by s(u)) such that
u=< 5(0),...,8(I—1) >. The natural number (u); is s(¢) if i < [, and 0 otherwise. The number
[ is the length of u and is denoted by lh(u). If k <1, then u(k) :=< s(0),...,s(k—1) >, so that
u(l) = u. The standard basic clopen set is N* := {f € 2¥ | Vi < Ih(u) B(i) = (u);}. We set
u” =< (o, s (W)pyy—p > (W :=<>if Ih(u) <1).

e Let X be a recursively presented Polish space. Then we will consider the effective basic open

set N (X, ) = Bx (r((u),)o: [afit):

e Let n > 1 be a natural number. A subset 7" of w” is a tree if Seq(u;) and h(u;) =1Ih(ug) for each
(0, .., un—1) €T and each i <n, and (ug(k), ..., un—1(k)) €T if (ug, ..., up—1) €T and k <Ih(u).

o The next result is a part of 4A.1 in [M].

Theorem 3.1 Let m > 1 be a natural number, and B € 59 (w” X (w”)m). Then there is a recursive
subset T of w*” X w™ such that (o, a1, ...,00,) € B < € w (a,a1(l),...,am(l)) ¢ T, and
To:={(ug, o Un—1) EW™ | (a,uq, ..., umm—1) ET'} is a tree for each o € w®.

e The next result is a part of 4A.7 in [M].

Theorem 3.2 Let X be a recursively presented Polish space and B € A}(X). Then we can find a
recursive function T:w* — X and C € IT1?(w®) such that T is injective on C and 7|C]= B.

- We then recall some material from [L].

Notation. Let X be a recursively presented Polish space. Recall that there is a pair VWX, CX) such
that

e WX Cwisa II} setof codes for the Al subsets of X,

o CX Cwx X is II! and AL(X)={CYX | n€ WX}, which means that CX is “universal” for the
Al subsets of X,

o the relation “ne WX A (n,z)¢C*”is I} in (n, z).
If X =w* x 2%, then we simply write (W, C):= (WX, CX).
The next result will be extremely useful in the sequel.

The uniformization lemma. Let X, Y be recursively presented Polish spaces, and P € Hll(X xY).
Then the set PT:={xe€ X | 3ye At(z) (z,y)€ P} is I}, and there is a partial I -recursive map
f: X =Y such that (:U, f(:r:)) € P for each x € P*. If moreover S C P* is a X} subset of X, then
there is a total A}-recursive map g: X —Y such that (m, g(x)) € P for each x € S.

- The following definition is inspired by 3H.1 in [M].



Definition 3.3 (a) Let I" be a class of subsets of recursively presented Polish spaces, and T be the
associated boldface class. A system of sets U~ € T'(w* x X), where is X is a recursively presented
Polish space, is a nice parametrization in I" for T if the following hold:

(DT(X)={Uy | acw?},

(2) T(X)={UX | a€w” recursive},

(3) if X is a recursively presented Polish space, then there is R : w* X w* — w* recursive such
that (a,y, z) €U X & (R, ), z) eUX if (a7, ) Ew® X w x X.
(b) If U belongs to a nice parametrization, then we will say that U is a good universal set .

(c) If U satisfies all these properties except maybe (3), then we will say that U is a suitable universal
set .

By 3E.2, 3F.6 and 3H.1 in [M], there is a nice parametrization in HT} for H,ll, for each natural
number n > 1.

- We now recall two results that can essentially be found in [K1]. The first one is Theorem 2.2.3.(a)
(see also [T1]).

Theorem 3.4 (Tanaka) Let U € X} (w* x w*) be w*-universal for the analytic subsets of w*. Then

L) :={(a,p) €w® xw | A(Ua N 29)> 207} is T,

Corollary 3.5 Let B A(w” x2%).

(a) The map \g : w* — R defined by A\g(a) := \(B,) is Al-recursive, and the partial function
(n, @) N(Cp.a) is I} -recursive on its domain W x w*.

(b) Let D Cw, Op € X (wxw“x2%), and Oy € II} (wxw*x2¥) be such that A\((Og)n,a) =A((O1)n.a)
if n € D. Then the partial map \o : D X w* — R defined by \o(n, a) := A((OO)n,a) is X} -recursive
and IT} -recursive on its domain.

(c) The partial map dg:w“ x2% — R defined by dg(c, 3) :==d(Ba, B) is Al-recursive, and the partial
map (n, o, B)+d(Cp.a, B) is II!-recursive on its I domain

{(n,a, B) eEWxw® x2% | d(Cp o, ) exists}.

(d) Let h:w® x 2 — R be Ai-recursive taking values in [0, 1]. Then the partial map iy :w® X w — R
defined by ip, (o, u):= [y h(a,.) dX is Ai-recursive on its AY domain w* x {u€w | Seq(u)}.

Proof. (a) It is enough to see that the relations Pp(c, p) < A\(Bg) >1p:=(—1)P)o. (p(i)jrl and

Qp(a,p) & AN(Ba)<rp

are A} to see that Ap is A}-recursive. Note that there is ¢ : w* — w recursive with 74, ) =7p— =7

1
Thus
Qp(a,p) = ecw A(BO‘)STP_H%

& 3lew ~(MBa)>1p—137)
= Hlew _‘PB(aa(?(Z%l))’

so that it is enough to see that Pp is Al.
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e Now let S € I (w” x (w*)?) be a good w*-universal for the analytic subsets of (w*)?. We set

Ula,v) < S((@)o, (@)1,7).

so that U € X} (w¥ x w¥) is w®-universal for the analytic subsets of w*”. Let A be a X subset of
w* x 2¥. Then there is ap €w" recursive with A= S, so that

vEAL & (g, 0,7)ES & (< ag, a0 >,v)€U.
This implies that the relation R (o, p) < A(Aq) > 1), equivalent to
((p)oisodd A (p)1>0) V ((poiseven A (< ag,o>,< (p)1,(p)2 >)€L(U)),

is Y, by Theorem 3.4.

e In particular, this applies to A:= B, so that Pg is X{. Now note that
Pp(a,p) & )\((ﬂB)a) <l-r, & QﬁB(a, (b'(p)),
for some ¢’ :w— w is recursive, so that Pp is I} by the previous computation.
e Weset C':={(7,8) €w” x2¥ | v(0)eW A (v(0),7*,B8) €C}. AsC'is I},
A:={(a,p)ew’xw | A((=C")a) >1p}
is X, by the previous discussion. So let n € W. Note that

MCna)>Tp € AM—Cha) <1—71p & AM(=C)na) <1—7p

s dlew M(—Cna) < 1—7“p—lJ%1 s dlew (na,¢"(p1)) ¢ A,

for some recursive ¢ : w? — w. Similarly, the relation “A(C,, o) < 7,,” is II{ in (n,a, p) since the
relation “n€W A (n,«,8)¢C” is II}, so that (n, &) A\(Cy.q) is II-recursive on W x w®.

(b) Let A := {(a, 8) € w* x 2% | (a(0),a*,8) € Op}. Note that A is Xl. By (a), the relation
Ra(a,p) & A(An) > 1p is XL, Therefore the relation Ro,(n,a,p) < Ra(na,p) is X} too.
Moreover, Ro,(n, o, p) < M(Oo)n,a) >7p < Ao(n, o) >1p.

e Assume now that n € D. Then as above there is ¢ :w? — w recursive such that

Xo(n,a)>r, < )\((Ol)n@) >r, & A((—Ol)ma) <l-rp
& Ilew M(—01)ne) <1-rp—pg © Jlew _|<)\((_‘Ol)n,a) >7”¢~(p,l))
& Jlew "R, (n,a, ¢”(P7l))’

which shows the existence of Ry, € I} such that Ao(n, @) >1, & Ry, (n,a,p) if ne D.

e Assume that n € D. Then there is ¢’ : w — w recursive such that
Ao(1,0) <7 A((OD)na) <7y & A(~01)na) > 17 & Bo, (m . (0)):

which shows the existence of R{, € X such that \o(n, a) <rq & R} (n, o, q) if ne D.
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e Assume that n € D. Then there is ¢ : w? — w recursive such that

Xon,a)<r, & )\((Oo)n,a) <rgedlew )\((Oo)n@) < 1—7@—%

& 3ew ~(A(Oo)na) >791(4p)) © €W ~Roy(n,,6"(,1)),
which shows the existence of R} € II} such that A\o(n, @) <rq < R{ (n,a,q) if neD.

e Finally, r, <Ao(n,a) <ry & Ro,(n, o, p) A R, (n, a,q) and
rp<Xo(n,a) <rq < Ro,(n,a,p) A Rg,(n, , q)
if n € D, which shows that Ao is X'-recursive and II;}-recursive on D X w.

(c) We first prove the following. Let X, Y be a recursively presented Polish spaces and g: X xw—Y
be a Al-recursive map. Then the partial map h: X — Y defined by

h(x) =limy o0 g(x’ l)
when this limit exists is Al-recursive.

Indeed, the domain D of his {z€ X | Vrew ILew Vk,I>L dy(g(z, k), g(z,1)) <277}, s0
that D is Al If x € D, then h(z) € N (Y, u) is equivalent to

Ip,gew qp < ((U)1)1 AN dLew VI>L g(x,l)eN(Y,<0,< ((u)l)o,p,q >>)

+1 " ((u)1),+1

and we are done.

e We set B := {(a,’y) EwY x 2% ’ ((04)0,"}/) €B A ye N(a)’l‘\(a)1(0)}’ so that B, N N6|l :B/<a,lﬁ>
and B’ is A}. By (a), the map g : w* x 2% x w — [0, 1] defined by g(a, 8,1) :=27'A\(Bq N Ngy;) is
Al-recursive. By the previous point, the partial map h:w*“ x 2« — [0, 1] defined by

h(e, B):=1im;_,00 27 A(Ba N Ngyp)
when it exists is also Al-recursive. But h=dp.
e Fix n€W. Then there is g(n) € W such that
Comy=1{(7,0) €w® x2 | (n,(7)0,0)€C A (7)1](7)1(0) S}
Moreover, we may assume that g is II{!-recursive on W, by the uniformization lemma. As II! has
the substitution property, the map ¢’ : (n, «, 5,1) — 2_1)\(Cq(n)7<a715>) =271\ (Cpa N Npgy) is II!-

recursive on W xw® x 2% xw. As above, the map

W:(n,a, B) = 1m0 27 AN(Cha N Nap) =d(Cpia, B)

is II-recursive on the II}! set {(n, o, B) EWxw® x 2% | d(Cp,a, () exists}.
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(d) The argument here is partly similar to 11.6 and 17.25 in [K2]. We set, for (k, ) cw?,

k k+1
-1
and define h;:w® x 2* — [0, 1] by hy =X <o %XAM' We also define R C w® x 2% x w? by

k kE+1

R(a, B u, k1) ggh(a,ﬂ)< 5l A Seq(u) A BENY,

so that R is A}. Then we define O Cw® x 2% by

O(a, B) < Seq(a(0)) A Th(a(0))=3 A R(a*,ﬁ, (@(0))y, ((0)),, (a(O))z),
so that O is Af.

Note that (h;) is a sequence of Borel functions pointwise converging to h. By Lebesgue’s domi-
nated convergence theorem, [y, h(a,.) dA=lim;_ [y. hi(c,.) dXif Seq(u). Note that

Jau hala ) dX = [yu Spcar Zxa,, () dAA=Sco ZA((Agg)a NNY)

:Ek§21 §>\(Ra,u,k,l)zzkgzl §>‘(O<u,k,l>a)-

Using (a), this implies that the map (o, u,l) — [y. hi(c,.) dX is Aj-recursive on its A} domain
w*x {u€w | Seq(u)} xw. As in the proof of (c), i, is A}-recursive on its domain. O

We now prove a uniform version of Theorem 4.3.2 in [K1] (due to Tanaka, see [T2]).

Theorem 3.6 Let B € Al(w® x2%), and €:w* — R be Al-recursive such that e() € (0, 1] for each
a€w®. Then there is T € Al(w* xw) such that

(a) Ty, is a tree for each o€ W,
() if K={(o,B)€wx2% |View (a, B(1)) €T}, then Ko C By and \(Ko) > A(By) —€(a) for
each aew®.

Proof. Theorem 3.2 gives 7 :w® — w* x 2 recursive and C € II(w*) such that 7 is injective on C
and 7[C] = B. We set Q:={(a, 3,7) € (w*)? | y€C A 7(y) = (a, B)}. As Q € II?, Theorem 3.1
gives a recursive subset T of w* x w? such that (a, 3,7)€Q < Vlew (o, B(1),7(1)) €T and T, is
a tree for each av € w®.

e We set, for u, v E€w,
u<®v & Seq(u),Seq(v) A lh(u)=Ih(v) A Vi<lh(u) (u);<(v);.
e Then we set, for u € w with Seq(u) and o €w®,
By:={Be2” | Iyecw” F(lh(u)) <" u A View (o, B(1),5(1)) €T}
and B':= {(a, ) €w® x 2% | Seq(a(0)) A B e BV} Note that B is X7 In fact, B' is Al by

uniqueness of the witness .
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e We now define d,, € w® as follows. We define d,,(¢) by induction on i. We first set

50 (0):=min{k€w | NBIF>)>A(By)— 6(;‘)}.

This number exists since B, is the increasing union of the B5*>’s. Then

Sa(i+1):=min{k ew | A(BS0a(0)0a(k>y 5 \(B,)— @ —— ;(—f;}

Note that 6, € Al(a), by Corollary 3.5.(a).

o We set T:={(a,v) Ew* xw | Seq(v) A Fu < 6, (lh(v)) (a,v,u) €T}, so that T € Ab(w¥ x w)
and T, is a tree for each o € w®.

o We set K :={(a, ) ew” x2¥ | Vlew 5633?(”}, so that K, C B, and

A(K o) =1limy_yo0 A(B3 W) > \(B,) — ()
for each a € w* since (Bg?(l))l@  is decreasing. It remains to apply Konig’s lemma to see that
K={(a,B)ew*x2% |View (a,B(l)) €T} since

{s€w<w |< 5(0),...,s(]s|]—1) ><%§ (| |) (a,3(|5|),< s(0), ..., s(|s|]—1) >) GT}

is a finitely splitting tree. O

- We want to prove an effective and uniform version of the Lusin-Menchoff lemma. We first need the
following result, which slightly and uniformly refines Theorem A in [L] at the first level of the Borel
hierarchy.

Lemma 3.7 Let O be a A% subset of w*x2% with open vertical sections Then there is a A -recursive
map f:w* — w* such that O, is the disjoint union | J {Nf(a u) |uewA Seq(f ) } for each
acw”.

Proof. Let P:={(a,u) €ew” xw | Seq(u) A (Ih(u)=0 V (N*COs A N*" Z0,))}. Note that P
is IT, since a nonempty Al(a) closed subset of 2 contains a Al () point, by 4F.15 in [M]. We then
define arelation R on w”x2¥“xw by R(a, B,u) < P(a,u) A B€ N, so that Ris I1}. Note that, for
each (o, ) €O there is u with R(a, 3, u). By 4B.5 in [M], there is a A}-recursive map g:w®x2% —w
such that R(a, 3, g(c, 3)) for each (e, 8) € O. Fix o € w®. Note that S*:={g(c, ) | BE Oy} isa
Yl (a) subset of w contained in the IT} () set P,,. By 4B.11 and 4C in [M], there is D € Al («a) with
S« C D*C P,. Note that O, C | N C O, so that O, is the disjoint union of the sequence
(N")yepe. We define d,, €w® by

ueD™

_JuifueD,,
Oa(u) = { 0 otherwise.

Note that §, € Al(a) and O, is the disjoint union | J {N‘Sa(“ | u € w A Seq(da(u))}. As the set

{(a,é) cw? xw® | §€ Al(a) A Oy is the disjoint union |J {N°™ | uew A Seq(d(u) )}} is Hl , it
remains to apply the uniformization lemma to get the desired map f.
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Notation. We set Wy :={neW |Vaew” Iy, Al(a) Cha=U{N"® | ucw A Seq(yn(u))},
so that, by Lemma 3.7, W is a I} set of codes for the Al subsets of w“ x 2% with open vertical
sections.

Lemma 3.8 Let F be a A} subset of w* x 2% with closed vertical sections, and B be a A} subset
of w* x 2% such that B D F and d(By, ) = 1 for each («, 3) € F. Then there is a A} subset C of
w® x 2% with closed vertical sections such that

(1) FCCCB,
(2) d(Bq, B) =1 for each (o, 5) €C,
(3) d(Cyq, B)=1 for each (o, B) € F.

Proof. Lemma 3.7 gives a Al-recursive map f : w* — w* such that (=F), is the disjoint union
U {Nf(o‘)(“) | ucw A Seq(f(a)(u))}, for each av€w®. We set

B'i={(a,7)€wx2* | ((a)o,7) € B A Seq(f((a)o) ((@)1(0))) A ye NSO,

so that B is A} and B, N Nf(@)®) = B,y if Seq(f(a)(u)). By Corollary 3.5.(c), the partial
map (a, 3, u) > d(B, N NF@® 8 is Al-recursive. We then set

B":={(a,y)e B’ | d(B(q), N NF(@)0)(@)1(0)) )= 1},

so that B” is Af and {8 € B, N N/ (@)W | d(Bo N N/(@®) By =1} =B« if Seq(f(a)(w)).
We define ¢:w* — R by

g(a)::{ 21O \(BY) if A(BL) 0,

1 otherwise,

so that e is Al-recursive by Corollary 3.5.(a), and e(«) € (0, 1] for each o € w*. Theorem 3.6 gives
T € Al (w® xw) such that

(a) Ty, is a tree for each a € w®,

(b)if K={(a,B)€wx2 |Vlew (a,B(l)) €T}, then K, C B, and A(K,) > A(BY)—¢(a)
for each a € w®.

We set, for u € w,
F“::{(oz,ﬁ)E(,uwa‘u | Seq(f(a)(u)) A (< a,u™® > B8)eK A )\(B'<OC,UOO>)7$0}.

As K is A} with closed vertical sections, so is F. If Seq(f(a)(u)) and A(BL,, =) = 0, then
A(Bo N NT@W) =0 and F* =), so that F*C{#€ B, N N/ (@™ | d(B, N N/(®®) 8)=1} and
A(F) > (1=27)A (B N NT@W) If Seq( f (@) (1)) and A\(BL 0 ) #0, then

FU=K s C By oo = {B€ B 1 NV | (B, 0 NI 5y =1},
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Moreover,

A(F&L):)‘(K<a,u‘x’>) > >‘( Zoz,uoo>)_€(< «, u> >) :A( Za,uoo>)_2_u)‘(B,<a,u°°>)
=(1-2"")A\(By N NS (@)(w)

since A\(B, N NT(@®W) = ({8 € B, N N/ | d(B, N N/(®)®) g)=1}), by Theorem 2.1. It
remains to set C:=F U F". We conclude as in the proof of Lemma 2.2. O

Ucw

- We now want to prove an effective and uniform version of Lemma 2.5.

Lemma 3.9 Let C be a A% subset of w* x 2“ with closed vertical sections, G be a Borel subset of 2%
with \(G) =0, and G be a A% subset of w* x 2% with Gg vertical sections, contained in w* X G and
disjoint from C. Then there is a Al-recursive map h:w® x 2 — R such that h(a, ) : 2% —[0,1] is
T-continuous for each a € w*, hjc =0 and hjg=1.

Proof. By Theorem 3.5 in [L], there is a Al subset F' of w x w* x 2% such that F}, o is closed for

each (n,a) cwxw® and ~-G={J F,,. Moreover, we may assume that (F,,)ne. 18 increasing and
Fy=C.

new

e We will define, by primitive recursion, a partial map f :w—w which is II}'-recursive on its domain
such that f(n) essentially codes the set C' 1 constructed in the proof of Lemma 2.5. As this map will
2n

in fact be total, it will be Al-recursive by the uniformization lemma.

We first apply Lemma 3.8 to F':= Fy and B := —G. This is possible because G, C G, so that
(—@G),, has A-measure one and therefore density one at any point of 2, for each o € w*. Lemma 3.8
gives C; € Al with closed vertical sections such that ~G' 2 C; D Fy. Let £(0) € Wy with C 7(0)="C1.

More generally, we will have Cy,,) ==C 1 . As mentioned above, f will be defined by primitive
271

recursion, which means that there will be a partial map g: w? — w such that f(n+1) = g(f(n),n).
This partial map g will be IT}!-recursive on its II! domain {m €W, | =C,, C -G} x w, so that f will
be II!-recursive on its domain by 7A.5 in [M]. The map g will take values in Wi, and is constructed
in such a way that, if A:=-C,, C -G and A":==Cy(p, ), then

(1) AUF, 11 CA CG,
(2) V(a, B)eA” d((=G)a, B) =1,
(3) V(. B)EAU Fy oy d(A, B)=1.

Lemma 3.8 ensures that such a g(m,n) € w exists if (m,n) € {g € Wy | =C; C -G} xw. As the

properties (1)-(3) are I1} by Corollary 3.5, the uniformization lemma ensures the existence of g. So

we constructed a Al-recursive map f:w — w, taking values in Wy, such that C 1 :=—-C fn)1sa Al
271

subset of w® x 2 with closed vertical sections, F,,CC 1 C-G,C 1 CC L and
2n 2n on

d((C;)aaﬁ)zl

on—+1

if (0, B)€C' 1 .

om
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e Similarly, we construct a Af-recursive map F:w—sw satisfying the following properties, if
D:={pew|Seq(p) A lh(p)=2 A 0<(p); <2}

(a) F(p)eWy if pe D, in w(hi/jh cas(e)we set Cp:==Cy (),
(b) CoCCy if p,p' €D A Jf5c < 50

() d((Cy)ar B) =1if pp'eD A L <L A (a,8)eC,.

e This allows us to define h by

o 0if (o, B) €G,
1_h(a’ﬁ)'_{ sup{BL | peD A (o, B)€C,} if (o, B) £ G

Note that h is Al-recursive since D € AY, so that the relation “p€ D A («, ) €Cp is Alin (p, @, B).
We conclude as in the proof of Lemma 2.5. O

- We are now ready to prove the main lemma in this section. We equip the space [0, 1]2<w with

the distance defined by d(f,g) := [F(s(u)—gls(u))]

Euew,Seq(u) ST . We give a recursive presentation of
([0,1]2°%, d). We set

((n)s)o+((n)s)1+1
0 otherwise,

f (s)::{ (s if Seq(n) A Vk<Ih(n) (Seq((n)k) A 1h((n)k):2) A s<Ih(n),

ER]

so that (f,,) is dense in [0,1)2~. It is now routine to check that the relations “d(f,, fn) < 777 and
“A(fm, fn) < q%” are recursive in (m,n,p, q). It is also routine to check that F': w* — [0, 1]2<w is
Afl-recursive if the map F” :w x w*” — R defined by F'(u, @) :=F(a)(s(u)) if Seq(u), 0 otherwise,
is Al-recursive (s(u) was defined at the beginning of Section 3).

Lemma 3.10 Let V:= {(f,3) € M x 2 | osc(f,3) > 0}, G be a nonempty G5 N A} subset of 2
with \(G) =0, and G be a A% subset of w* X 2%, contained in w* X G, and with G vertical sections.
Then there is a A}-recursive map F:w*” — [0, 1]2@, taking values in M, and such that G, =Vp(q)
for each e w®.

Proof. We will define, by primitive recursion, f :w — w? coding g, Sy, G, and (s7)jer, defining
G considered in the proof of the Lemma 2.7. We must find 7 : wxw — w* with f(n+1) =7 (f(n),n).
In practice,

(D fo
2 h
A3) f2
4) f3

n) €W codes G, Cw® x 2%,
) W X2°XR codes the graph of g, :w® x 2¥ =R,
n) € W *2"XR codes the graph of S, :w® x 2 =R,
n) € W codes the graph of the function v (s7"*)jer, .-

n

o~ o~ o~ o~

e By Theorem 3.5 in [L], there is a A% subset O of w x w®“ x 2% such that O, is open for each
(n,a) e wxw* and G =) O,,. Moreover, we may assume that (O,,)ne,, is decreasing and
OO =w"“ x 2,

new
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e Let ng € Wi with Cppy =w*x2%, ny € W X2 XR with C&" <2 R = {(q, B,7) €w?x2¥xR | r=1},
and ng € W< with C&7 %" ={(a,7) €w” xw* | y=10°}. We set f(0) :=(ng, n1,n1,n3), s0
that C,,, = G}, C& ¥ 2" ¥R =Gr(go) =Gr(Sp), C%, " =Gr(a—10%),

{ucw | Seq((10™)(u)) } ={0} =1y

and (10%°)(0)=1=<>=s). So f(0) is as desired.

e We now study the induction step. This means that we must define r(ng, n1, ne, n3,n) € wi.

(1) We first define ro(ng,n1,n2,n3,n) coding Gy, ;. Fix n3 € WX coding the graph of a
Al-recursive function ¢ : w* — w* such that the sequences s(¢(r)(u)) coded by the u’s with
Seq(gb(a)(u)) are pairwise incompatible and G, C (J {N¢(a @ |y € w A Seq(¢p(a (w)} (we
call P the II}! set of such n3’s). Let a € w®. Assume that Seq(¢(c)(u)) (which 1ntu1t1vely means
that u € I, , and s, is coded by ¢(a)(u)). By continuity of A,

=AGa N Nqb(a)(u)):hmj%oo AMOja N N(Iﬁ(a)(u)).

This gives j(n, « u) > n minimal with A(Oj(,a,u),a N NA@W) < 9-n=3-1h(@(e)(w) (note that
o—lh(¢(e)(w)) — A(N?(@)(®))) Moreover, G, NN?(@)(®) C Oj(n,a,u),amN¢(a)(u) C On+17aﬂN¢(°‘)(“),
so that Oj(p.q,u),0 NN #(@)(u) satisfies the properties of the set Oj in the proof of Lemma 2.7. We
will have Gy, , USeq(¢> () (w)) Ojmn,au),a N N#@®) By Corollary 3.5 and the uniformization

lemma, we may assume that the map j is Al-recursive on its Al domain

{(n,a,u) ewxw* xw | Seq(p(a)(u))}.

Note that G, ,; is a A} subset of w* x 2% with open vertical sections, which gives m € W such that
Cm =G}, By incompatibility, G7, ,, ,, N No@(w) = Ojn,ayu),a N N#@)(®) S0 we proved that, for
each (ng,n) € P X w, there is m € W, such that, for each o € w®,

(1) Ga CCmya COni1,0 NU{NDW | yew A Seq(p(a)(u)) },
(5) A(Cm.a N N9(@ @) < 2-n=3-Th(g(@)(w)) 1fu€w/\Seq( d(a)(w)).

By Corollary 3.5 and the uniformization lemma, we may assume that the map 7 : (n3,n) — m is
I} -recursive on P3 x w. We set ro(ng, n1,n2,n3,n) := 7o(ns,n), which defines a partial map g
which is II!-recursive on its I} domain w3 x P3 x w.

(2) We now define r1(ng, ni,n2,n3,n) coding g,+1. We use Lemma 3.9 and its proof. Note that
ro(no,n1,m2,n3,n) € Dy :={m € Wy | G C Cp}. The proof of Lemma 3.9 shows that for any
m € Dy there is F},, €w* N Al satisfying the conditions (a), (b), (c) and

(d) ¥peD —~(0<(p)1=2%") V Cp () SCrn.

The uniformization lemma shows that we may assume that the partial map F : m — [, is IT}-
recursive on Dy.
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The definition of / in the proof of Lemma 3.9 and the uniformization lemma show the existence
of a partial map H :w — w, which is II!-recursive on Dy, and such that H (m) is in W***2" <R and
codes the graph of a Al-recurive map h:w® x 2 — R with

1~ h(a, §) = 0if (o, B) €G
R SUP{Q(&))E |peD A (a75)¢cﬁ(m)(p)}if (a,8)¢G

if m€ Dy. We set Py :={ce W***2"xR | C_is the graph of a function (.}. It is routine to check that
there is a I} -recursive partial map I :w? —w on its domain P? such that I(c, ¢’) € W*" *2"*R is the
graph of the function min((, (/) if ¢, ¢’ € P;. We set

r1(no,n1,M2,13,N) iZI(nl, H (ro(no, n1,n2,n3, n)))
so that rq is Hll -recursive on its H11 domain w x P; X w X Py X w.

(3) We now define r9(ng, n1, n2, n3, n) coding

g Sn+9gnt1 if nis odd,
" S, — g if nis even.

It is routine to check that there is a I} -recursive partial map S : w® — w on its domain P? x w such
that S(c, c/,n) € W *2“*R ¢codes the graph of the function

o a, B) if n is odd
(a,ﬁ)t—> Cc( ,5)+<c’( ,5) :
CC(Oé, ﬂ) —Ce (047 ﬂ) if n is even
if (c,d,n) € PExw. We set ra(ng, n1,n2,n3,n) := S(na,r1(no, n1,n2,n3,1),n), so that ry is
I} -recursive on its I} domain wx P X Py X w.
(4) We now define r3(ng, n1,na,n3,n) coding the graph of the function o — (S?Jrl’a)jenﬂ,a. We
want to ensure the two following conditions:

(1) GaCUjer,yn, Niprin CCiira
(6) | f e Spt1(a, ) dA=Spi1(a, B)| <273 if jE€Lp10 N BEGLN Ns;}+1,a
%

Note first that in practice
0if n is even

Sni1(a, B)= { 1if nis odd

if (o, ) € G since g,(a, B)=1 for each p in this case. So there is 1 :w — R? recursive with

| ][ Snt1(a,.) dA=Sp4+1(a, B)|< 273 & Yo(n) <][ Snt1(a,.) dA<i(n)
Nsy.LJFl’a Nsr}+1,a
J J

if (o, 5) € G. We use Corollary 3.5 and its proof. Note that r9(ng, n1,n2,n3,n) € P.
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We first consider n6 € Wy and nf, € P, (coding G, 41 and Sy, ;1 respectively) as variables. We
define Ry, R Cw xw® x 2% xw? by
Ro(nh, o, B,u, k1) & FreR ﬂ(n’QEW“wXTJXR A (n’Q,a,ﬂ,r)¢C‘”wX2wXR) A
(& <r<Zl A Seq(u) A BENY)

Ri(ny, . B,u,k, 1) & VreR (ny W 2E A (ng, a, B,r) ¢ C5) v
(B <r<H®L A Seq(u) A BENY),

so that Rg is X{, Ry is I}, and Ro(nb, o, B,u, k,1) < Ri(nb,a, B,u, k,1) if ny € P;. Then, as in
the proof of Corollary 3.5.(d), we define Oy, O; Cw xw® x2“ by

O:(nh, a, B) < Seq((0)) A Ih(a(0))=3 A R <n'2, o™, B, (a(O))O, ((0)),, (a(O))2>

if € € 2, so that Og is X}, Oy is I, and Og(nh, o, B) < O1(nh,, B) if ny € Py. In particular,
nk € P, and Seq(u) imply that
k

_A((OE)n’27<u,k,l>a)

/ Snt1(a, ) dA=1iMy00 Tycor o

for each e €2. Thus a < fNu Snt1(a,.) dA<bis in this case equivalent to

P D AN O
p+1 qg+1 p1+1

By Corollary 3.5.(b) applied to D := Py, the partial map Ao : P; X w* — R defined by
>‘O (nIQ’ Oé) = )‘((OO)né,a)

is Xl-recursive and II!-recursive on its domain. By 3E.2, 3G.1 and 3G.2 in [M], these two classes of
functions are closed under composition. In particular, the partial map

k
(nIQ’ o, U, l) = 2Ic§2l ?A((OE)n’Q,<u,k,l>a)

Sq_o_
g1+1

k
Ipo, p1,90, 91, N €Ew a< <D< EA((OE)n’Q,<u,k,l>a)

is X -recursive and I} -recursive on P; xw* xw?. This shows the existence of Qg € X (w? xw® xw)
and Q1 € I (w? x w¥ xw) such that

QO(”I% n,a, u) A Ql(n/% n, a, u) < Seq(u) N ¢0(n) < SnJrl(a’ ) dA <t (’I’L)
Nu
if nf, € P;. We now consider nj, € W, and n/, € P; as parameters. We set
Py (0,0, u) <
Q1(nbh,n,a,u) A N“gcna,a A Vk<1h(u) (ﬂQo(né,n,a,g(k)) vV Nﬂ(k),@cné,a).
Note that for each (a, ) € G there is | € w minimal with the properties that Ng; C C,; , and
Q1(nh,n, o, < B(0),..., 8(1—1) >), so that Pt (n,a, < B(0),...,8(1—1) >) since ny € W and

nh€P. AsnyeW;, N @(k)\C%’a is a Al(a) compact subset of 2, so that it contains a Al («a) point
if it is not empty (see 4F.15 in [M]). This shows that P, s is .
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The uniformization lemma provides a A}-recursive map L:w x w® x 2* — w such that

Pyt (n,a, < B(0), .., B(L(n, 0, B)—1) >)
if (o, B) € G. Note that the X} set
:{(n,a,u)ewawxw | IBeGy u=< 5(0),...,5( (n,a, B)— )>}

is contained in the T} set 7:={(n,a,u) €wxw* xw | Py ny(n, o, u)}. By 7B.3 in [M], there is
a A% subset § of w X w* xw such that 0 CJ C 7. We now also consider n as a parameter and define
p:w¥ —w” by

~ fuif (n, 0, u) €9,

- { 0 otherwise.

Note that ¢ is Aj-recursive, and that Seq (p(a) (u )) is equivalent to (n, &, u) € 4. In particular,

(1) G CU{N? W | yew A Seq(p(a )}CCno’a
6) |J£Nso(a)(u) Snri1(a,.) dA—=Sni1(a, )|<2 1fSeq(go(oz)(u)) A 5€GamN¢(a)(u)

for each a € w¥. Let k € W***“" such that Ci" *“" = Gr(y). We now consider nj, n and n as
variables again. Note that for each (n{), n,n) € W x P; xw there is k € w such that

ke W xw A

(\meww Vyew (keWS"Xe A ~Coxe (| o, 4))V

(1) Ga CU{NT™ |uew A Seq(y(w)) } SCrp a

A (6) Yuew —=Seq(y(u)) V Qi(nh,n, a,u)))

R(ng, ny,n, k) <

Note that R € II} (w*). The uniformization lemma provides a partial map K : w3 +— w which is
II!-recursive on its IT] domain Wi x Py Xw, and R(n{, nh, n, K (nf,ns,n)) if

(ng, nb,n) EWL X Py Xw.

It remains to set 73(ng, n1, N2, ng, n):= K (ny, nh, n) if nj=re(ng, n1,n2, n3,n) and
nby=rs(ng,n1,n2,n3,n),

so that r3 is II!-recursive on its [T} domain Wi x P? x P3 x w.

Finally, r is II}! -recursive on W) x PEx PyXw, f is II}-recursive on w, and thus f is Al-recursive
by the uniformization lemma since it is total.

e We are now ready to define the dimension two versions of G}, gn, Sy, and (s7)jer,:

(1) G _Cfo(")’ o

(2) gn(a B)=p < (fi(n), a,ﬁ,p)GC“W“WXR,

(3) Sule, B)=p & (fa(n), o, B, p) €C¥*F XK,

) {()]GIna<:>E|5€w (fs(n), o, 8) €C" %< A Seq(6(4)),
(1) 87" =06(j) if j € In,a-

By construction of r, these objects satisfy the conditions (1)-(6) of the proof of Lemma 2.7.
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e Consequently, the martingale F'(«) will be defined in such a way that if u € w codes s € 2<%,
then F(c)(s) = fyu foo(@,.) dX. Note that G = G, so that =G is the disjoint union of the
Gy \G;, 1’s. Thus

new

fN“ foo(Oé, ) d\= fN“\Ga foo(Oé, ) d)\:z:new fN“ﬂ(G;‘L)a\(G* Ya foo(Oé, ) dA

n+1

=Inew Bjzn (“1 Sxun(ez)a\(G5,,)a 95 ) dA
=limy; 00 Xp<y Xj<n (—1)! fNun(G;;)a\(G;;H)a gj(a,.) dA.

Consequently, in order to prove that F' is Al-recursive, it is enough to check that the partial map
. . . 1_ . w 2 .
(u,,j,m) HIN“H(G;)Q\(G;H)Q gj(c,.) d\is Aj-recursive from {u€w | Seq(u) } xw* xw* into R.

By Corollary 3.5, it is enough to check that the map h:w* x 2% — R defined by

0 otherwise,

pan8) =
is Al-recursive. This comes from the facts that
(@, B)€G = (fo(n), . ) €C & ~(folm) €W A (fo(n), e 5) £C)
is Alin (o, 8,n) and

gn(a, B)EN(R,p) & dpeR —'<f1(n)GVV”XQWX]R A (f1(n),a,ﬁ,p)¢C”X2wXR) A

pENR,p)
S VpeR (!)"1(71)61/\”“%“R A (fl(n),oz,ﬁ,p) ¢C“X2wXR) vV
peN(R,p)
is Alin (o, B,7,p).
e Finally, the map F is Al-recursive and is as required. U

4 First consequences
(A) Universal sets
- We first recall some material from [K2]. The first result can be found in Section 23.F (see also [Za]).

Theorem 4.1 (Zahorski) Let B be a subset of [0, 1]. The following are equivalent:

(a) there are S € £ and P € I with m(P) = 1, where m is the Lebesgue measure on [0, 1], such
that B=SN P,

(b) there is f € C([0,1]) with B={x €10,1] | f'(z) exists} (we consider only one-sided derivatives
at the endpoints).

The second result is 23.23.
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Theorem 4.2 Let G be a G subset of (0,1) with m(G)=0. Then
[(f,2)€C(0.1]) %G | f'(a) exists)

is C([0, 1])-universal for TI(G).

- We prove results in that spirit here.

Theorem 4.3 Let B be a subset of 2“. Then the following are equivalent:

(a) B is 2% and has \-measure zero,

(b) there is f € M with B={5€2“ | osc(f,3)>0}.

Proof. (a) = (b) Write B = J,,c,, G, where the G},’s are Gs5. Lemma 2.7 gives, for each n, a
martingale f, with G,, = D(f,,) and {osc(f,,3) | €29} C {0} U[L,1]. Lemma 2.8 gives f € M
with D(f)=B.

(b) = (a) We already noticed in the introduction that B is 2%. By Doob’s theorem, B has A\-measure
zero (see [D]). ]

Corollary 4.4 Let G be a G subset of 2 with \(G) =0. Then {(f,3) e M xG | osc(f,3) >0} is
M-universal for £3(G).

For example, {3€2% | Vn€w B(2n)=0} is a II? copy of 2% and has A-measure zero.
(B) Complete sets

- By 33.G in [K2], there is a uniform version of Zahorski’s theorem, which allows to prove the
following result

Theorem 4.5 (Mazurkiewicz) The set of differentiable functions in C ([0, 1]) is TL}-complete.
- Here again, there is a result in that spirit.
Theorem 4.6 The set P:={fc M |VB€2¥ osc(f,B)=0} is IIi-complete.

Notation. Let K := {5 €2¥ | Yn€w B(2n) =0}, which is a IT{ copy of the Cantor space 2 with
A(K)=0. In particular, K is a nonempty G N A} subset of 2%

Proof. Let U € IT} (w* x 2¥) be w“-universal for the co-analytic subsets of 2, and
M:={acw” | ((a)o, (a)1) €U}.

Note that IT € [T} If P € II}(2¥), then P = U, for some o € w*, so that the map 8 +—< «, 3 > is
a continuous reduction of P to IT and IT is ITi-complete. Let H € I (w* x 2) with =11 =TIy [H].
We set G:={(a, B) €w“ x2 | (o, (8)1) €H A BEK}, so that G € A} (w® x 2¥), has G5 vertical
sections and G Cw“x K. Lemma 3.10 gives I': w* — M Borel such that G, = V() for each a € w®.
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Thus
a¢ll < 3B€2 (o, f)€H < €2 (o, B)€G < €2 (F(a),B)€V < F(a)¢P.
Thus IT=F~!(P) and P is Borel IT{-complete. By 26.C in [K2], P is ITi-complete. O

- We now prove Theorem 1.8. Let X be a metrizable compact space and Y be a Polish space. We
equip C(X,Y’) with the topology of uniform convergence, so that it is a Polish space (see 4.19 in
[K2]). We use the map v defined before Theorem 1.8.

Theorem 4.7 (a) The set Py :={(fr)rew €P | (¢(f1)), c., Pointwise converges } is I1{-complete.
(b) The set Py:={(fr)rew €P* | (w(fk))kEw pointwise converges to zero} is I1}-complete.

(c) The set S := {(fr)ew € P¥ | Iy € (¢(f“/(i)))z'ew pointwise converges to zero} is Xj-
complete.

Proof. We define :C(2,[0,1]) = M by @(h)(s):= fy_h dA. As in the proof of Lemma 2.7, ¢ is
well-defined. It is also continuous, and injective: if h # I/, then we can find ¢ € w and s € 2<% such
that h(8)—h'(8) >271 for each S € Ny or I/ () —h(3)>2"17 for each 5 € Ng, so that

&) =W 6)|= 555 [ hr= [ w a2

This implies that the range R of ¢ is Borel and v := ¢! : R — C(2%,]0,1]) is Borel. As every
continuous map h:2“ — [0, 1] is 7-continuous,

lim o0 2 (1) (BI1) =Tim; oo ]fv hdr=h(B)
Bl

for each 3 € 2¥, by Lemma 2.6. This implies that f € P and ¢(f)(8) = lim;—,~ f(5|l) for each
Beif fER.

(a) Note that the proof of 33.11 in [K2] shows that the set
Pri={(hi)rew € (C(2°,[0,1]))* | (hs)kew pointwise converges }

is II{-complete. As & := {(fi)rew € R | (¢(fk))k€w pointwise converges } = (¢*) "' (P), the
equalities Py = (¢*) "1 (€)= (¢*)~1(P1) hold and P; is I} -complete.

(b) We argue as in (a).
(¢) As in [B-Ka-L], the set
S:={(h)rewe (C(29,0,1)))% | Fyew® (hy)),,, PoIntwise converges to zero},

is 31-complete. Indeed, fix Q € 31(2¥).
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Lemma 2.2 in [B-Ka-L] gives (g )kecw € (C (29x2%, 2))“ such that, for each § € 2%, the following
are equivalent:

() oeq,
(i) Iyew® VBE2Y limi,o0 gy (i (0, 8)=0.

We define, g:2% — (C(2,[0,1]))* by g(6)(k)(8) := gk (6, B). Then g is continuous and reduces
QtoS. As

E ={(ft)rew R’ | Ivew? (¥(fy»)),c, Pointwise converges to zero } = (¢) (),

S=(p*)"HEN=(¢¥)"1(S) and S is Zi-complete. 0

5 Universal and complete sets in the spaces C(2%, X)

- It is known that if I" is a self-dual Wadge class and X is a Polish space, then there is no set which
is X -universal for the subsets of X in I (see 22.7 in [K2]). This is no longer the case if the space of
codes is different from the space of coded sets.

Proposition 5.1 Let X be a Polish space, T' be a Wadge class with complete set C € T'(X), and
Ut :={(h,B)€C(2¥, X)x 2% | h(B)€C}. Then U is C(2¥, X )-universal for the T subsets of 2*.

Proof. As the evaluation map (h, 3) — h(3) is continuous, UT € T'. If A€ T'(2%), then A=h"1(C)
for some h€C(2¢, X), so that A=U]} . O

We will partially strengthen this result to get our uniform universal sets.

- Recall that it is proved in [K3] that a Borel IT1}-complete set is actually ITi-complete. In fact,
Kechris’s proof shows the result for the classes ITL. Our main tool is a uniform version of this.
Kechris’s result has recently been strengthened in [P] as follows.

Theorem 5.2 (Pawlikowski) Let n>1 be a natural number, and C C X C2%. If Borel functions from
2% into X give as preimages of C all T1, subsets of 2, then so do continuous injections.

The main tool mentioned above is the following:

1 gw . .
Theorem 5.3 Let n > 1 be a natural number, U™n2" be a suitable w*-universal set for the H}L
subsets of 2, X be a recursively presented Polish space, C' € II}(X), R : w* x w¥ — w* be a
recursive map, and b:w* — X be a Al-recursive map such that

(o, B) eU™** = b(R(a, B)) €C
for each (av, ) €w® x 2%, Then there is a Al-recursive map f:w” —C(2%, X) such that
(a, B) €™ & f(a)(B)eC

foreach (o, B) € w® x 2.
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- We first recall some material from [K3].

Definition 5.4 (a) A coding system for nonempty perfect binary trees is a pair (D, O), where D C 2%
and O:D—{T¢€ 92~ | T is a nonempty perfect binary tree} is onto.
(b) A coding system (D, O) is nice if

(i) for any a € w¥ and any Al(«)-recursive map H :2¥ x 2% —w, we can find 3 €D N Al (a) and
k € w such that H(f3,6) =k for each ¢ in the body [O(3)] of O(5),

(ii) D is I} and, for B €D, the relation

R(m, B) & Seq(m) A ((m)os -, (M) ) 1) €O(B)
is Al, i.e., there are II} relations Ty, 11y such that R(m, 8) < To(m, B) < -1l (m, B) if BED.

Nice coding systems exist. If 5 € D, then there is a canonical homeomorphism 5* from [O(3)]
onto 2*. We now check that the construction of 5* is effective.

Lemma 5.5 (a) The partial function e: (3,6) 3*(0) is II-recursive on its I} domain
Domain(e):={(5,0)€Dx2% | §€[O(B)]}.

(b) The partial function v: (3,7) > the unique § € [O(B)] with 8*(8) = is II{-recursive on its IT}
domain D x 2%,

Proof. (a) We define a [T} relation Q on w?x (2*)? by
Qp,1, B,0) & ((V€€2 o((0[p')e, B)) A (Vp<p”<p' Jee2 Hl((é\p”)é‘,ﬁ))>-

Note that

. - Jlew Seq(l) A Th(l)=n+1 A 5((1)n)=e A Q(0,(1)o,3,8) A
Fo)m=e« { vm<n O<Oma A Aol OusrBo0)

if S €D. The proof of (b) is similar. ]

- Let X be a recursively presented Polish space, and dx and ()X ),c., be respectively a distance
function and a recursive presentation of X. We now give a recursive presentation of C(2, X),
equipped with the usual distance defined by

d(h,h'):=supgequ dx (h(B), W' (B)),

since this is not present in [M]. We define, by primitive recursion, a recursive map v :w — w such that
v(i) enumerates {s€2<“ | |s|=i}. We first set v(0):=1=<>. Then

v(i+1)=Fk < Seq(k) A Ih(k)=2"T1 A VI<2® Vee2 (k:)EQiH:s((V(i))l)s.
If Seq(n) and lh(n) =2¢ for some i (< n), then we define h,,:2% — X by h,,(8):=r%

(n)
Bli=s} :zs((u(i))l).

If =Seq(n) or lh(n) # 2¢ for each i, then we define h,, : 2¥ — X by h,,(B) :=r{ if B € 2. In any
case, h, €C(2¥, X) and takes finitely many values.

if
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Lemma 5.6 Let X be a recursively presented Polish space. Then the sequence (hy, )nec.w Is a recursive
presentation of C(2¥, X), equipped with d.

Proof. We have to see that (h,,) is dense in C(2¥, X). Solet h € C(2¥, X), e >0 and m € w with
27 < 5. As h is uniformly continuous, there is i € w such that dx (h(8), h(d)) <27 ™ if S]i =i
We choose, for each [ < 2%, n; €w such that dx (rffl, h(s10°°)) <27™. We set n:=< ng, ..., Ngi _1 >.
If $€2¥ and Sli= s}, then dx (h(B), hn(B)) <dx (h(B), h(s;0))+dx (h(s;0°°), 7 ) <27 m+2 m,
so that d(h, hy,) <e. Itis routine to check that the relations “d(hin, hn) < 257 and “d(hp,, by ) < £5”

q+1
are recursive in (m,n, p, q). -

We saw in the proof of Proposition 5.1 that the evaluation map (h, 3)+— h(/3) is continuous from
C(2¥, X)x2% into X. We can say more if X is recursively presented.

Lemma 5.7 Let X be a recursively presented Polish space. Then the evaluation map is recursive.

Proof. Note that

h(B)eN(X,n) < dx (h(ﬂ)a T()((n)l)o) < ((51() ))Q)Jlr ‘
& Jm,i,lew Seq(m) A Ih(m)=2" A Bli=s; A (m);=((n) )
d(h h ) orn
which gives the result. 0

- We then strengthen 7A.3 in [M] about primitive recursion as follows. If Z)Y are recursively
presented Polish spaces, g: Z —Y and h:Y xwx Z — Y are II}'-recursive and f:wx Z — Y is

defined by

£(0,2):=g(2),

f(n+1,2) ::h(f(n, z),n, z),
then f is also IT{-recursive. If m: Z — Z is II}-recursive, then the proof of 7A.3 in [M] shows that
the map f’:wx Z —Y defined by

1(0,2):=9(2),
['(n+1, 2) :zh(f’(n, m(z)),n, z),

is also Hf—recursive. As in 7A.5 in [M], this can be extended to partial functions which are Hll-
recursive on their domain.

- We are ready for the proof of our main tool.

Proof of Theorem 5.3. 3E.6 in [M] provides 7:w* — X recursive, F € II?(w*) and a Al-recursive
injection p: X' — w® such that 7 is injective, 7[F] = X and p is the inverse of 7|7. Let us show
that the map yu: h— 7 o h is Al-recursive from C(2%,w*) into C(2¥, X). More generally, let Y be a
recursively presented Polish space, and ¢: Y —C (2%, X). Note that
B(y) €N (C(2%,X),m) & d(w(), hmyo) < TR
& Imew supgeas dx (V(Y)(B), Ay, (8)) < 5y < il

& Imew VBe2Y dx () (B), him) (B)) < (((,AES?)IQ)JIA < ((51(;11))12)J1r1

and h(n),),(B) :r;inﬁ) for some recursive map g:w X 2% —w.
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In the present case, Y =C (2%, w*) and ¢(y)(3) == (y(5)). Thus

dx (W ()(B), Ao (8)) < Tty & dx (m(y(8) s 5 ) < oy
= W(y(ﬁ)) EN(X’ <0’ <g(n,B), ((m)l)p ((m)1)2> >)
& (4(8), (0, <g(n, B), ((m)),, ((mh),>)) €G7,

where G™ is the XV neighborhood diagram of 7. As the evaluation map is recursive, h — 7 o h is
I} -recursive and total, and thus Al-recursive.

e Let us show that there is a Ai-recursive map f:w*” — C(2¥, X) such that u}}l“zw =(f(a)) _1(0)
for each o€ w*. We adapt the proof of the main result in [K3]. We set A:=7"1(C). As C € I1}(X),
AeITHww). If < B°,6° >€ 2, then we inductively define, for i € w, m;, B+, 6+ as follows. If
(B%,6%) is given and in Domain(e), then (3°)*(6°) =< z;, B+, 6+ > and

S the location of the first O in x; if it exists,
"] 2 otherwise.

We then set Q:={(a, < 8°,0° >) €w”x2¥ | View (8',6") € Domain(e) A (a, (m;)) €U}
and B* := Q,, so that Q € I} (w* x2¥) and € B* < (a, 3) € Q for each (a, 3) Ew® x 2% (note
that B* depends on «, but we denote it like this to keep the notation of [K3]). We define I : w“ — 2%
by I(a): =02 101 1... Note that I a A}-recursive injection onto the 7} set

Po:={f€2” | Vpew J¢>p B(q)=1},

so that there is a A}l-recursive map ¢: 2% — w® which is the inverse of I on P.. We set

Q' ={52° [ (Bl ePu A (6((0)). (1) €@},

so that Q' € IT}(2¢). As U™n2” is suitable, there is ag €w® recursive with Q' :Z/{o%%’%. Note that
BEB* & (a,B)€Q &< I(a), B >€Q & (ag,< I(a), B >) €U’
& b(R(ag,< I(a),8 >))eC & p(b(R(aQ, <I(a),B >))) cA.

We set G::p(b(R(aQ, < I(a),. >))> so that G : 2 — w* is Al(a)-recursive and < 82,8 > is
in B* if and only if G(< °,8° >) € A.

e Asin [K3], we can find F: 2<% — (2% x w)<“ satisfying the following properties:

(1) tCt = F(t)CF(t)
(2) [F ()| = +1
(3) (i) if F(0)=(8° ko), then 82D A V5 [O(8°)] G(< 2,6 >)(0)=k
(ZZ) if F(EQ, . e’;‘n) = (507 ko, ﬂl, ki,..., ﬂnJrl, kn+1), then
(a) Vi<n+1 B'eD
(b) for all "L e [O(B™ )], if 67, ..., 80 are the uniquely determined members of
[O(B™)], ..., [O(B%)] such that Vi<n (B°)*(§) =< &, B, 5L > | where
£i=1%01°, then Vi<n+1 G(< B° 6% >)(i)=k;.
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We will need an effective version of this, so that we give the details of the construction of F'. In
fact, the 3%’s involved in the definition of F' can be Al(a). In order to see this, we first define

HQZQMXQN—)L«)

by Ho(B3,9) := G(< B,5 >)(0). As G is Al(a)-recursive, Hy too, and the niceness of the coding
system gives 3 € D N Al(a) and ko € w such that G(< 8Y,8° >)(0) = ko for each 6° € [O(3°)].
Now suppose that n € w, (g, ..., &, ) and F(eg, ...,en_1) = (8, ko, ..., 8", ky,) are given. We define

H,1:2%x2Y >w

as follows. Given (3, 8) €2% x 2%, let 6", ..., 6" be the uniquely determined members of [O(5")], ...,
[O(8Y)] resp., such that (87)*(6") =< &,, 3,6 >, and (3)*(0') =< 7, B, 1 > if i <n. Put
H,1(8,6):=G(< 8°6° >)(n+1). As H, 41 is Al(a) (it is total and IT} («)-recursive since ¢ is
I} -recursive), the niceness of the coding system gives 371 € D N Af(«) and ky, 41 € w such that
G(< °,6° >)(n+1)=kyy1 for each 6" €[O(B7*1)]. Then

F(g0,r6n) = (8% ko, ey 87 i),

so that F is as desired. So we can assume that the 3°’s are A}(«) in the conditions required for F.

e By [K3] again, the map h,, : (¢;) — (k;) is continuous and Uy w2 h;1(A). As this is not too
long to prove, we give the details for completeness. The map h,, is in fact more than continuous: it is
Lipschitz, by definition. Fix (g;). We apply F to the initial segments of (g;), which gives (3¢). For
each n, we define perfect sets C, CT, ..., C;y € 2% with C]' C [O(BY)] if i <n, as follows:

Cr = {5 €[O(BM)] | I H €2 (Br)*(67) =< 7, AL, 5 S,

Cn = ("€ [O(B" )] | 36n e (871 (67 1) =< Zm, A, 60 )
Cp = {0 € [0(8%)] | 36" €Cp (59 (80) =< 70, 8,6 >}.

Note that

(4) € Cp = < B, 6" >€ Domain(e) for each i <n, where ¢!, ..., §" are computed according
to the formula in (3).(é).(b),
(5)n'>n=Vi<n C} CCPL.

This implies that [O(3°)]2C 2C3 2CE2... and ¢, C§ contains some 6°. Note that < 3, §* >
is in Domain(e), and (8%)*(6%) =< &, 871, 81 > for each i €w. By (3).(i7).(b),

G(< 8°,6° >) =k
foreachicw. As < 8°,8° >e B* & G(< °,8° >)e€ A4,
(View < §,8" >€Domain(e) A (g;) €U?) & (k;) € A.

As < 3, 6° > is in Domain(e) for each i € w, (&;) ey o ha((g:)) = (k;) € A
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e So we found, for each av € w¥, h,, €C(2, w*) such that U = (moha) 1 (C)=(p(ha)) o).
It remains to see that the map ) : a + hy, from w® into C(2¥,w"), can be Al-recursive (then f
will be 11 0 9). By the previous discussion, it is enough to see that the relation “k; = k” is Al in
(v, (i), 1, k) €Ew® x 2% xw?.

e We will define, by primitive recursion, a A}-recursive map fiwxw?x2¥ — 29 xw such that

f(n a, (e )) will be of the form (< B, LB, B > < KO,k >) and can play the role of
F(eo,...,en—1). We first set

P::{(a, (€i), B, k) Ew x (2¥)? xw |
view (8)i=(BoeD N Al(a) AV [O((B)o)] G(< (Bo,d >)(0)=k .

Note that P is II{* and for any (o, (g;)) €w® x 2% there is (3, k) € 2 xw such that («, (g;), 8, k) € P
The uniformization lemma gives a Al-recursive map §:w® x 2% — 2% x w such that

(a, (€),9(a, (62))> epP
for each (v, (g;)) €w” x 2%, Then we set
D::{(ﬁ,p,n,a, (ez)) €2 xw?xw” x 2% | Seq(p) A lh(p)=n+1AVgew (B)qeDN A%(a)}.
Note that D is IT}!, as well as

:{(ﬁ,p,n,a,(si),ﬁ’,k’)EDX2‘”><w | Vi>n (8)i=(8)ns1€DN A(a) A
Seq(K") ANIh(K)=n+2AVi<n (8);=(8)i A (K)i=(p)i: A
V€2 (3i§n+1 (0)i ¢ [O((8)i)] v Fi<n (87 ((0):) #< &, (B)it1, (8)it1 >V

Vi<n+1 G( < (8)o, (0)o )(z‘):(k:’)i)}.

Moreover, for each (8,p,n,a, (€;)) € D =Ilgu 2o xow [R] there is (8, k') € (2 N A} () xw
such that (5 oy, (&), B, k:’) € R. The uniformization lemma gives a partial map

hi2% X w? X w® x 2% — 2% x w

which is IT}!-recursive on its domain D, and such that (ﬂ,p,n, a, (&), B(ﬁ,p,n,a, (5,))) € Rif
(B,p,n,a, (£;)) € D. This implies that the partial map f defined by

Ji(O,a, (ei)) =g @ (5,;)),
f(n—i—l,a, (al)) :zh(f(n,a, (al)) n, q, (ai)),

is IT}-recursive.
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Moreover, an induction shows that (f(n, o, (g)),n, a, (si)) € D for each (n, , (g;)), so that f
is in fact total, and thus A}-recursive. More precisely, f(n, a, (¢;)) is of the form
(< BO’ ey 571’ ﬁn, >, < kO, cey kn >)’

where (gq, ..., en_1)+ (8, ko, ..., B, k) satisfies the properties (1)-(3) of F. It remains to note that

ki= (i, e, (20) (1)(3). -
- We now prove the consequences of our main tool.

Definition 5.8 Ler I' be a class of subsets of recursively presented Polish spaces, T' be the corre-
sponding boldface class, X,Y be recursively presented Polish spaces, and U € T'(Y x X'). We say that
U is effectively uniformly Y -universal for the I" subsets of X if the following hold:

(1) D(X)={Uy, [ yeY},

2)T(X)={U, | yeY Ai-recursive},

(3) for each S €T'(w*” x X)), there is a Borel map b:w®” —Y such that So,=Uy ) for each o€ w®,

(4) for each S €T (w* x X), there is a A}-recursive map b:w*” —Y such that S,, =Uy(a) for each
aEw”.

Notation. Let 1/™12° € II}! be a good w*-universal for the TT! subsets of 2, X be a recursively
presented Polish space, and C; be a IT{! subset of X7 for which there is a Al-recursive map b:w® — X3
such that

(a, B) U™ & b(< a, B >)eC

if (o, B) €w® x 2¥. We define, for each natural number n > 1,
e X,,11:=C(2¥, X,,) (inductively),
0 Cpy1:={heX,11|V5€2¥ h(B)¢C,} (inductively),
o Uy:={(h,B)€Xnt1x2¥ | h(B)eCy}.

Theorem 5.9 Let n>1 be a natural number. Then
(a) the set Uy, is effectively uniformly X, | 1-universal for the TI. subsets of 2%,
(b) the set C,, is II\ -complete.

Proof. We argue by induction on n.

(a) Assume first that n = 1, and fix S € ITi (w® x 2¥). Our assumption gives by : w* — X;. As
U™2 ¢ [1} is a good w*-universal for the TT! subsets of 2, there is by Theorem 5.3 a Al-recursive
map f1:w” —C(2¥, X1) such that (o, ) eU™2 < f1()(B) €Cy if (v, B) Ew” x2¥. Let arg € w

IT o x 2%

with S =Uq4 . Note that
(., B) €S+ (R(as,a), B) U™ & f1(R(as,a)(B) € « (fi(Rlas, ), 8) €th.
As Cp is IT}, Uy too. If A € TI}(2¥), then A = L{g%’Qw for some o € w*. Applying the previous

discussion to S:=UM12" we get A= (UL) £, (R(ag.a))» S0 that Uy is Xo-universal for the IT} subsets
of 2%, effectively and uniformly.
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We now study Uy, 1. Fix S € ITL  (w” x 2¢). Let U™2" be a good w*-universal for the TT}
subsets of 2¢. We set V12 .= {(a,) ew* x2¥ | V6 €2¥ (R(a,B),0) ¢ Z/{H}“Qw}, so that
Y12 s a suitable w*-universal for the IT} ,, subsets of 2. Moreover, the induction assumption
gives a Al-recursive map by, 1 :w* — X, 1 such that

(a, B)eVI12 5 W5 €2 (R(a, B), 8) ¢UTh2 & V5 €2 (an(R(a, 5)),5) ¢U,
SVIEL b1 (R(a, B))(0)¢Cn < bps1 (Rl ) €Cnia

Theorem 5.3 gives a Af-recursive map f,,+1 such that (o, 3) € VARCTEL N fr+1(@)(B) € Cpyq if
(o, B) €w™ x2¥. Let
Q€T (w* x 2% x 29) CIT} (w* x w® x 2%)
such that (o, B) €S © Vi€2¥ (a,3,9)¢ Q, and ag €w® such that :L{OI{IQ’I“WW XWX Note that
1

(a, ) eSeVie2” (R(R/(QQ, a),ﬂ),é) géL{Hme RN (R/(QQ’ oé)’ﬂ) cYPMhy1:2”
& for1(R(ag,a))(B)€Cri1 & (fn+1(73/(04Q,04))a5> €Un 1.

2
AsCp€elly,Copr €11} 4 and Upqq €11} 4. If A€TT}, 1 (2¥), then A=U, """ for some o€ w*.

Applying the previous discussion to S ::L{H}wl’zw, we get A= (Un11)y, +1(R (ag,a))» SO that Up 1
is X, +o-universal for the analytic subsets of 2*, effectively and uniformly.

(b) By definition, C; € II}', and Cpyy € II) 4 if C, € II}. Assume first that £ € IT}(2¢). Then
E = (Uy,)y, for some heC(2¥, X,,), by (a). Thus E =h~1(C,). If Z is a zero-dimensional Polish
space and D €ITI!(Z), then we may assume that Z is a G subset of 2% by 7.8 in [K2], so that
D €TI,,(2¢). The previous discussion gives g€ C(2*, X,,) with D =g~ *(C,,). Thus D= (g;7)~*(Cy)
and C,, is TI}-complete. O

Proof of Theorem 1.7. By Theorem 5.9, it is enough to show that if U2 ¢ I} is a good w*-
universal set for the II! subsets of 2¢, then there is a Al-recursive map b:w*” — [0,1]2~" such that
(a,8) e UM2 & b(< o, >) € Pif (a,8) € w¥x 2%, Let H € 1 (w® x 2% x 2¢) such that
U2 =Tl 00 [H]. We set G:={ (e, ) €w® x 2% | ()0, ()1, (8)1) €H A BEK}, so that
G € Al(w¥ x 2¥), has Gy vertical sections and G C w* x K. Lemma 3.10 gives a Al-recursive map
F:w®—[0,1]%"", taking values in M, and such that G, = Vi(a) for each a €w®. If (a, B) €w™ x2%,
then
(a,8) U™ 2" & 35€2 (o, B,0)eH & €2 (< o, f >,0)€C
& 35e2v (b(<a,B>),0)eV e b<a,f>)¢P.

This finishes the proof. O

Questions. Let U be a II) subset of w® x 2* which is universal for TT(2). We set

G:={(,B)ew’xK | (o, (8)1) €U}.

Note that G is a I subset of w* x 2% contained in w* x KC which is universal for ITJ(K). Indeed, fix
HeTIY(K). Then H' :={y€2¥ |< 0%, > H} is IT}, which gives ag € w* with H' =U,,. Then
H=G,,.
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Let a— ((@)x) , ., be a homeomorphism between w® and (w*)“, with inverse map

ke

() kew =< ap, a1, ... > .

We set S":={a€w” | IyEw® View VBE2Y BEG (), , } Note that " is 23
(1) Is S” a Borel X}-complete set?

Assume that this is the case. Then the set Sp:= {(fi)rew EM® | Iy€w® View fy; €P} of
sequences of martingales having a subsequence made of everywhere converging martingales is Borel
>1-complete. Indeed, Lemma 3.10 gives a Borel map F : w* — M such that G, = VF(a) for each

a€w®. The map F:w® — M defined by F(a)(k):= F((a)k) is Borel. Moreover,

F(a)€Sy & Fyew” Vicw VBe2¥ ﬁ¢D(F((a)y(i))>
& dyew? View VBE2Y BEVr((a), )
& Iyew” View VBe2Y BEG 4,
s ael,

(i)

so that §'=F~1(S,).

(2) Is there a Borel map f:C(2%,[0,1]) —w® such that, for each (hy)rew € (C(2%,10,1]))" and each
B E€2¥, the following are equivalent:
(a) limy_0 hi(B) =0,

Assume that this is the case. Then S’ (and therefore Ss) is Borel Xi-complete, and thus X3-
complete (see [P]). We define F': (C(2,[0,1]))“ — w® by F((hy)kew) =< f(ho), f(h1),... >, s0
that I is Borel. Note that

F((h)kew) €5 & Fyew® View VBe2¥ BEGn, )
= El’)/wa VB e2¥ lim;_ o h'y(z) (,8):0
= (hk)kEwGS,

so that S=F~1(S").
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