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Abstract. The Doob convergence theorem implies that the set of divergence of any martingale has

measure zero. We prove that, conversely, any Gδσ subset of the Cantor space with Lebesgue-measure

zero can be represented as the set of divergence of some martingale. In fact, this is effective and

uniform. A consequence of this is that the set of everywhere converging martingales is Π1
1-complete,

in a uniform way. We derive from this some universal and complete sets for the whole projective
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the theory of martingales.
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1 Introduction

The reader should see [K2] for the notation used in this paper.

Definition 1.1 We say that a map f : 2<ω → [0, 1] is a martingale if f(s) = f(s0)+f(s1)
2 for each

s∈2<ω . The set of martingales is denoted by M and is a compact subset of [0, 1]2
<ω

(equipped with

the usual product topology).

This terminology is not the standard one, but the set M can be interpreted as the set of all discrete

martingales (in the classical sense) taking values in [0,1], as follows. If s∈2<ω, then

Ns :={β∈2ω | s⊆β}

is the usual basic clopen set. Let f ∈M. If n∈ω, then let Sn be the σ-algebra on 2ω generated by

{Ns | s∈ 2n}, and fn : 2
ω → [0, 1] be defined by fn(β) := f(β|n). Then the sequence (fn)n∈ω is a

discrete martingale taking values in [0,1] with respect to the sequence of σ-algebras (Sn)n∈ω and the

usual Lebesgue product measure λ on 2ω . Conversely, if (fn)n∈ω is any such martingale, it can be

viewed as an element of M by setting f(s) := f|s|(α) if α ∈Ns. This definition is correct because

f|s|, as a function measurable with respect to S|s|, has a constant value on Ns.

Definition 1.2 Let f be a martingale and β∈2ω . The oscillation of f at β is the number

osc(f, β) := infN∈ω supp,q≥N |f(β|p)−f(β|q)|.

The set of divergence of f is D(f) :={β∈2ω | osc(f, β)>0}.

By definition, if f is a martingale, then

β∈D(f) ⇔ ∃r∈ω ∀N ∈ω ∃p, q≥N |f(β|p)−f(β|q)|>2−r.

This shows that D(f)∈Σ
0
3. Moreover, D(f) has λ-measure zero, by Doob’s convergence theorem

(see Chapter XI, Section 14 in [D]). So it is natural to ask whether any Σ
0
3 subset of 2ω with λ-

measure zero is the set of divergence of some martingale (this question was asked by Louveau). We

answer positively:

Theorem 1.3 Let B be a subset of 2ω . Then the following are equivalent:

(a) B is Σ0
3 and has λ-measure zero,

(b) there is a martingale f with B=D(f).

Definition 1.4 Let Γ be a class of subsets of Polish spaces, X,Y be Polish spaces, and U ⊆Y ×X.

(a) We say that U is Y -universal for the Γ subsets of X if U ∈Γ(Y ×X) and Γ(X)={Uy | y∈Y }.

(b) We say that U is uniformly Y -universal for the Γ subsets of X if U is Y -universal for the Γ

subsets of X and, for each S ∈Γ(ωω×X), there is a Borel map b :ωω →Y such that Sα=Ub(α) for

each α∈ωω .

Corollary 1.5 Let G be a Gδ subset of 2ω with λ(G)=0. Then the set {(f, β)∈M×G | β∈D(f)}
is M-universal for the Σ

0
3 subsets of G.
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In fact, we prove an effective and uniform version of the implication (a) ⇒ (b) in Theorem 1.3.

In particular, we can associate, via a Borel map F , a martingale to a code α of an arbitrary Gδ subset

G of G (as in the previous corollary), in such a way that G=D
(

F (α)
)

. A consequence of this is the

following:

Theorem 1.6 The set P of everywhere converging martingales is Π1
1-complete.

These statements are in the spirit of some results concerning the differentiability of functions due

to Zahorski and Mazurkiewicz (see Section 4 for details). In fact, P is Π
1
1-complete in a uniform

way, which allows to derive some universal and complete sets for the whole projective hierarchy, in

spaces of continous functions, starting from P. More precisely, let P1 := [0, 1]2
<ω

and C1 :=P. We

define, for each natural number n≥1,

• the space Pn+1 :=C(2ω, Pn) of continuous functions from 2ω into Pn, equipped with the topology

of uniform convergence (inductively),

• Cn+1 :={h∈Pn+1 | ∀β∈2ω h(β) /∈Cn} (inductively),

• Un :={(h, β)∈Pn+1×2ω | h(β)∈Cn}.

We prove the following:

Theorem 1.7 Let n≥1 be a natural number. Then

(a) the set Un is uniformly Pn+1-universal for the Π
1
n subsets of 2ω ,

(b) the set Cn is Π1
n-complete.

In fact, our method is more general and works if we start with a Π
1
1 set which is complete in a

uniform way.

Let f be a martingale. As D(f) has λ-measure zero, we can associate to f the partial function

ψ(f) defined λ-almost everywhere by ψ(f)(β) := liml→∞ f(β|l). The partial function ψ(f) will be

called the associated partial function. The martingale f is in P if and only if ψ(f) is total, in which

case ψ(f) is called the associated function. Using the work in [B-Ka-L] and [K2] about spaces of

continuous functions, we prove the following:

Theorem 1.8 (a) The set of sequences of everywhere converging martingales whose associated func-

tions converge pointwise is Π1
1-complete.

(b) The set of sequences of everywhere converging martingales whose associated functions converge

pointwise to zero is Π1
1-complete.

(c) The set of sequences of everywhere converging martingales having a subsequence whose associ-

ated functions converge pointwise to zero is Σ1
2-complete.
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2 Σ
0
3 sets of measure zero

Notation. In the sequel, B will be a Borel subset of 2ω , and M will be a λ-measurable subset of 2ω.

If β∈2ω , then the density of M at β is the number d(M,β) := liml→∞
λ(M∩Nβ|l)

λ(Nβ|l)
when it is defined.

Note that d(B, β)=1 if β∈B and B is open. We first recall the Lebesgue density theorem (see 17.9

in [K2]).

Theorem 2.1 (Lebesgue) The equality λ(M) = λ
(

{β ∈ M | d(M,β) = 1}
)

holds for any λ-

measurable subset M of 2ω .

The reader should see [C] for the next lemma. We include a proof to be self-contained and also

because we will prove an effective and uniform version of it later.

Lemma 2.2 (Lusin-Menchoff) Let F be a closed subset of 2ω , and M⊇F be a λ-measurable subset

of 2ω such that d(M,β)=1 for each β∈F . Then there is a closed subset C of 2ω such that

(1) F ⊆C⊆M ,

(2) d(M,β)=1 for each β∈C ,

(3) d(C, β)=1 for each β∈F .

Proof. If F is 2ω , then we can take C :=F . So we may assume that F is not 2ω. We set s− :=s|(|s|−1)
if ∅ 6= s ∈ 2<ω . Note that ¬F is the disjoint union of the elements of a sequence (Nsn)n∈ω , where

Ns−n
∩ F 6=∅ for each n∈ω. Fix n∈ω. By Theorem 2.1,

λ(M ∩Nsn)=λ
(

{β∈M ∩Nsn | d(M ∩Nsn , β)=1}
)

.

The regularity of λ gives a closed subset Fn of 2ω contained in {β∈M ∩Nsn | d(M ∩Nsn , β)=1}
such that λ(Fn)≥(1−2−n)λ(M ∩Nsn). We set C :=F ∪

⋃

n∈ω Fn, which is closed since |sn| → ∞.

As Conditions (1) and (2) are clearly satisfied, pick β∈F . Note that

λ(Nβ|l\C)=Σsn⊇β|l λ(Nsn \C)

≤Σsn⊇β|l λ(Nsn \Fn)

≤Σsn⊇β|l 2
−nλ(M ∩Nsn)+Σsn⊇β|l λ(Nsn \M)

≤Σsn⊇β|l 2
−nλ(Nsn)+λ(Nβ|l\M).

This implies that the limit of
λ(Nβ|l\C)

λ(Nβ|l)
is zero since d(M,β)=1. �

The next topology is considered in [Lu-Ma-Z], see Chapter 6.

Definition 2.3 The τ -topology on 2ω is generated by

F :={M⊆2ω |M is λ-measurable ∧ ∀β∈M d(M,β)=1}.

The next result is proved in [Lu-Ma-Z], but in a much more abstract way. This is the reason why

we include a much more direct proof here, since it is not too long.
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Lemma 2.4 The family F is a topology. In particular, any τ -open set is λ-measurable.

Proof. Note first that F is closed under finite intersections, so that it is a basis for the τ -topology.

Indeed, let M,M ′ be in F , and β∈M ∩M ′. Then we use the facts that

λ(M ∩M ′ ∩Nβ|l)=λ(M ∩Nβ|l)−λ
(

(M ∩Nβ|l)\M
′
)

and λ
(

(M ∩Nβ|l)\M
′
)

≤λ(Nβ|l\M
′).

Let H be a subfamily of F , and H :=∪H. We claim that there is a countable subfamily C of H
such that m := sup{λ(∪D) | D ⊆H countable}= λ(∪C). Indeed, for each n ∈ ω there is Dn ⊆H
countable such that λ(∪Dn)>m−2−n, and C :=

⋃

n∈ω Dn is suitable. Let C :=∪C.

Let β∈H , and M in H with β∈M . Note that λ(M ∪C)=λ(C) (consider the family C ∪ {M}).

Thus λ(M \C) = 0. As d(M,β) = 1, the equality d(M ∩ C, β) = 1 holds, and d(¬C, β) = 0. This

implies that H \C is contained in {β /∈C | d(¬C, β)< 1}, which has λ-measure zero by Theorem

2.1. Therefore H\C has λ-measure zero and H=C ∪ (H\C) is λ-measurable.

Pick β∈H , and M ∈H with β∈M . Then d(M,β)=1, and thus d(H,β)=1. Therefore H ∈F .

This finishes the proof. �

The next lemma is in the style of Urysohn’s theorem (see [Lu] for its version on the real line). We

include a proof to be self-contained and also because we will prove an effective and uniform version

of it later.

Lemma 2.5 Let C be a closed subset of 2ω , and G be a Gδ subset of 2ω disjoint from C such that

λ(G)=0. Then there is a τ -continuous map h :2ω→ [0, 1] such that h|C≡0 and h|G≡1.

Proof. Let (Fn)n∈ω be an increasing sequence of closed subsets of 2ω with union ¬G and F0 =C .

We first construct a sequence (C 1
2n
)n∈ω of closed subsets of 2ω with Fn⊆C 1

2n
⊆¬G, C 1

2n
⊆C 1

2n+1
,

and d(C 1
2n+1

, β)= 1 for each β ∈C 1
2n

. We first apply Lemma 2.2 to F :=F0 and M :=¬G, which

gives F0 ⊆C1 ⊆¬G. Then, inductively, we apply Lemma 2.2 to F :=C 1
2n

∪ Fn+1 and M := ¬G,

which gives C 1
2n

∪ Fn+1⊆C 1
2n+1

⊆¬G such that d(C 1
2n+1

, β)=1 for each β∈C 1
2n

.

Then we construct C 2k+1
2n

, for 0<k<2n−1 and n≥2. This will give us a family (C k
2n
)n∈ω,0<k≤2n

of closed subsets of 2ω. We want to ensure that Cζ ⊆Cζ′ and d(Cζ′ , β)=1 for each β∈Cζ if ζ ′<ζ .

We proceed by induction on n. We apply Lemma 2.2 to F :=C k+1
2n−1

and M :=C k

2n−1
, which gives

C 2k+1
2n

such that C k+1

2n−1
⊆C 2k+1

2n
⊆C k

2n−1
, d(C k

2n−1
, β)=1 for each β∈C 2k+1

2n
, and d(C 2k+1

2n
, β)=1

for each β∈C k+1
2n−1

. This allows us to define h̃ by

h̃(β) :=

{

0 if β∈G,

sup{ζ | β∈Cζ} if β /∈G.

It remains to see that h̃ is τ -continuous (and then we will set h(β) := 1− h̃(β)). So let b ∈ (0, 1],
and β ∈ 2ω with h̃(β)< b. Note that there is ζ < b with h̃(β)< ζ , so that β /∈ Cζ . If γ /∈ Cζ , then

h̃(γ)≤ζ <b, so that ¬Cζ is an open (and thus τ -open since the τ -topology is finer than the usual one)

neighborhood of β on which h̃<b. In particular, h̃ is Borel.
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Now let a∈ [0, 1). It is enough to see that B := {γ ∈ 2ω | h̃(γ)>a} is τ -open. So assume that

h̃(γ)>a. Note that there are ζ >ζ ′>a with h̃(γ)>ζ , so that γ∈Cζ ⊆Cζ′ ⊆B. Thus d(Cζ′ , γ)=1,

by construction of the family. As h̃ is Borel, B is Borel, d(B, γ) is defined and equal to 1. �

Remark. We in fact proved that h is lower semi-continuous.

Notation. If h :2ω→ [0, 1] is a λ-measurable map and s∈2<ω , then we set
ffl

Ns
h dλ :=

´

Ns
h dλ

λ(Ns)
.

Lemma 2.6 Let h :2ω→ [0, 1] be a τ -continuous map, and β∈2ω . Then

lim
l→∞

 

Nβ|l

h dλ=h(β).

Proof. Let ε> 0, and β ∈M :=h−1
(

B
(

h(β), ε
)

)

. Note that d(M,γ)=1 for each γ ∈M since h is

τ -continuous. As h is λ-measurable, we can write
ˆ

Nβ|l

h dλ=

ˆ

M∩Nβ|l

h dλ+

ˆ

Nβ|l\M
h dλ.

Note that 0≤
´

Nβ|l\M
h dλ≤λ(Nβ|l\M), so that 0≤

ffl

Nβ|l\M
h dλ≤

λ(Nβ|l\M)

λ(Nβ|l)
→ 0. Similarly,

 

M∩Nβ|l

h dλ∈
[(

h(β)−ε
)λ(M ∩Nβ|l)

λ(Nβ|l)
,
(

h(β)+ε
)λ(M ∩Nβ|l)

λ(Nβ|l)

]

,

and we are done since
λ(M∩Nβ|l)

λ(Nβ|l)
tends to 1 as l tends to ∞. �

Now we come to our main lemma, inspired by Zahorski (see [Za]).

Lemma 2.7 Let G be a Gδ subset of 2ω with λ-measure zero. Then there is a martingale f with

G=D(f) and {osc(f, β) | β∈2ω}⊆{0} ∪ [12 , 1].

Proof. Let (Gn)n∈ω be a decreasing sequence of open subsets of 2ω with intersection G and G0=2ω.

• We construct gn : 2ω → [0, 1], open subsets G∗
n, G

∗∗
n of 2ω , and a sequence (snj )j∈In of pairwise

incompatible finite binary sequences, by induction on n∈ω, such that, if Sn :=Σj≤n (−1)jgj ,

(1) G⊆G∗
n+1⊆G

∗∗
n =

⋃

j∈In
Nsnj

⊆G∗
n⊆Gn ∧ G∗

0=2ω ,

(2) gn|G≡1 ∧ gn|¬G∗
n
≡0,

(3) gn is τ -continuous,

(4) gn+1≤gn,

(5) λ(G∗
n+1 ∩Nsnj

)<2−n−3λ(Nsnj
),

(6) |
ffl

Nsn
j

Sn dλ−Sn(β)|<2−3 if β∈G ∩Nsnj
.

We set g0 :≡1, G∗
0, G

∗∗
0 :=2ω , I0 :={0} and s00 :=∅. Assume that our objects are constructed up to n.

We first construct an open subset G∗
n+1 of 2ω with G⊆G∗

n+1⊆G
∗∗
n ∩Gn+1 such that

λ(G∗
n+1 ∩Nsnj

)<2−n−3λ(Nsnj
)

if j ∈ In. For each j ∈ In, there is an open set Oj with G ∩ Nsnj
⊆ Oj ⊆ Gn+1 ∩ Nsnj

such that

λ(Oj)<2−n−3λ(Nsnj
). We then set G∗

n+1 :=
⋃

j∈In
Oj .
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We now apply Lemma 2.5 to C :=¬G∗
n+1 and G, which gives a τ -continuous map h : 2ω→ [0, 1]

with h|¬G∗
n+1

≡0 and h|G≡1. We set gn+1 :=min(gn, h), so that gn+1 satisfies (2)-(4).

By Lemma 2.6, liml→∞

ffl

Nβ|l
Sn+1 dλ=Sn+1(β) for each β ∈G. This gives l(β)∈ω minimal

with |
ffl

Nβ|l(β)
Sn+1 dλ−Sn+1(β)| < 2−3 and Nβ|l(β) ⊆ G∗

n+1. The set G∗∗
n+1 is the union of the

Nβ|l(β)’s, which defines In+1 and (sn+1
j )j∈In+1 (Sn+1(β) is 0 if n is even and 1 otherwise when

β∈G).

• We then define a partial map f∞ : 2ω → [0, 1] by f∞ :=Σj∈ω (−1)jgj . If β ∈G, then Sn(β) takes

alternatively the values 1 and 0, depending on the parity of n, so that f∞(β) is not defined. If β /∈G,

then there is n such that β ∈¬G∗
n+1 ⊆¬G∗

n+2 ⊆ ... This implies that f∞(β) is defined and equal to

Sn(β). As 0≤Σp≤q (g2p−g2p+1)=S2q+1≤S2q= g0+Σ1≤p≤q (g2p−g2p−1)≤ g0, f∞ takes values

in [0, 1]. So f∞ is a partial λ-measurable map defined λ-almost everywhere since λ(G)=0 (we use

Lemma 2.4).

• This allows us to define f : 2<ω→ [0, 1] by f(s) :=
ffl

Ns
f∞ dλ. As λ(Ns)=2λ(Nsε) for each ε∈2,

f(s)=
ffl

Ns
f∞ dλ=

´

Ns0
f∞ dλ+

´

Ns1
f∞ dλ

λ(Ns)
= f(s0)

2 + f(s1)
2 and f is a martingale.

• If β /∈G, then there is n with β∈G∗
n\G

∗
n+1, so that f∞(β)=Sn(β). By Lemma 2.6, k≥n implies

that liml→∞

ffl

Nβ|l
Sk+1 dλ=Sk+1(β)=Sn(β) since Sk+1 is τ -continuous. Note that, for each k≥n,

∣

∣

´

Nβ|l
(f∞−Sk+1) dλ

∣

∣ ≤λ(G∗
k+2 ∩Nβ|l)

≤Σ
β|l⊆sk+1

j
λ(G∗

k+2 ∩Nsk+1
j

)

≤Σ
β|l⊆sk+1

j
2−k−4λ(N

sk+1
j

)

≤λ(Nβ|l)2
−k−4.

Moreover,

|f(β|l)−f∞(β)|= |
ffl

Nβ|l
f∞ dλ−f∞(β)| = |

ffl

Nβ|l

(

f∞−Sk+1

)

dλ+
ffl

Nβ|l
Sk+1 dλ−Sk+1(β)|

≤2−k−4+|
ffl

Nβ|l
Sk+1 dλ−Sk+1(β)|,

so that liml→∞ f(β|l)=f∞(β), osc(f, β)=0 and β /∈D(f).

• If β∈G and n∈ω, then there is j∈ω with β∈Nsnj
. Note that

f(snj )=

 

Nsn
j

f∞ dλ=

 

Nsn
j

Sn dλ+

 

Nsn
j

(f∞−Sn) dλ

and |
´

Nsn
j

(f∞−Sn) dλ| ≤ λ(G∗
n+1 ∩ Nsnj

) < 1
8λ(Nsnj

), so that |
ffl

Nsn
j

(f∞−Sn) dλ| <
1
8 . By (6),

|f(snj )−Sn(β)|<
1
8+

1
8 =

1
4 . As Sn(β) takes infinitely often the values 1 and 0, osc(f, β)≥ 1

2 and

β∈D(f). �

The main result will be a consequence of the main lemma and the following.
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Lemma 2.8 Let (fn)n∈ω be a sequence of martingales such that

{osc(fn, β) | (n, β)∈ω×2ω}⊆{0} ∪ [
1

2
, 1].

Then there is a martingale f with D(f)=
⋃

n∈ω D(fn).

Proof. We first observe the following facts. Let g, h :2<ω→R be bounded, β∈2ω and a∈R.

(1) osc(g+h, β)≤osc(g, β)+osc(h, β).

This comes from the triangle inequality.

(2) osc(ag, β)= |a|·osc(g, β).

(3) osc(g+h, β)=osc(h, β) if osc(g, β)=0.

By (1), osc(h, β)≤osc(g+h, β)+osc(−g, β)=osc(g+h, β)≤osc(g, β)+osc(h, β)=osc(h, β),
so that osc(h, β)=osc(g+h, β).

(4) osc(g, β)≤a if g(β|l)∈ [0, a] for each l∈ω.

• We set Dn :=D(fn) for each n∈ω, and f :=Σn∈ω 4−nfn. Note that f is defined and a martingale.

• If β /∈
⋃

n∈ω Dn, then osc(fn, β)=0 for each n∈ω. In particular, osc(4−nfn, β)=0 for each n∈ω,

by (2). Let ε>0, and M ∈ω with Σn>M 4−n≤ε. By (1), osc(Σn≤M 4−nfn, β)=0. By (3) and (4),

osc(f, β)=osc(Σn>M 4−nfn, β)≤Σn>M 4−n≤ε. As ε is arbitrary, osc(f, β)=0, β /∈D(f), which

shows that D(f)⊆
⋃

n∈ω Dn.

• If β∈
⋃

n∈ω Dn, then let m be minimal such that β∈Dm. Note that

f=Σn<m 4−nfn+4−mfm+Σn>m 4−nfn.

By (2) and (3), osc(f, β)=osc(4−mfm+Σn>m 4−nfn, β). By (1), (2) and (4),

osc(f, β)≥osc(4−mfm, β)−osc(Σn>m 4−nfn, β)≥4−m 1

2
−4−m 1

3
>0.

Thus β∈D(f). �

3 Effectivity and uniformity

- We refer to [M] for the basic notions of effective descriptive set theory. We first recall some material

present in it.

• Let (pn)n∈ω be the sequence of prime numbers 2, 3, ...

• If l ∈ ω and s∈ ωl, then s :=< s(0), ..., s(l−1) >:= p
s(0)+1
0 ...p

s(l−1)+1
l−1 ∈ ω codes s (if l=0,

then <>:=1).

• If α∈ωω and l∈ω, then α(l) :=< α(0), ..., α(l−1) >∈ ω codes α|l∈ωl, and α∗ is defined by

removing the first coordinate: α∗ :=
(

α(1), α(2), ...
)

.
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• If κ ∈ {2, ω}, then < ., . >: (κω)2 → κω is a recursive homeomorphism with inverse map

α 7→
(

(α)0, (α)1
)

defined for example by (α)ε(n) :=α(2n+ε) if (n, ε)∈ω×2 (we will also consider

recursive homeomorphisms < ., ., . >: (κω)3→κω and < ., ., ... >: (κω)ω→κω).

• If u ∈ ω, then Seq(u) means that there are l ∈ ω and s ∈ ωl (denoted by s(u)) such that

u =< s(0), ..., s(l−1) >. The natural number (u)i is s(i) if i < l, and 0 otherwise. The number

l is the length of u and is denoted by lh(u). If k ≤ l, then u(k) :=< s(0), ..., s(k−1) >, so that

u(l) = u. The standard basic clopen set is Nu := {β ∈ 2ω | ∀i < lh(u) β(i) = (u)i}. We set

u− :=< (u)0, ..., (u)lh(u)−2 > (u− :=<> if lh(u)≤1).

• Let X be a recursively presented Polish space. Then we will consider the effective basic open

set N(X,u)=BX (r((u)1)0 ,
((u)1)1

((u)1)2+1).

• Let n≥1 be a natural number. A subset T of ωn is a tree if Seq(ui) and lh(ui)= lh(u0) for each

(u0, ..., un−1)∈T and each i<n, and
(

u0(k), ..., un−1(k)
)

∈T if (u0, ..., un−1)∈T and k≤ lh(u0).

• The next result is a part of 4A.1 in [M].

Theorem 3.1 Let m≥ 1 be a natural number, and B ∈Σ
0
1

(

ωω×(ωω)m
)

. Then there is a recursive

subset T of ωω ×ωm such that (α,α1, ..., αm) ∈ B ⇔ ∃l ∈ ω
(

α,α1(l), ..., αm(l)
)

/∈ T , and

Tα :={(u0, ..., um−1)∈ω
m | (α, u0, ..., um−1)∈T} is a tree for each α∈ωω .

• The next result is a part of 4A.7 in [M].

Theorem 3.2 Let X be a recursively presented Polish space and B ∈∆
1
1(X). Then we can find a

recursive function π :ωω→X and C∈Π
0
1 (ω

ω) such that π is injective on C and π[C]=B.

- We then recall some material from [L].

Notation. Let X be a recursively presented Polish space. Recall that there is a pair (WX , CX) such

that

• WX⊆ω is a Π 1
1 set of codes for the ∆1

1 subsets of X,

• CX ⊆ω×X is Π 1
1 and ∆

1
1(X)= {CX

n | n∈WX}, which means that CX is “universal” for the

∆
1
1 subsets of X,

• the relation “n∈WX ∧ (n, x) /∈CX” is Π 1
1 in (n, x).

If X=ωω×2ω , then we simply write (W, C) :=(WX , CX).

The next result will be extremely useful in the sequel.

The uniformization lemma. Let X,Y be recursively presented Polish spaces, and P ∈Π
1
1 (X×Y ).

Then the set P+ :={x∈X | ∃y∈∆
1
1(x) (x, y)∈P} is Π 1

1 , and there is a partial Π 1
1 -recursive map

f :X→Y such that
(

x, f(x)
)

∈P for each x∈P+. If moreover S⊆P+ is a Σ
1
1 subset of X, then

there is a total ∆1
1-recursive map g :X→Y such that

(

x, g(x)
)

∈P for each x∈S.

- The following definition is inspired by 3H.1 in [M].
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Definition 3.3 (a) Let Γ be a class of subsets of recursively presented Polish spaces, and Γ be the

associated boldface class. A system of sets UX ∈ Γ(ωω×X), where is X is a recursively presented

Polish space, is a nice parametrization in Γ for Γ if the following hold:

(1) Γ(X)={UX
α | α∈ωω},

(2) Γ(X)={UX
α | α∈ωω recursive},

(3) if X is a recursively presented Polish space, then there is R : ωω×ωω → ωω recursive such

that (α, γ, x)∈Uωω×X ⇔
(

R(α, γ), x
)

∈UX if (α, γ, x)∈ωω×ωω×X.

(b) If U belongs to a nice parametrization, then we will say that U is a good universal set .

(c) If U satisfies all these properties except maybe (3), then we will say that U is a suitable universal

set .

By 3E.2, 3F.6 and 3H.1 in [M], there is a nice parametrization in Π
1
n for Π1

n, for each natural

number n≥1.

- We now recall two results that can essentially be found in [K1]. The first one is Theorem 2.2.3.(a)

(see also [T1]).

Theorem 3.4 (Tanaka) Let U ∈Σ
1
1 (ω

ω×ωω) be ωω-universal for the analytic subsets of ωω. Then

L(U) :=
{

(α, p)∈ωω×ω | λ(Uα ∩ 2ω)> (p)0
(p)1+1

}

is Σ 1
1 .

Corollary 3.5 Let B∈∆
1
1(ω

ω×2ω).

(a) The map λB : ωω → R defined by λB(α) := λ(Bα) is ∆
1
1-recursive, and the partial function

(n, α) 7→λ(Cn,α) is Π 1
1 -recursive on its domain W×ωω.

(b) LetD⊆ω,O0∈Σ
1
1 (ω×ω

ω×2ω), and O1∈Π
1
1 (ω×ω

ω×2ω) be such that λ
(

(O0)n,α
)

=λ
(

(O1)n,α
)

if n∈D. Then the partial map λO :D×ωω →R defined by λO(n, α) :=λ
(

(O0)n,α
)

is Σ 1
1 -recursive

and Π
1
1 -recursive on its domain.

(c) The partial map dB :ωω×2ω→R defined by dB(α, β) :=d(Bα, β) is ∆1
1-recursive, and the partial

map (n, α, β) 7→d(Cn,α, β) is Π 1
1 -recursive on its Π 1

1 domain

{(n, α, β)∈W×ωω×2ω | d(Cn,α, β) exists}.

(d) Let h :ωω×2ω→R be ∆
1
1-recursive taking values in [0, 1]. Then the partial map ih :ω

ω×ω→R

defined by ih(α, u) :=
´

Nu h(α, .) dλ is ∆1
1-recursive on its ∆0

1 domain ωω×{u∈ω | Seq(u)}.

Proof. (a) It is enough to see that the relations PB(α, p) ⇔ λ(Bα)>rp :=(−1)(p)0 · (p)1
(p)2+1 and

QB(α, p) ⇔ λ(Bα)<rp

are ∆
1
1 to see that λB is ∆1

1-recursive. Note that there is φ :ω2→ω recursive with rφ(p,l)= rp−
1

l+1 .

Thus
QB(α, p) ⇔ ∃l∈ω λ(Bα)≤rp−

1
l+1

⇔ ∃l∈ω ¬
(

λ(Bα)>rp−
1

l+1

)

⇔ ∃l∈ω ¬PB

(

α, φ(p, l)
)

,

so that it is enough to see that PB is ∆1
1.
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• Now let S∈Σ
1
1

(

ωω×(ωω)2
)

be a good ωω-universal for the analytic subsets of (ωω)2. We set

U(α, γ) ⇔ S
(

(α)0, (α)1, γ
)

,

so that U ∈ Σ
1
1 (ω

ω×ωω) is ωω-universal for the analytic subsets of ωω. Let A be a Σ
1
1 subset of

ωω×2ω. Then there is α0∈ω
ω recursive with A=Sα0 , so that

γ∈Aα ⇔ (α0, α, γ)∈S ⇔ (< α0, α >, γ)∈U.

This implies that the relation RA(α, p) ⇔ λ(Aα)>rp, equivalent to

(

(p)0 is odd ∧ (p)1>0
)

∨
(

(p)0 is even ∧ (< α0, α >,< (p)1, (p)2 >)∈L(U)
)

,

is Σ 1
1 , by Theorem 3.4.

• In particular, this applies to A :=B, so that PB is Σ 1
1 . Now note that

PB(α, p) ⇔ λ
(

(¬B)α
)

<1−rp ⇔ Q¬B

(

α, φ′(p)
)

,

for some φ′ :ω→ω is recursive, so that PB is Π 1
1 by the previous computation.

• We set C′ :=
{

(γ, β)∈ωω×2ω | γ(0)∈W ∧
(

γ(0), γ∗, β
)

∈C
}

. As C′ is Π 1
1 ,

A :=
{

(α, p)∈ωω×ω | λ
(

(¬C′)α
)

>rp
}

is Σ 1
1 , by the previous discussion. So let n∈W . Note that

λ(Cn,α)>rp ⇔ λ(¬Cn,α)<1−rp ⇔ λ
(

(¬C′)nα
)

<1−rp
⇔ ∃l∈ω λ

(

(¬C′)nα
)

≤1−rp−
1

l+1 ⇔ ∃l∈ω
(

nα, φ′′(p, l)
)

/∈A,

for some recursive φ′′ : ω2 → ω. Similarly, the relation “λ(Cn,α) < rp” is Π
1
1 in (n, α, p) since the

relation “n∈W ∧ (n, α, β) /∈C” is Π 1
1 , so that (n, α) 7→λ(Cn,α) is Π 1

1 -recursive on W×ωω.

(b) Let A :=
{

(α, β) ∈ ωω×2ω |
(

α(0), α∗, β
)

∈ O0

}

. Note that A is Σ
1
1 . By (a), the relation

RA(α, p) ⇔ λ(Aα) > rp is Σ
1
1 . Therefore the relation RO0(n, α, p) ⇔ RA(nα, p) is Σ

1
1 too.

Moreover, RO0(n, α, p) ⇔ λ
(

(O0)n,α
)

>rp ⇔ λO(n, α)>rp.

• Assume now that n∈D. Then as above there is φ′′ :ω2→ω recursive such that

λO(n, α)>rp ⇔ λ
(

(O1)n,α
)

>rp ⇔ λ
(

(¬O1)n,α
)

<1−rp

⇔ ∃l∈ω λ
(

(¬O1)n,α
)

≤1−rp−
1

l+1 ⇔ ∃l∈ω ¬
(

λ
(

(¬O1)n,α
)

>rφ′′(p,l)

)

⇔ ∃l∈ω ¬R¬O1

(

n, α, φ′′(p, l)
)

,

which shows the existence of R′
O0

∈Π
1
1 such that λO(n, α)>rp ⇔ R′

O0
(n, α, p) if n∈D.

• Assume that n∈D. Then there is φ′ :ω→ω recursive such that

λO(n, α)<rq ⇔ λ
(

(O1)n,α
)

<rq ⇔ λ
(

(¬O1)n,α
)

>1−rq ⇔ R¬O1

(

n, α, φ′(q)
)

,

which shows the existence of R′′
O0

∈Σ
1
1 such that λO(n, α)<rq ⇔ R′′

O0
(n, α, q) if n∈D.
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• Assume that n∈D. Then there is φ′′ :ω2→ω recursive such that

λO(n, α)<rq ⇔ λ
(

(O0)n,α
)

<rq ⇔ ∃l∈ω λ
(

(O0)n,α
)

≤1−rq−
1

l+1

⇔ ∃l∈ω ¬
(

λ
(

(O0)n,α
)

>rφ′′(q,l)

)

⇔ ∃l∈ω ¬RO0

(

n, α, φ′′(q, l)
)

,

which shows the existence of R′′′
O0

∈Π
1
1 such that λO(n, α)<rq ⇔ R′′′

O0
(n, α, q) if n∈D.

• Finally, rp<λO(n, α)<rq ⇔ RO0(n, α, p) ∧R
′′
O0

(n, α, q) and

rp<λO(n, α)<rq ⇔ R′
O0

(n, α, p) ∧R′′′
O0

(n, α, q)

if n∈D, which shows that λO is Σ 1
1 -recursive and Π

1
1 -recursive on D×ω.

(c) We first prove the following. Let X,Y be a recursively presented Polish spaces and g :X×ω→Y
be a ∆

1
1-recursive map. Then the partial map h :X→Y defined by

h(x) := liml→∞ g(x, l)

when this limit exists is ∆1
1-recursive.

Indeed, the domain D of h is {x∈X | ∀r∈ω ∃L∈ω ∀k, l≥L dY
(

g(x, k), g(x, l)
)

<2−r}, so

that D is ∆1
1. If x∈D, then h(x)∈N(Y, u) is equivalent to

∃p, q∈ω
p

q + 1
<

(

(u)1
)

1
(

(u)1
)

2
+ 1

∧ ∃L∈ω ∀l≥L g(x, l)∈N
(

Y,
〈

0, <
(

(u)1
)

0
, p, q >

〉)

,

and we are done.

• We set B′ :=
{

(α, γ)∈ωω×2ω |
(

(α)0, γ
)

∈B ∧ γ∈N(α)∗1 |(α)1(0)

}

, so that Bα ∩Nβ|l=B
′
<α,lβ>

and B′ is ∆
1
1. By (a), the map g : ωω×2ω×ω→ [0, 1] defined by g(α, β, l) := 2−lλ(Bα ∩ Nβ|l) is

∆
1
1-recursive. By the previous point, the partial map h :ωω×2ω→ [0, 1] defined by

h(α, β) := liml→∞ 2−lλ(Bα ∩Nβ|l)

when it exists is also ∆
1
1-recursive. But h=dB .

• Fix n∈W . Then there is q(n)∈W such that

Cq(n)=
{

(γ, δ)∈ωω×2ω |
(

n, (γ)0, δ)∈C ∧ (γ)∗1|(γ)1(0)⊆δ
}

.

Moreover, we may assume that q is Π
1
1 -recursive on W , by the uniformization lemma. As Π

1
1 has

the substitution property, the map g′ : (n, α, β, l) 7→ 2−lλ(Cq(n),<α,lβ>) = 2−lλ(Cn,α ∩ Nβ|l) is Π
1
1 -

recursive on W×ωω×2ω×ω. As above, the map

h′ : (n, α, β) 7→ liml→∞ 2−lλ(Cn,α ∩Nβ|l)=d(Cn,α, β)

is Π 1
1 -recursive on the Π

1
1 set {(n, α, β)∈W×ωω×2ω | d(Cn,α, β) exists}.

12



(d) The argument here is partly similar to 11.6 and 17.25 in [K2]. We set, for (k, l)∈ω2,

Ak,l :=h
−1

(

[
k

2l
,
k+1

2l
)
)

and define hl :ω
ω×2ω→ [0, 1] by hl=Σk≤2l

k
2l
χAk,l

. We also define R⊆ωω×2ω×ω3 by

R(α, β, u, k, l) ⇔
k

2l
≤h(α, β)<

k+1

2l
∧ Seq(u) ∧ β∈Nu,

so that R is ∆1
1. Then we define O⊆ωω×2ω by

O(α, β) ⇔ Seq
(

α(0)
)

∧ lh
(

α(0)
)

=3 ∧ R
(

α∗, β,
(

α(0)
)

0
,
(

α(0)
)

1
,
(

α(0)
)

2

)

,

so that O is ∆1
1.

Note that (hl) is a sequence of Borel functions pointwise converging to h. By Lebesgue’s domi-

nated convergence theorem,
´

Nu h(α, .) dλ= liml→∞

´

Nu hl(α, .) dλ if Seq(u). Note that

´

Nu hl(α, .) dλ =
´

Nu Σk≤2l
k
2l
χAk,l

(α, .) dλ=Σk≤2l
k
2l
λ
(

(Ak,l)α ∩Nu
)

=Σk≤2l
k
2l
λ(Rα,u,k,l)=Σk≤2l

k
2l
λ(O<u,k,l>α).

Using (a), this implies that the map (α, u, l) 7→
´

Nu hl(α, .) dλ is ∆
1
1-recursive on its ∆

0
1 domain

ωω×{u∈ω | Seq(u)}×ω. As in the proof of (c), ih is ∆1
1-recursive on its domain. �

We now prove a uniform version of Theorem 4.3.2 in [K1] (due to Tanaka, see [T2]).

Theorem 3.6 Let B∈∆
1
1(ω

ω×2ω), and ǫ :ωω →R be ∆
1
1-recursive such that ǫ(α)∈ (0, 1] for each

α∈ωω . Then there is T ∈∆
1
1(ω

ω×ω) such that

(a) Tα is a tree for each α∈ωω ,

(b) if K=
{

(α, β)∈ωω×2ω | ∀l∈ω
(

α, β(l)
)

∈T
}

, then Kα⊆Bα and λ(Kα)≥λ(Bα)−ǫ(α) for

each α∈ωω .

Proof. Theorem 3.2 gives π :ωω →ωω×2ω recursive and C ∈Π
0
1 (ω

ω) such that π is injective on C
and π[C] =B. We set Q := {(α, β, γ) ∈ (ωω)3 | γ ∈C ∧ π(γ)= (α, β)}. As Q∈Π

0
1 , Theorem 3.1

gives a recursive subset T of ωω×ω2 such that (α, β, γ)∈Q ⇔ ∀l∈ω
(

α, β(l), γ(l)
)

∈T and Tα is

a tree for each α∈ωω .

• We set, for u, v∈ω,

u ≤a v ⇔ Seq(u),Seq(v) ∧ lh(u)= lh(v) ∧ ∀i< lh(u) (u)i≤(v)i.

• Then we set, for u∈ω with Seq(u) and α∈ωω ,

Bu
α :=

{

β∈2ω | ∃γ∈ωω γ
(

lh(u)
)

≤a u ∧ ∀l∈ω
(

α, β(l), γ(l)
)

∈T
}

and B′ := {(α, β) ∈ ωω×2ω | Seq
(

α(0)
)

∧ β ∈B
α(0)
α∗ }. Note that B′ is Σ

1
1 . In fact, B′ is ∆1

1 by

uniqueness of the witness γ.
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• We now define δα∈ω
ω as follows. We define δα(i) by induction on i. We first set

δα(0) :=min{k∈ω | λ(B<k>
α )>λ(Bα)−

ǫ(α)

2
}.

This number exists since Bα is the increasing union of the B<k>
α ’s. Then

δα(i+1):=min{k∈ω | λ(B<δα(0),...,δα(i),k>
α )>λ(Bα)−

ǫ(α)

2
−...−

ǫ(α)

2i+2
}.

Note that δα∈∆
1
1(α), by Corollary 3.5.(a).

• We set T := {(α, v)∈ωω×ω | Seq(v) ∧ ∃u ≤a δα(lh(v)) (α, v, u)∈T }, so that T ∈∆
1
1(ω

ω×ω)
and Tα is a tree for each α∈ωω .

• We set K :={(α, β)∈ωω×2ω | ∀l∈ω β∈B
δα(l)
α }, so that Kα⊆Bα and

λ(Kα)= liml→∞ λ(Bδα(l)
α )≥λ(Bα)−ǫ(α)

for each α ∈ ωω since (B
δα(l)
α )l∈ω is decreasing. It remains to apply König’s lemma to see that

K=
{

(α, β)∈ωω×2ω | ∀l∈ω
(

α, β(l)
)

∈T
}

since

{

s∈ω<ω |< s(0), ..., s(|s|−1) >≤a δα
(

|s|
)

∧
(

α, β(|s|), < s(0), ..., s(|s|−1) >
)

∈T
}

is a finitely splitting tree. �

- We want to prove an effective and uniform version of the Lusin-Menchoff lemma. We first need the

following result, which slightly and uniformly refines Theorem A in [L] at the first level of the Borel

hierarchy.

Lemma 3.7 LetO be a ∆
1
1 subset of ωω×2ω with open vertical sections. Then there is a ∆

1
1-recursive

map f :ωω→ωω such that Oα is the disjoint union
⋃

{

Nf(α)(u) | u∈ω ∧ Seq
(

f(α)(u)
)}

, for each

α∈ωω .

Proof. Let P :=
{

(α, u)∈ωω×ω | Seq(u) ∧
(

lh(u)=0 ∨ (Nu⊆Oα ∧ Nu−
6⊆Oα)

)}

. Note that P
is Π 1

1 , since a nonempty ∆
1
1(α) closed subset of 2ω contains a ∆1

1(α) point, by 4F.15 in [M]. We then

define a relation R on ωω×2ω×ω by R(α, β, u) ⇔ P (α, u) ∧ β∈Nu, so that R is Π 1
1 . Note that, for

each (α, β)∈O there is uwithR(α, β, u). By 4B.5 in [M], there is a ∆1
1-recursive map g :ωω×2ω→ω

such that R
(

α, β, g(α, β)
)

for each (α, β)∈O. Fix α∈ωω. Note that Sα :={g(α, β) | β∈Oα} is a

Σ
1
1 (α) subset of ω contained in the Π 1

1 (α) set Pα. By 4B.11 and 4C in [M], there is Dα∈∆
1
1(α) with

Sα ⊆Dα ⊆Pα. Note that Oα ⊆
⋃

u∈Dα Nu ⊆Oα, so that Oα is the disjoint union of the sequence

(Nu)u∈Dα . We define δα∈ω
ω by

δα(u) :=

{

u if u∈Dα,

0 otherwise.

Note that δα ∈∆
1
1(α) and Oα is the disjoint union

⋃
{

N δα(u) | u ∈ ω ∧ Seq
(

δα(u)
)}

. As the set
{

(α, δ)∈ωω×ωω | δ∈∆
1
1(α) ∧Oα is the disjoint union

⋃
{

N δ(u) | u∈ω ∧ Seq
(

δ(u)
)}

}

is Π 1
1 , it

remains to apply the uniformization lemma to get the desired map f . �
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Notation. We set W1 :={n∈W | ∀α∈ωω ∃γn∈∆
1
1(α) Cn,α=

⋃
{

Nγn(u) | u∈ω ∧ Seq
(

γn(u)
)}

,

so that, by Lemma 3.7, W1 is a Π
1
1 set of codes for the ∆

1
1 subsets of ωω×2ω with open vertical

sections.

Lemma 3.8 Let F be a ∆
1
1 subset of ωω×2ω with closed vertical sections, and B be a ∆

1
1 subset

of ωω×2ω such that B ⊇ F and d(Bα, β) = 1 for each (α, β) ∈F . Then there is a ∆
1
1 subset C of

ωω×2ω with closed vertical sections such that

(1) F ⊆C⊆B,

(2) d(Bα, β)=1 for each (α, β)∈C ,

(3) d(Cα, β)=1 for each (α, β)∈F .

Proof. Lemma 3.7 gives a ∆
1
1-recursive map f : ωω → ωω such that (¬F )α is the disjoint union

⋃
{

Nf(α)(u) | u∈ω ∧ Seq
(

f(α)(u)
)}

, for each α∈ωω . We set

B′ :=
{

(α, γ)∈ωω×2ω |
(

(α)0, γ
)

∈B ∧ Seq
(

f
(

(α)0
)(

(α)1(0)
)

)

∧ γ∈Nf((α)0)((α)1(0))
}

,

so that B′ is ∆
1
1 and Bα ∩ Nf(α)(u) =B′

<α,u∞> if Seq
(

f(α)(u)
)

. By Corollary 3.5.(c), the partial

map (α, β, u) 7→d(Bα ∩Nf(α)(u), β) is ∆1
1-recursive. We then set

B′′ :={(α, γ)∈B′ | d(B(α)0 ∩N
f((α)0)((α)1(0)), γ)=1},

so that B′′ is ∆1
1 and {β ∈Bα ∩Nf(α)(u) | d(Bα ∩Nf(α)(u), β)=1}=B′′

<α,u∞> if Seq
(

f(α)(u)
)

.

We define ǫ :ωω→R by

ε(α) :=

{

2−(α)1(0)λ(B′
α) if λ(B′

α) 6=0,

1 otherwise,

so that ǫ is ∆1
1-recursive by Corollary 3.5.(a), and ǫ(α)∈ (0, 1] for each α∈ωω. Theorem 3.6 gives

T ∈∆
1
1(ω

ω×ω) such that

(a) Tα is a tree for each α∈ωω,

(b) if K=
{

(α, β)∈ωω×2ω | ∀l∈ω
(

α, β(l)
)

∈T
}

, then Kα⊆B
′′
α and λ(Kα)≥λ(B

′′
α)−ǫ(α)

for each α∈ωω .

We set, for u∈ω,

F u :=
{

(α, β)∈ωω×2ω | Seq
(

f(α)(u)
)

∧ (< α, u∞ >,β)∈K ∧ λ(B′
<α,u∞>) 6=0

}

.

As K is ∆
1
1 with closed vertical sections, so is F u. If Seq

(

f(α)(u)
)

and λ(B′
<α,u∞>) = 0, then

λ(Bα ∩Nf(α)(u))=0 and F u
α =∅, so that F u

α ⊆{β∈Bα ∩Nf(α)(u) | d(Bα ∩Nf(α)(u), β)=1} and

λ(F u
α )≥(1−2−u)λ(Bα ∩Nf(α)(u)). If Seq

(

f(α)(u)
)

and λ(B′
<α,u∞>) 6=0, then

F u
α =K<α,u∞>⊆B′′

<α,u∞>={β∈Bα ∩Nf(α)(u) | d(Bα ∩Nf(α)(u), β)=1}.
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Moreover,

λ(F u
α )=λ(K<α,u∞>)≥λ(B

′′
<α,u∞>)−ǫ(< α, u∞ >)=λ(B′′

<α,u∞>)−2−uλ(B′
<α,u∞>)

=(1−2−u)λ(Bα ∩Nf(α)(u))

since λ(Bα ∩ Nf(α)(u)) = λ({β ∈Bα ∩ Nf(α)(u) | d(Bα ∩ Nf(α)(u), β) = 1}), by Theorem 2.1. It

remains to set C :=F ∪
⋃

u∈ω F u. We conclude as in the proof of Lemma 2.2. �

- We now want to prove an effective and uniform version of Lemma 2.5.

Lemma 3.9 Let C be a ∆
1
1 subset of ωω×2ω with closed vertical sections, G be a Borel subset of 2ω

with λ(G)= 0, and G be a ∆
1
1 subset of ωω×2ω with Gδ vertical sections, contained in ωω×G and

disjoint from C . Then there is a ∆
1
1-recursive map h :ωω×2ω →R such that h(α, ·) : 2ω → [0, 1] is

τ -continuous for each α∈ωω , h|C≡0 and h|G≡1.

Proof. By Theorem 3.5 in [L], there is a ∆
1
1 subset F of ω×ωω×2ω such that Fn,α is closed for

each (n, α)∈ω×ωω and ¬G=
⋃

n∈ω Fn. Moreover, we may assume that (Fn)n∈ω is increasing and

F0=C .

• We will define, by primitive recursion, a partial map f :ω→ω which is Π 1
1 -recursive on its domain

such that f(n) essentially codes the set C 1
2n

constructed in the proof of Lemma 2.5. As this map will

in fact be total, it will be ∆
1
1-recursive by the uniformization lemma.

We first apply Lemma 3.8 to F := F0 and B := ¬G. This is possible because Gα ⊆ G, so that

(¬G)α has λ-measure one and therefore density one at any point of 2ω , for each α∈ωω . Lemma 3.8

gives C1∈∆
1
1 with closed vertical sections such that ¬G⊇C1⊇F0. Let f(0)∈W1 with Cf(0)=¬C1.

More generally, we will have Cf(n)=¬C 1
2n

. As mentioned above, f will be defined by primitive

recursion, which means that there will be a partial map g :ω2 → ω such that f(n+1)= g
(

f(n), n
)

.

This partial map g will be Π
1
1 -recursive on its Π 1

1 domain {m∈W1 | ¬Cm⊆¬G}×ω, so that f will

be Π
1
1 -recursive on its domain by 7A.5 in [M]. The map g will take values in W1, and is constructed

in such a way that, if A :=¬Cm⊆¬G and A′ :=¬Cg(m,n), then

(1) A ∪ Fn+1⊆A
′⊆¬G,

(2) ∀(α, β)∈A′ d
(

(¬G)α, β
)

=1,

(3) ∀(α, β)∈A ∪ Fn+1 d(A′
α, β)=1.

Lemma 3.8 ensures that such a g(m,n) ∈ ω exists if (m,n) ∈ {q ∈W1 | ¬Cq ⊆ ¬G}×ω. As the

properties (1)-(3) are Π
1
1 by Corollary 3.5, the uniformization lemma ensures the existence of g. So

we constructed a ∆
1
1-recursive map f :ω→ω, taking values in W1, such that C 1

2n
:=¬Cf(n) is a ∆

1
1

subset of ωω×2ω with closed vertical sections, Fn⊆C 1
2n

⊆¬G, C 1
2n

⊆C 1
2n+1

, and

d
(

(C 1
2n+1

)α, β)=1

if (α, β)∈C 1
2n

.
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• Similarly, we construct a ∆
1
1-recursive map F̃ :ω→ω satisfying the following properties, if

D :={p∈ω | Seq(p) ∧ lh(p)=2 ∧ 0<(p)1≤2(p)0}.

(a) F̃ (p)∈W1 if p∈D, in which case we set Cp :=¬CF̃ (p),

(b) Cp⊆Cp′ if p, p′∈D ∧ (p′)1
2(p

′)0
≤ (p)1

2(p)0
,

(c) d
(

(Cp′)α, β
)

=1 if p, p′∈D ∧ (p′)1
2(p

′)0
< (p)1

2(p)0
∧ (α, β)∈Cp.

• This allows us to define h by

1−h(α, β) :=

{

0 if (α, β)∈G,

sup{ (p)1
2(p)0

| p∈D ∧ (α, β)∈Cp} if (α, β) /∈G.

Note that h is ∆1
1-recursive since D∈∆

0
1, so that the relation “p∈D ∧ (α, β)∈Cp” is ∆1

1 in (p, α, β).
We conclude as in the proof of Lemma 2.5. �

- We are now ready to prove the main lemma in this section. We equip the space [0, 1]2
<ω

with

the distance defined by d(f, g) := Σ
u∈ω,Seq(u)

|f(s(u))−g(s(u))|
2u+1 . We give a recursive presentation of

([0, 1]2
<ω
, d). We set

fn(s) :=

{

((n)s)0
((n)s)0+((n)s)1+1 if Seq(n) ∧ ∀k< lh(n)

(

Seq
(

(n)k
)

∧ lh
(

(n)k
)

=2
)

∧ s< lh(n),

0 otherwise,

so that (fn) is dense in [0, 1]2
<ω

. It is now routine to check that the relations “d(fm, fn)≤
p

q+1” and

“d(fm, fn)<
p

q+1” are recursive in (m,n, p, q). It is also routine to check that F :ωω → [0, 1]2
<ω

is

∆
1
1-recursive if the map F ′ :ω×ωω→R defined by F ′(u, α) :=F (α)

(

s(u)
)

if Seq(u), 0 otherwise,

is ∆1
1-recursive (s(u) was defined at the beginning of Section 3).

Lemma 3.10 Let V := {(f, β) ∈M×2ω | osc(f, β)> 0}, G be a nonempty Gδ ∩ ∆
1
1 subset of 2ω

with λ(G)=0, and G be a ∆
1
1 subset of ωω×2ω, contained in ωω×G, and with Gδ vertical sections.

Then there is a ∆
1
1-recursive map F :ωω → [0, 1]2

<ω
, taking values in M, and such that Gα=VF (α)

for each α∈ωω .

Proof. We will define, by primitive recursion, f :ω→ω4 coding gn, Sn, G∗
n, and (snj )j∈In defining

G∗∗
n considered in the proof of the Lemma 2.7. We must find r :ω4×ω→ω4 with f(n+1)=r

(

f(n), n
)

.

In practice,

(1) f0(n)∈W1 codes G∗
n⊆ω

ω×2ω ,

(2) f1(n)∈Wωω×2ω×R codes the graph of gn :ω
ω×2ω→R,

(3) f2(n)∈Wωω×2ω×R codes the graph of Sn :ω
ω×2ω→R,

(4) f3(n)∈Wωω×ωω
codes the graph of the function α 7→(sn,αj )j∈In,α .

• By Theorem 3.5 in [L], there is a ∆
1
1 subset O of ω×ωω×2ω such that On,α is open for each

(n, α) ∈ ω×ωω and G =
⋂

n∈ω On. Moreover, we may assume that (On)n∈ω is decreasing and

O0=ω
ω×2ω .
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• Let n0∈W1 with Cn0 =ω
ω×2ω , n1∈Wωω×2ω×R with Cωω×2ω×R

n1
={(α, β, r)∈ωω×2ω×R | r=1},

and n3∈Wωω×ωω
with Cωω×ωω

n3
={(α, γ)∈ωω×ωω | γ=10∞}. We set f(0) :=(n0, n1, n1, n3), so

that Cn0 =G
∗
0, Cωω×2ω×R

n1
=Gr(g0)=Gr(S0), C

ωω×ωω

n3
=Gr(α 7→10∞),

{

u∈ω | Seq
(

(10∞)(u)
)}

={0}=I0

and (10∞)(0)=1=<>=s00. So f(0) is as desired.

• We now study the induction step. This means that we must define r(n0, n1, n2, n3, n)∈ω
4.

(1) We first define r0(n0, n1, n2, n3, n) coding G∗
n+1. Fix n3 ∈ Wωω×ωω

coding the graph of a

∆
1
1-recursive function φ : ωω → ωω such that the sequences s

(

φ(α)(u)
)

coded by the u’s with

Seq
(

φ(α)(u)
)

are pairwise incompatible and Gα ⊆
⋃
{

Nφ(α)(u) | u ∈ ω ∧ Seq
(

φ(α)(u)
)}

(we

call P3 the Π
1
1 set of such n3’s). Let α∈ ωω . Assume that Seq

(

φ(α)(u)
)

(which intuitively means

that u∈In,α and sn,αu is coded by φ(α)(u)). By continuity of λ,

0=λ(Gα ∩Nφ(α)(u))= limj→∞ λ(Oj,α ∩Nφ(α)(u)).

This gives j(n, α, u) > n minimal with λ(Oj(n,α,u),α ∩ Nφ(α)(u)) < 2−n−3−lh(φ(α)(u)) (note that

2−lh(φ(α)(u))=λ(Nφ(α)(u))). Moreover, Gα∩N
φ(α)(u)⊆Oj(n,α,u),α∩N

φ(α)(u)⊆On+1,α∩N
φ(α)(u),

so that Oj(n,α,u),α ∩ Nφ(α)(u) satisfies the properties of the set Oj in the proof of Lemma 2.7. We

will have G∗
n+1,α =

⋃

Seq(φ(α)(u)) Oj(n,α,u),α ∩ Nφ(α)(u). By Corollary 3.5 and the uniformization

lemma, we may assume that the map j is ∆1
1-recursive on its ∆1

1 domain

{

(n, α, u)∈ω×ωω×ω | Seq
(

φ(α)(u)
)}

.

Note that G∗
n+1 is a ∆

1
1 subset of ωω×2ω with open vertical sections, which gives m∈W1 such that

Cm=G∗
n+1. By incompatibility, G∗

n+1,α ∩Nφ(α)(u)=Oj(n,α,u),α ∩Nφ(α)(u). So we proved that, for

each (n3, n)∈P3×ω, there is m∈W1 such that, for each α∈ωω ,

(1) Gα⊆Cm,α⊆On+1,α ∩
⋃

{

Nφ(α)(u) | u∈ω ∧ Seq
(

φ(α)(u)
)}

,

(5) λ(Cm,α ∩Nφ(α)(u))<2−n−3−lh(φ(α)(u)) if u∈ω ∧ Seq
(

φ(α)(u)
)

.

By Corollary 3.5 and the uniformization lemma, we may assume that the map r̃0 : (n3, n) 7→m is

Π
1
1 -recursive on P3×ω. We set r0(n0, n1, n2, n3, n) := r̃0(n3, n), which defines a partial map r0

which is Π 1
1 -recursive on its Π 1

1 domain ω3×P3×ω.

(2) We now define r1(n0, n1, n2, n3, n) coding gn+1. We use Lemma 3.9 and its proof. Note that

r0(n0, n1, n2, n3, n) ∈ D0 := {m ∈ W1 | G ⊆ Cm}. The proof of Lemma 3.9 shows that for any

m∈D0 there is F̃m∈ωω ∩∆
1
1 satisfying the conditions (a), (b), (c) and

(d) ∀p∈D ¬(0<(p)1=2(p)0) ∨ CF̃m(p)⊆Cm.

The uniformization lemma shows that we may assume that the partial map F̃ : m 7→ F̃m is Π
1
1 -

recursive on D0.
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The definition of h in the proof of Lemma 3.9 and the uniformization lemma show the existence

of a partial map H̃ :ω→ω, which is Π 1
1 -recursive on D0, and such that H̃(m) is in Wωω×2ω×R and

codes the graph of a ∆
1
1-recurive map h :ωω×2ω→R with

1−h(α, β) :=

{

0 if (α, β)∈G

sup{ (p)1
2(p)0

| p∈D ∧ (α, β) /∈CF̃ (m)(p)} if (α, β) /∈G

if m∈D0. We set P1 :={c∈Wωω×2ω×R | Cc is the graph of a function ζc}. It is routine to check that

there is a Π
1
1 -recursive partial map I :ω2→ω on its domain P 2

1 such that I(c, c′)∈Wωω×2ω×R is the

graph of the function min(ζc, ζc′) if c, c′∈P1. We set

r1(n0, n1, n2, n3, n) :=I
(

n1, H̃
(

r0(n0, n1, n2, n3, n)
)

)

,

so that r1 is Π 1
1 -recursive on its Π 1

1 domain ω×P1×ω×P3×ω.

(3) We now define r2(n0, n1, n2, n3, n) coding

Sn+1=

{

Sn+gn+1 if n is odd,

Sn−gn+1 if n is even.

It is routine to check that there is a Π
1
1 -recursive partial map S :ω3 →ω on its domain P 2

1 ×ω such

that S(c, c′, n)∈Wωω×2ω×R codes the graph of the function

(α, β) 7→

{

ζc(α, β)+ζc′(α, β) if n is odd

ζc(α, β)−ζc′(α, β) if n is even

if (c, c′, n) ∈ P 2
1 ×ω. We set r2(n0, n1, n2, n3, n) := S

(

n2, r1(n0, n1, n2, n3, n), n
)

, so that r2 is

Π
1
1 -recursive on its Π 1

1 domain ω×P 2
1 ×P3×ω.

(4) We now define r3(n0, n1, n2, n3, n) coding the graph of the function α 7→ (sn+1,α
j )j∈In+1,α . We

want to ensure the two following conditions:

(1) Gα⊆
⋃

j∈In+1,α
N

s
n+1,α
j

⊆G∗
n+1,α

(6) |
ffl

N
s
n+1,α
j

Sn+1(α, .) dλ−Sn+1(α, β)|<2−3 if j∈In+1,α ∧ β∈Gα ∩N
s
n+1,α
j

Note first that in practice

Sn+1(α, β)=

{

0 if n is even

1 if n is odd

if (α, β)∈G since gp(α, β)=1 for each p in this case. So there is ψ :ω→R
2 recursive with

|

 

N
s
n+1,α
j

Sn+1(α, .) dλ−Sn+1(α, β)|<2−3 ⇔ ψ0(n)<

 

N
s
n+1,α
j

Sn+1(α, .) dλ<ψ1(n)

if (α, β)∈G. We use Corollary 3.5 and its proof. Note that r2(n0, n1, n2, n3, n)∈P1.
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We first consider n′0 ∈W1 and n′2 ∈ P1 (coding G∗
n+1 and Sn+1 respectively) as variables. We

define R0, R1⊆ω×ω
ω×2ω×ω3 by

R0(n
′
2, α, β, u, k, l) ⇔ ∃r∈R ¬

(

n′2∈Wωω×2ω×R ∧ (n′2, α, β, r) /∈Cωω×2ω×R
)

∧
(

k
2l
≤r< k+1

2l
∧ Seq(u) ∧ β∈Nu

)

R1(n
′
2, α, β, u, k, l) ⇔ ∀r∈R

(

n′2∈Wωω×2ω×R ∧ (n′2, α, β, r) /∈Cωω×2ω×R
)

∨
(

k
2l
≤r< k+1

2l
∧ Seq(u) ∧ β∈Nu

)

,

so that R0 is Σ 1
1 , R1 is Π 1

1 , and R0(n
′
2, α, β, u, k, l) ⇔ R1(n

′
2, α, β, u, k, l) if n′2 ∈P1. Then, as in

the proof of Corollary 3.5.(d), we define O0, O1⊆ω×ω
ω×2ω by

Oε(n
′
2, α, β) ⇔ Seq

(

α(0)
)

∧ lh
(

α(0)
)

=3 ∧ Rε

(

n′2, α
∗, β,

(

α(0)
)

0
,
(

α(0)
)

1
,
(

α(0)
)

2

)

if ε ∈ 2, so that O0 is Σ
1
1 , O1 is Π

1
1 , and O0(n

′
2, α, β) ⇔ O1(n

′
2, α, β) if n′2 ∈ P1. In particular,

n′2∈P1 and Seq(u) imply that
ˆ

Nu

Sn+1(α, .) dλ= liml→∞ Σk≤2l
k

2l
λ
(

(Oε)n′
2,<u,k,l>α

)

for each ε∈2. Thus a<
´

Nu Sn+1(α, .) dλ<b is in this case equivalent to

∃p0, p1, q0, q1, N ∈ω a<
p0

p1+1
∧

q0
q1+1

<b∧∀l≥N
p0

p1+1
≤Σk≤2l

k

2l
λ
(

(Oε)n′
2,<u,k,l>α

)

≤
q0

q1+1
.

By Corollary 3.5.(b) applied to D :=P1, the partial map λO :P1×ω
ω→R defined by

λO(n
′
2, α) :=λ

(

(O0)n′
2,α

)

is Σ 1
1 -recursive and Π

1
1 -recursive on its domain. By 3E.2, 3G.1 and 3G.2 in [M], these two classes of

functions are closed under composition. In particular, the partial map

(n′2, α, u, l) 7→Σk≤2l
k

2l
λ
(

(Oε)n′
2,<u,k,l>α

)

is Σ 1
1 -recursive and Π

1
1 -recursive on P1×ω

ω×ω2. This shows the existence of Q0∈Σ
1
1 (ω

2×ωω×ω)
and Q1∈Π

1
1 (ω

2×ωω×ω) such that

Q0(n
′
2, n, α, u) ⇔ Q1(n

′
2, n, α, u) ⇔ Seq(u) ∧ ψ0(n)<

 

Nu

Sn+1(α, .) dλ<ψ1(n)

if n′2∈P1. We now consider n′0∈W1 and n′2∈P1 as parameters. We set

Pn′
0,n

′
2
(n, α, u) ⇔

Q1(n
′
2, n, α, u) ∧ Nu⊆Cn′

0,α
∧ ∀k< lh(u)

(

¬Q0

(

n′2, n, α, u(k)
)

∨ Nu(k) 6⊆Cn′
0,α

)

.

Note that for each (α, β) ∈ G there is l ∈ ω minimal with the properties that Nβ|l ⊆ Cn′
0,α

and

Q1

(

n′2, n, α,< β(0), ..., β(l−1) >
)

, so that Pn′
0,n

′
2

(

n, α,< β(0), ..., β(l−1) >
)

since n′0∈W1 and

n′2∈P1. As n′0∈W1, Nu(k)\Cn′
0,α

is a ∆1
1(α) compact subset of 2ω , so that it contains a ∆1

1(α) point

if it is not empty (see 4F.15 in [M]). This shows that Pn′
0,n

′
2

is Π 1
1 .
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The uniformization lemma provides a ∆
1
1-recursive map L :ω×ωω×2ω→ω such that

Pn′
0,n

′
2

(

n, α,< β(0), ..., β
(

L(n, α, β)−1
)

>
)

if (α, β)∈G. Note that the Σ
1
1 set

σ :=
{

(n, α, u)∈ω×ωω×ω | ∃β∈Gα u=< β(0), ..., β
(

L(n, α, β)−1
)

>
}

is contained in the Π
1
1 set π := {(n, α, u) ∈ω×ωω×ω | Pn′

0,n
′
2
(n, α, u)}. By 7B.3 in [M], there is

a ∆
1
1 subset δ of ω×ωω×ω such that σ⊆ δ⊆π. We now also consider n as a parameter and define

ϕ :ωω→ωω by

ϕ(α)(u) :=

{

u if (n, α, u)∈δ,
0 otherwise.

Note that ϕ is ∆1
1-recursive, and that Seq

(

ϕ(α)(u)
)

is equivalent to (n, α, u)∈δ. In particular,

(1) Gα⊆
⋃

{

Nϕ(α)(u) | u∈ω ∧ Seq
(

ϕ(α)(u)
)}

⊆Cn′
0,α

(6) |
ffl

Nϕ(α)(u) Sn+1(α, .) dλ−Sn+1(α, β)|<2−3 if Seq
(

ϕ(α)(u)
)

∧ β∈Gα ∩Nϕ(α)(u)

for each α ∈ ωω. Let k ∈Wωω×ωω
such that Cωω×ωω

k = Gr(ϕ). We now consider n′0, n′2 and n as

variables again. Note that for each (n′0, n
′
2, n)∈W1×P1×ω there is k∈ω such that

R(n′0, n
′
2, n, k) ⇔























k∈Wωω×ωω
∧

(

∀α∈ωω ∀γ∈ωω
(

k∈Wωω×ωω
∧ ¬Cωω×ωω

(k, α, γ)
)

∨
(

(1) Gα⊆
⋃

{

Nγ(u) | u∈ω ∧ Seq
(

γ(u)
)}

⊆Cn′
0,α

∧ (6) ∀u∈ω ¬Seq
(

γ(u)
)

∨ Q1(n
′
2, n, α, u)

)

)

Note that R ∈ Π
1
1 (ω

4). The uniformization lemma provides a partial map K : ω3 7→ ω which is

Π
1
1 -recursive on its Π 1

1 domain W1×P1×ω, and R
(

n′0, n
′
2, n,K(n′0, n

′
2, n)

)

if

(n′0, n
′
2, n)∈W1×P1×ω.

It remains to set r3(n0, n1, n2, n3, n) :=K(n′0, n
′
2, n) if n′0=r0(n0, n1, n2, n3, n) and

n′2=r2(n0, n1, n2, n3, n),

so that r3 is Π 1
1 -recursive on its Π 1

1 domain W1×P
2
1 ×P3×ω.

Finally, r is Π 1
1 -recursive on W1×P

2
1×P3×ω, f is Π 1

1 -recursive on ω, and thus f is ∆1
1-recursive

by the uniformization lemma since it is total.

• We are now ready to define the dimension two versions of G∗
n, gn, Sn, and (snj )j∈In :

(1) G∗
n :=Cf0(n),

(2) gn(α, β)=ρ ⇔
(

f1(n), α, β, ρ
)

∈Cωω×2ω×R,

(3) Sn(α, β)=ρ ⇔
(

f2(n), α, β, ρ
)

∈Cωω×2ω×R,

(4)

{

(i) j∈In,α ⇔ ∃δ∈ωω
(

f3(n), α, δ
)

∈Cωω×ωω
∧ Seq

(

δ(j)
)

,

(ii) sn,αj =δ(j) if j∈In,α.

By construction of r, these objects satisfy the conditions (1)-(6) of the proof of Lemma 2.7.
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• Consequently, the martingale F (α) will be defined in such a way that if u ∈ ω codes s ∈ 2<ω,

then F (α)(s) =
ffl

Nu f∞(α, .) dλ. Note that G=
⋂

n∈ω G∗
n, so that ¬G is the disjoint union of the

G∗
n\G

∗
n+1’s. Thus

´

Nu f∞(α, .) dλ=
´

Nu\Gα
f∞(α, .) dλ=Σn∈ω

´

Nu∩(G∗
n)α\(G

∗
n+1)α

f∞(α, .) dλ

=Σn∈ω Σj≤n (−1)j
´

Nu∩(G∗
n)α\(G

∗
n+1)α

gj(α, .) dλ

= liml→∞ Σn≤l Σj≤n (−1)j
´

Nu∩(G∗
n)α\(G

∗
n+1)α

gj(α, .) dλ.

Consequently, in order to prove that F is ∆
1
1-recursive, it is enough to check that the partial map

(u, α, j, n) 7→
´

Nu∩(G∗
n)α\(G

∗
n+1)α

gj(α, .) dλ is ∆1
1-recursive from {u∈ω | Seq(u)}×ωω×ω2 into R.

By Corollary 3.5, it is enough to check that the map h :ωω×2ω→R defined by

h(α, β) :=

{

g(α(0))0(α
∗, β) if Seq

(

α(0)
)

∧ lh
(

α(0)
)

=2 ∧ (α∗, β)∈G∗
(α(0))1

\G∗
(α(0))1+1,

0 otherwise,

is ∆1
1-recursive. This comes from the facts that

(α, β)∈G∗
n ⇔

(

f0(n), α, β
)

∈C ⇔ ¬
(

f0(n)∈W ∧
(

f0(n), α, β
)

/∈C
)

is ∆1
1 in (α, β, n) and

gn(α, β)∈N(R, p) ⇔ ∃ρ∈R ¬
(

f1(n)∈Wω×2ω×R ∧
(

f1(n), α, β, ρ
)

/∈Cω×2ω×R

)

∧

ρ∈N(R, p)

⇔ ∀ρ∈R

(

f1(n)∈Wω×2ω×R ∧
(

f1(n), α, β, ρ
)

/∈Cω×2ω×R

)

∨

ρ∈N(R, p)

is ∆1
1 in (α, β, n, p).

• Finally, the map F is ∆1
1-recursive and is as required. �

4 First consequences

(A) Universal sets

- We first recall some material from [K2]. The first result can be found in Section 23.F (see also [Za]).

Theorem 4.1 (Zahorski) Let B be a subset of [0, 1]. The following are equivalent:

(a) there are S ∈Σ
0
2 and P ∈Π

0
3 with m(P ) = 1, where m is the Lebesgue measure on [0, 1], such

that B=S ∩ P ,

(b) there is f ∈C([0, 1]) with B= {x∈ [0, 1] | f ′(x) exists} (we consider only one-sided derivatives

at the endpoints).

The second result is 23.23.
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Theorem 4.2 Let G be a Gδ subset of (0, 1) with m(G)=0. Then

{(f, x)∈C([0, 1])×G | f ′(x) exists}

is C([0, 1])-universal for Π0
3(G).

- We prove results in that spirit here.

Theorem 4.3 Let B be a subset of 2ω . Then the following are equivalent:

(a) B is Σ0
3 and has λ-measure zero,

(b) there is f ∈M with B={β∈2ω | osc(f, β)>0}.

Proof. (a) ⇒ (b) Write B =
⋃

n∈ω Gn, where the Gn’s are Gδ. Lemma 2.7 gives, for each n, a

martingale fn with Gn =D(fn) and {osc(fn, β) | β ∈ 2ω}⊆{0} ∪ [12 , 1]. Lemma 2.8 gives f ∈M
with D(f)=B.

(b) ⇒ (a) We already noticed in the introduction that B is Σ0
3. By Doob’s theorem, B has λ-measure

zero (see [D]). �

Corollary 4.4 Let G be a Gδ subset of 2ω with λ(G)= 0. Then {(f, β)∈M×G | osc(f, β)> 0} is

M-universal for Σ0
3(G).

For example, {β∈2ω | ∀n∈ω β(2n)=0} is a Π
0
1 copy of 2ω and has λ-measure zero.

(B) Complete sets

- By 33.G in [K2], there is a uniform version of Zahorski’s theorem, which allows to prove the

following result

Theorem 4.5 (Mazurkiewicz) The set of differentiable functions in C([0, 1]) is Π1
1-complete.

- Here again, there is a result in that spirit.

Theorem 4.6 The set P :={f ∈M | ∀β∈2ω osc(f, β)=0} is Π1
1-complete.

Notation. Let K := {β ∈ 2ω | ∀n∈ω β(2n) = 0}, which is a Π
0
1 copy of the Cantor space 2ω with

λ(K)=0. In particular, K is a nonempty Gδ ∩∆
1
1 subset of 2ω .

Proof. Let U ∈Π
1
1 (ω

ω×2ω) be ωω-universal for the co-analytic subsets of 2ω , and

Π:={α∈ωω |
(

(α)0, (α)1
)

∈U}.

Note that Π∈Π
1
1 . If P ∈Π

1
1(2

ω), then P =Uα for some α∈ ωω, so that the map β 7→< α, β > is

a continuous reduction of P to Π and Π is Π1
1-complete. Let H ∈Π

0
2 (ω

ω×2ω) with ¬Π=Π0[H].
We set G :=

{

(α, β)∈ωω×2ω |
(

α, (β)1
)

∈H ∧ β∈K
}

, so that G∈∆
1
1(ω

ω×2ω), has Gδ vertical

sections and G⊆ωω×K. Lemma 3.10 gives F :ωω→M Borel such that Gα=VF (α) for each α∈ωω.
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Thus

α /∈Π ⇔ ∃β∈2ω (α, β)∈H ⇔ ∃β∈2ω (α, β)∈G ⇔ ∃β∈2ω
(

F (α), β
)

∈V ⇔ F (α) /∈P.

Thus Π=F−1(P) and P is Borel Π1
1-complete. By 26.C in [K2], P is Π1

1-complete. �

- We now prove Theorem 1.8. Let X be a metrizable compact space and Y be a Polish space. We

equip C(X,Y ) with the topology of uniform convergence, so that it is a Polish space (see 4.19 in

[K2]). We use the map ψ defined before Theorem 1.8.

Theorem 4.7 (a) The set P1 :=
{

(fk)k∈ω∈Pω |
(

ψ(fk)
)

k∈ω
pointwise converges

}

is Π1
1-complete.

(b) The set P2 :=
{

(fk)k∈ω∈Pω |
(

ψ(fk)
)

k∈ω
pointwise converges to zero

}

is Π1
1-complete.

(c) The set S :=
{

(fk)k∈ω ∈ Pω | ∃γ ∈ ωω
(

ψ(fγ(i))
)

i∈ω
pointwise converges to zero

}

is Σ
1
2-

complete.

Proof. We define ϕ :C(2ω , [0, 1])→M by ϕ(h)(s) :=
ffl

Ns
h dλ. As in the proof of Lemma 2.7, ϕ is

well-defined. It is also continuous, and injective: if h 6=h′, then we can find q∈ω and s∈ 2<ω such

that h(β)−h′(β)>2−q for each β∈Ns or h′(β)−h(β)>2−q for each β∈Ns, so that

|ϕ(h)(s)−ϕ(h′)(s)|=
1

λ(Ns)
|

ˆ

Ns

h dλ−

ˆ

Ns

h′ dλ|≥2−q.

This implies that the range R of ϕ is Borel and ψ := ϕ−1 : R → C(2ω , [0, 1]) is Borel. As every

continuous map h :2ω→ [0, 1] is τ -continuous,

liml→∞ ϕ(h)(β|l)= liml→∞

 

Nβ|l

h dλ=h(β)

for each β ∈ 2ω , by Lemma 2.6. This implies that f ∈ P and ψ(f)(β) = liml→∞ f(β|l) for each

β∈2ω if f ∈R.

(a) Note that the proof of 33.11 in [K2] shows that the set

P1 :=
{

(hk)k∈ω∈
(

C(2ω, [0, 1])
)ω

| (hk)k∈ω pointwise converges
}

is Π
1
1-complete. As E :=

{

(fk)k∈ω ∈ Rω |
(

ψ(fk)
)

k∈ω
pointwise converges

}

= (ψω)−1(P1), the

equalities P1=(ϕω)−1(E)=(ϕω)−1(P1) hold and P1 is Π1
1-complete.

(b) We argue as in (a).

(c) As in [B-Ka-L], the set

S :=
{

(hk)k∈ω∈
(

C(2ω, [0, 1])
)ω

| ∃γ∈ωω
(

hγ(i)
)

i∈ω
pointwise converges to zero

}

,

is Σ1
2-complete. Indeed, fix Q∈Σ

1
2(2

ω).
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Lemma 2.2 in [B-Ka-L] gives (gk)k∈ω∈
(

C(2ω×2ω, 2)
)ω

such that, for each δ∈2ω, the following

are equivalent:

(i) δ∈Q,

(ii) ∃γ∈ωω ∀β∈2ω limi→∞ gγ(i)(δ, β)=0.

We define, g : 2ω→
(

C(2ω , [0, 1])
)ω

by g(δ)(k)(β) :=gk (δ, β). Then g is continuous and reduces

Q to S. As

E ′ :=
{

(fk)k∈ω∈Rω | ∃γ∈ωω
(

ψ(fγ(i))
)

i∈ω
pointwise converges to zero

}

=(ψω)−1(S),

S=(ϕω)−1(E ′)=(ϕω)−1(S) and S is Σ1
2-complete. �

5 Universal and complete sets in the spaces C(2ω, X)

- It is known that if Γ is a self-dual Wadge class and X is a Polish space, then there is no set which

is X-universal for the subsets of X in Γ (see 22.7 in [K2]). This is no longer the case if the space of

codes is different from the space of coded sets.

Proposition 5.1 Let X be a Polish space, Γ be a Wadge class with complete set C ∈ Γ(X), and

UΓ :={(h, β)∈C(2ω ,X)×2ω | h(β)∈C}. Then UΓ is C(2ω,X)-universal for the Γ subsets of 2ω .

Proof. As the evaluation map (h, β) 7→h(β) is continuous, UΓ∈Γ. If A∈Γ(2ω), then A=h−1(C)
for some h∈C(2ω,X), so that A=UΓ

h . �

We will partially strengthen this result to get our uniform universal sets.

- Recall that it is proved in [K3] that a Borel Π1
1-complete set is actually Π

1
1-complete. In fact,

Kechris’s proof shows the result for the classes Π
1
n. Our main tool is a uniform version of this.

Kechris’s result has recently been strengthened in [P] as follows.

Theorem 5.2 (Pawlikowski) Let n≥1 be a natural number, and C⊆X⊆2ω . If Borel functions from

2ω into X give as preimages of C all Π1
n subsets of 2ω , then so do continuous injections.

The main tool mentioned above is the following:

Theorem 5.3 Let n ≥ 1 be a natural number, UΠ
1
n,2

ω
be a suitable ωω-universal set for the Π

1
n

subsets of 2ω, X be a recursively presented Polish space, C ∈ Π
1
n (X), R : ωω×ωω → ωω be a

recursive map, and b :ωω→X be a ∆
1
1-recursive map such that

(α, β)∈UΠ
1
n,2

ω

⇔ b
(

R(α, β)
)

∈C

for each (α, β)∈ωω×2ω . Then there is a ∆
1
1-recursive map f :ωω→C(2ω,X) such that

(α, β)∈UΠ
1
n,2

ω

⇔ f(α)(β)∈C

for each (α, β)∈ωω×2ω .
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- We first recall some material from [K3].

Definition 5.4 (a) A coding system for nonempty perfect binary trees is a pair (D,O), where D⊆2ω

and O :D→{T ∈22
<ω

| T is a nonempty perfect binary tree} is onto.

(b) A coding system (D,O) is nice if

(i) for any α∈ωω and any ∆
1
1(α)-recursive map H :2ω×2ω→ω, we can find β∈D ∩∆

1
1(α) and

k∈ω such that H(β, δ)=k for each δ in the body [O(β)] of O(β),

(ii) D is Π 1
1 and, for β∈D, the relation

R(m,β) ⇔ Seq(m) ∧
(

(m)0, ..., (m)lh(m)−1

)

∈O(β)

is ∆1
1, i.e., there are Π

1
1 relations Π0,Π1 such that R(m,β) ⇔ Π0(m,β) ⇔ ¬Π1(m,β) if β∈D.

Nice coding systems exist. If β ∈D, then there is a canonical homeomorphism β∗ from [O(β)]
onto 2ω. We now check that the construction of β∗ is effective.

Lemma 5.5 (a) The partial function e : (β, δ) 7→β∗(δ) is Π 1
1 -recursive on its Π 1

1 domain

Domain(e) :={(β, δ)∈D×2ω | δ∈ [O(β)]}.

(b) The partial function ι : (β, γ) 7→ the unique δ ∈ [O(β)] with β∗(δ)= γ is Π 1
1 -recursive on its Π 1

1

domain D×2ω.

Proof. (a) We define a Π
1
1 relation Q on ω2×(2ω)2 by

Q(p, p′, β, δ) ⇔
(

(

∀ε∈2 Π0((δ|p′)ε, β)
)

∧
(

∀p≤p′′<p′ ∃ε∈2 Π1((δ|p′′)ε, β)
)

)

.

Note that

β∗(δ)(n)=ε ⇔

{

∃l∈ω Seq(l) ∧ lh(l)=n+1 ∧ δ
(

(l)n
)

=ε ∧ Q
(

0, (l)0, β, δ
)

∧
∀m<n (l)m<(l)m+1 ∧ Q

(

(l)m+1, (l)m+1, β, δ
)

if β∈D. The proof of (b) is similar. �

- Let X be a recursively presented Polish space, and dX and (rXn )n∈ω be respectively a distance

function and a recursive presentation of X. We now give a recursive presentation of C(2ω,X),
equipped with the usual distance defined by

d(h, h′) :=supβ∈2ω dX
(

h(β), h′(β)
)

,

since this is not present in [M]. We define, by primitive recursion, a recursive map ν :ω→ω such that

ν(i) enumerates {s∈2<ω | |s|= i}. We first set ν(0) :=1=<>. Then

ν(i+1)=k ⇔ Seq(k) ∧ lh(k)=2i+1 ∧ ∀l<2i ∀ε∈2 (k)ε2i+l=s
(

(

ν(i)
)

l

)

ε.

If Seq(n) and lh(n)=2i for some i (<n), then we define hn :2
ω→X by hn(β) :=r

X
(n)l

if

β|i=sil :=s
(

(

ν(i)
)

l

)

.

If ¬Seq(n) or lh(n) 6= 2i for each i, then we define hn : 2ω →X by hn(β) := rX0 if β ∈ 2ω . In any

case, hn∈C(2ω,X) and takes finitely many values.
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Lemma 5.6 LetX be a recursively presented Polish space. Then the sequence (hn)n∈ω is a recursive

presentation of C(2ω,X), equipped with d.

Proof. We have to see that (hn) is dense in C(2ω,X). So let h ∈ C(2ω ,X), ǫ > 0 and m ∈ ω with

2−m< ǫ
2 . As h is uniformly continuous, there is i∈ω such that dX

(

h(β), h(δ)
)

< 2−m if β|i= δ|i.
We choose, for each l<2i, nl∈ω such that dX

(

rXnl
, h(sil0

∞)
)

<2−m. We set n :=< n0, ..., n2i−1 >.

If β∈2ω and β|i=sil , then dX
(

h(β), hn(β)
)

≤dX
(

h(β), h(sil0
∞)

)

+dX
(

h(sil0
∞), rXnl

)

≤2−m+2−m,

so that d(h, hn)<ǫ. It is routine to check that the relations “d(hm, hn)≤
p

q+1” and “d(hm, hn)<
p

q+1”

are recursive in (m,n, p, q). �

We saw in the proof of Proposition 5.1 that the evaluation map (h, β) 7→h(β) is continuous from

C(2ω ,X)×2ω into X. We can say more if X is recursively presented.

Lemma 5.7 Let X be a recursively presented Polish space. Then the evaluation map is recursive.

Proof. Note that

h(β)∈N(X,n) ⇔ dX
(

h(β), rX((n)1)0

)

< ((n)1)1
((n)1)2+1

⇔ ∃m, i, l∈ω Seq(m) ∧ lh(m)=2i ∧ β|i=sil ∧ (m)l=
(

(n)1
)

0
∧

d(h, hm)< ((n)1)1
((n)1)2+1 ,

which gives the result. �

- We then strengthen 7A.3 in [M] about primitive recursion as follows. If Z, Y are recursively

presented Polish spaces, g : Z → Y and h : Y ×ω×Z→ Y are Π
1
1 -recursive and f : ω×Z→ Y is

defined by
{

f(0, z) :=g(z),
f(n+1, z) :=h

(

f(n, z), n, z
)

,

then f is also Π
1
1 -recursive. If m :Z→Z is Π 1

1 -recursive, then the proof of 7A.3 in [M] shows that

the map f ′ :ω×Z→Y defined by
{

f ′(0, z) :=g(z),

f ′(n+1, z) :=h
(

f ′
(

n,m(z)
)

, n, z
)

,

is also Π
1
1 -recursive. As in 7A.5 in [M], this can be extended to partial functions which are Π

1
1 -

recursive on their domain.

- We are ready for the proof of our main tool.

Proof of Theorem 5.3. 3E.6 in [M] provides π :ωω→X recursive, F ∈Π
0
1 (ω

ω) and a ∆
1
1-recursive

injection ρ :X→ ωω such that π|F is injective, π[F ] =X and ρ is the inverse of π|F . Let us show

that the map µ :h 7→π ◦ h is ∆1
1-recursive from C(2ω , ωω) into C(2ω ,X). More generally, let Y be a

recursively presented Polish space, and ψ :Y →C(2ω,X). Note that

ψ(y)∈N
(

C(2ω ,X), n
)

⇔ d
(

ψ(y), h((n)1)0
)

< ((n)1)1
((n)1)2+1

⇔ ∃m∈ω supβ∈2ω dX
(

ψ(y)(β), h((n)1 )0(β)
)

< ((m)1)1
((m)1)2+1<

((n)1)1
((n)1)2+1

⇔ ∃m∈ω ∀β∈2ω dX
(

ψ(y)(β), h((n)1)0(β)
)

< ((m)1)1
((m)1)2+1<

((n)1)1
((n)1)2+1

and h((n)1)0(β)=r
X
g(n,β) for some recursive map g :ω×2ω→ω.
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In the present case, Y =C(2ω, ωω) and ψ(y)(β)=π
(

y(β)
)

. Thus

dX
(

ψ(y)(β), h((n)1 )0(β)
)

< ((m)1)1
((m)1)2+1 ⇔ dX

(

π
(

y(β)
)

, rX
g(n,β)

)

< ((m)1)1
((m)1)2+1

⇔ π
(

y(β)
)

∈N
(

X,
〈

0, <g(n, β),
(

(m)1
)

1
,
(

(m)1
)

2
>
〉)

⇔
(

y(β),
〈

0, <g(n, β),
(

(m)1
)

1
,
(

(m)1
)

2
>
〉)

∈Gπ,

where Gπ is the Σ
0
1 neighborhood diagram of π. As the evaluation map is recursive, h 7→ π ◦ h is

Π
1
1 -recursive and total, and thus ∆1

1-recursive.

• Let us show that there is a ∆
1
1-recursive map f :ωω →C(2ω ,X) such that U

Π
1
n,2

ω

α =
(

f(α)
)−1

(C)
for each α∈ωω . We adapt the proof of the main result in [K3]. We set A :=π−1(C). As C∈Π

1
n(X),

A∈Π
1
n(ω

ω). If < β0, δ0 >∈ 2ω, then we inductively define, for i∈ω, mi, β
i+1, δi+1 as follows. If

(βi, δi) is given and in Domain(e), then (βi)∗(δi)=< xi, β
i+1, δi+1 > and

mi :=

{

the location of the first 0 in xi if it exists,

2 otherwise.

We then set Q :=
{

(α,< β0, δ0 >) ∈ωω×2ω | ∀i∈ω (βi, δi) ∈Domain(e) ∧
(

α, (mi)
)

∈UΠ
1
n,2

ω}

and B∗ :=Qα, so that Q ∈Π
1
n (ω

ω×2ω) and β ∈B∗ ⇔ (α, β) ∈Q for each (α, β)∈ωω×2ω (note

that B∗ depends on α, but we denote it like this to keep the notation of [K3]). We define I :ωω→2ω

by I(α) :=0α(0)10α(1)1... Note that I a ∆
1
1-recursive injection onto the Π

0
2 set

P∞ :={β∈2ω | ∀p∈ω ∃q≥p β(q)=1},

so that there is a ∆
1
1-recursive map φ :2ω→ωω which is the inverse of I on P∞. We set

Q′ :=
{

δ∈2ω | (δ)0∈P∞ ∧
(

φ
(

(δ)0
)

, (δ)1

)

∈Q
}

,

so that Q′∈Π
1
n (2

ω). As UΠ
1
n,2

ω
is suitable, there is αQ∈ωω recursive with Q′=U

Π
1
n,2

ω

αQ . Note that

β∈B∗ ⇔ (α, β)∈Q ⇔< I(α), β >∈Q′ ⇔ (αQ, < I(α), β >)∈UΠ
1
n,2

ω

⇔ b
(

R(αQ, < I(α), β >)
)

∈C ⇔ ρ
(

b
(

R(αQ, < I(α), β >)
)

)

∈A.

We set G := ρ
(

b
(

R(αQ, < I(α), . >)
)

)

, so that G : 2ω →ωω is ∆1
1(α)-recursive and < β0, δ0 > is

in B∗ if and only if G(< β0, δ0 >)∈A.

• As in [K3], we can find F :2<ω→(2ω×ω)<ω satisfying the following properties:

(1) t⊆ t′ ⇒ F (t)⊆F (t′)
(2) |F (t)|= |t|+1
(3) (i) if F (∅)=(β0, k0), then β0∈D ∧ ∀δ0∈ [O(β0)] G(< β0, δ0 >)(0)=k0

(ii) if F (ε0, ..., εn)=(β0, k0, β
1, k1, ..., β

n+1, kn+1), then

(a) ∀i≤n+1 βi∈D
(b) for all δn+1∈ [O(βn+1)], if δn, ..., δ0 are the uniquely determined members of

[O(βn)], ..., [O(β0)] such that ∀i≤n (βi)∗(δi)=< εi, β
i+1, δi+1 > , where

εi=1εi01∞, then ∀i≤n+1 G(< β0, δ0 >)(i)=ki.
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We will need an effective version of this, so that we give the details of the construction of F . In

fact, the βi’s involved in the definition of F can be ∆
1
1(α). In order to see this, we first define

H0 :2
ω×2ω→ω

by H0(β, δ) :=G(< β, δ >)(0). As G is ∆
1
1(α)-recursive, H0 too, and the niceness of the coding

system gives β0 ∈D ∩ ∆
1
1(α) and k0 ∈ ω such that G(< β0, δ0 >)(0) = k0 for each δ0 ∈ [O(β0)].

Now suppose that n∈ω, (ε0, ..., εn) and F (ε0, ..., εn−1)=(β0, k0, ..., β
n, kn) are given. We define

Hn+1 :2
ω×2ω→ω

as follows. Given (β, δ)∈2ω×2ω, let δn, ..., δ0 be the uniquely determined members of [O(βn)], ...,
[O(β0)] resp., such that (βn)∗(δn) =< εn, β, δ >, and (βi)∗(δi) =< εi, β

i+1, δi+1 > if i < n. Put

Hn+1(β, δ) :=G(< β0, δ0 >)(n+1). As Hn+1 is ∆1
1(α) (it is total and Π 1

1 (α)-recursive since ι is

Π
1
1 -recursive), the niceness of the coding system gives βn+1 ∈D ∩ ∆

1
1(α) and kn+1 ∈ ω such that

G(< β0, δ0 >)(n+1)=kn+1 for each δn+1∈ [O(βn+1)]. Then

F (ε0, ..., εn) :=(β0, k0, ..., β
n+1, kn+1),

so that F is as desired. So we can assume that the βi’s are ∆
1
1(α) in the conditions required for F .

• By [K3] again, the map hα : (εi) 7→ (ki) is continuous and U
Π

1
n,2

ω

α = h−1
α (A). As this is not too

long to prove, we give the details for completeness. The map hα is in fact more than continuous: it is

Lipschitz, by definition. Fix (εi). We apply F to the initial segments of (εi), which gives (βi). For

each n, we define perfect sets Cn
0 , Cn

1 , ..., Cn
n ⊆2ω with Cn

i ⊆ [O(βi)] if i≤n, as follows:

Cn
n :={δn∈ [O(βn)] | ∃δn+1∈2ω (βn)∗(δn)=< εn, β

n+1, δn+1 >},

Cn
n−1 :={δn−1∈ [O(βn−1)] | ∃δn∈Cn

n (βn−1)∗(δn−1)=< εn−1, β
n, δn >},

...
Cn
0 :={δ0∈ [O(β0)] | ∃δ1∈Cn

1 (β0)∗(δ0)=< ε0, β
1, δ1 >}.

Note that

(4) δ0 ∈Cn
0 ⇒ < βi, δi >∈Domain(e) for each i≤n, where δ1, ..., δn are computed according

to the formula in (3).(ii).(b),

(5) n′≥n⇒ ∀i≤n Cn′

i ⊆Cn
i .

This implies that [O(β0)]⊇C0
0 ⊇C

1
0 ⊇C

2
0 ⊇ ... and

⋂

n∈ω Cn
0 contains some δ0. Note that < βi, δi >

is in Domain(e), and (βi)∗(δi)=< εi, β
i+1, δi+1 > for each i∈ω. By (3).(ii).(b),

G(< β0, δ0 >)=ki

for each i∈ω. As < β0, δ0 >∈B∗ ⇔ G(< β0, δ0 >)∈A,

(

∀i∈ω < βi, δi >∈Domain(e) ∧ (εi)∈UΠ
1
n,2

ω

α

)

⇔ (ki)∈A.

As < βi, δi > is in Domain(e) for each i∈ω, (εi)∈U
Π

1
n,2

ω

α ⇔ hα
(

(εi)
)

=(ki)∈A.
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• So we found, for each α∈ωω, hα∈C(2ω, ωω) such that U
Π

1
n,2

ω

α =(π ◦hα)
−1(C)=

(

µ(hα)
)−1

(C).
It remains to see that the map ψ : α 7→ hα, from ωω into C(2ω, ωω), can be ∆

1
1-recursive (then f

will be µ ◦ ψ). By the previous discussion, it is enough to see that the relation “ki = k” is ∆
1
1 in

(

α, (εi), i, k
)

∈ωω×2ω×ω2.

• We will define, by primitive recursion, a ∆
1
1-recursive map f̃ : ω×ωω×2ω → 2ω×ω such that

f̃
(

n, α, (εi)
)

will be of the form (< β̃0, ..., β̃n, β̃n, ... >,< k̃0, ..., k̃n >) and can play the role of

F (ε0, ..., εn−1). We first set

P :=
{

(

α, (εi), β, k
)

∈ωω×(2ω)2×ω |

∀i∈ω (β)i=(β)0∈D ∩∆
1
1(α) ∧ ∀δ∈

[

O
(

(β)0
)]

G(< (β)0, δ >)(0)=k
}

.

Note that P is Π 1
1 and for any

(

α, (εi)
)

∈ωω×2ω there is (β, k)∈2ω×ω such that
(

α, (εi), β, k
)

∈P .

The uniformization lemma gives a ∆
1
1-recursive map g̃ :ωω×2ω→2ω×ω such that

(

α, (εi), g̃
(

α, (εi)
)

)

∈P

for each
(

α, (εi)
)

∈ωω×2ω. Then we set

D :=
{

(

β, p, n, α, (εi)
)

∈2ω×ω2×ωω×2ω | Seq(p) ∧ lh(p)=n+1 ∧ ∀q∈ω (β)q∈D ∩∆
1
1(α)

}

.

Note that D is Π 1
1 , as well as

R :=
{

(

β, p, n, α, (εi), β
′, k′

)

∈D×2ω×ω | ∀i>n (β′)i=(β′)n+1∈D ∩∆
1
1(α) ∧

Seq(k′) ∧ lh(k′)=n+2 ∧ ∀i≤n (β′)i=(β)i ∧ (k′)i=(p)i ∧

∀δ∈2ω
(

∃i≤n+1 (δ)i /∈
[

O
(

(β′)i
)]

∨ ∃i≤n (β′)∗i
(

(δ)i
)

6=< εi, (β
′)i+1, (δ)i+1 > ∨

∀i≤n+1 G
(

< (β′)0, (δ)0 >
)

(i)=(k′)i

)}

.

Moreover, for each
(

β, p, n, α, (εi)
)

∈D=Π2ω×ω2×ωω×2ω [R] there is (β′, k′)∈
(

2ω ∩ ∆
1
1(α)

)

×ω
such that

(

β, p, n, α, (εi), β
′, k′

)

∈R. The uniformization lemma gives a partial map

h̃ :2ω×ω2×ωω×2ω→2ω×ω

which is Π
1
1 -recursive on its domain D, and such that

(

β, p, n, α, (εi), h̃
(

β, p, n, α, (εi)
)

)

∈ R if
(

β, p, n, α, (εi)
)

∈D. This implies that the partial map f̃ defined by

{

f̃
(

0, α, (εi)
)

:= g̃
(

α, (εi)
)

,

f̃
(

n+1, α, (εi)
)

:= h̃
(

f̃
(

n, α, (εi)
)

, n, α, (εi)
)

,

is Π 1
1 -recursive.
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Moreover, an induction shows that
(

f̃
(

n, α, (εi)
)

, n, α, (εi)
)

∈D for each
(

n, α, (εi)
)

, so that f̃

is in fact total, and thus ∆1
1-recursive. More precisely, f̃

(

n, α, (εi)
)

is of the form

(< β0, ..., βn, βn, ... >,< k0, ..., kn >),

where (ε0, ..., εn−1) 7→(β0, k0, ..., β
n, kn) satisfies the properties (1)-(3) of F . It remains to note that

ki= f̃
(

i, α, (εi)
)

(1)(i). �

- We now prove the consequences of our main tool.

Definition 5.8 Let Γ be a class of subsets of recursively presented Polish spaces, Γ be the corre-

sponding boldface class, X,Y be recursively presented Polish spaces, and U ∈Γ(Y×X). We say that

U is effectively uniformly Y -universal for the Γ subsets of X if the following hold:

(1) Γ(X)={Uy | y∈Y },

(2) Γ(X)={Uy | y∈Y ∆
1
1-recursive},

(3) for each S∈Γ(ωω×X), there is a Borel map b :ωω→Y such that Sα=Ub(α) for each α∈ωω,

(4) for each S∈Γ(ωω×X), there is a ∆
1
1-recursive map b :ωω→Y such that Sα=Ub(α) for each

α∈ωω .

Notation. Let UΠ
1
1,2

ω
∈ Π

1
1 be a good ωω-universal for the Π

1
1 subsets of 2ω, X1 be a recursively

presented Polish space, and C1 be a Π 1
1 subset ofX1 for which there is a ∆1

1-recursive map b :ωω→X1

such that

(α, β)∈UΠ
1
1,2

ω

⇔ b(< α, β >)∈C1

if (α, β)∈ωω×2ω . We define, for each natural number n≥1,

• Xn+1 :=C(2ω ,Xn) (inductively),

• Cn+1 :={h∈Xn+1 | ∀β∈2ω h(β) /∈Cn} (inductively),

• Un :={(h, β)∈Xn+1×2ω | h(β)∈Cn}.

Theorem 5.9 Let n≥1 be a natural number. Then

(a) the set Un is effectively uniformly Xn+1-universal for the Π
1
n subsets of 2ω ,

(b) the set Cn is Π1
n-complete.

Proof. We argue by induction on n.

(a) Assume first that n = 1, and fix S ∈ Π
1
1(ω

ω×2ω). Our assumption gives b1 : ωω → X1. As

UΠ
1
1,2

ω
∈Π

1
1 is a good ωω-universal for the Π1

1 subsets of 2ω, there is by Theorem 5.3 a ∆1
1-recursive

map f1 :ω
ω→C(2ω ,X1) such that (α, β)∈UΠ

1
1,2

ω
⇔ f1(α)(β)∈C1 if (α, β)∈ωω×2ω . Let αS∈ω

ω

with S=U
Π

1
1,ω

ω×2ω

αS . Note that

(α, β)∈S⇔
(

R(αS , α), β
)

∈UΠ
1
1,2

ω
⇔ f1

(

R(αS , α)
)

(β)∈C1 ⇔
(

f1
(

R(αS , α)
)

, β
)

∈U1.

As C1 is Π
1
1 , U1 too. If A ∈ Π

1
1(2

ω), then A = U
Π

1
1,2

ω

α for some α ∈ ωω. Applying the previous

discussion to S :=UΠ
1
1,2

ω
, we get A=(U1)f1(R(αS ,α)), so that U1 is X2-universal for the Π

1
1 subsets

of 2ω , effectively and uniformly.
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We now study Un+1. Fix S ∈Π
1
n+1(ω

ω×2ω). Let UΠ
1
n,2

ω
be a good ωω-universal for the Π

1
n

subsets of 2ω. We set VΠ
1
n+1,2

ω

:=
{

(α, β) ∈ ωω×2ω | ∀δ ∈ 2ω
(

R(α, β), δ
)

/∈ UΠ
1
n,2

ω}

, so that

VΠ
1
n+1,2

ω

is a suitable ωω-universal for the Π
1
n+1 subsets of 2ω . Moreover, the induction assumption

gives a ∆
1
1-recursive map bn+1 :ω

ω→Xn+1 such that

(α, β)∈VΠ
1
n+1,2

ω

⇔ ∀δ∈2ω
(

R(α, β), δ
)

/∈UΠ
1
n,2

ω
⇔ ∀δ∈2ω

(

bn+1

(

R(α, β)
)

, δ
)

/∈Un

⇔ ∀δ∈2ω bn+1

(

R(α, β)
)

(δ) /∈Cn ⇔ bn+1

(

R(α, β)
)

∈Cn+1

Theorem 5.3 gives a ∆
1
1-recursive map fn+1 such that (α, β) ∈ VΠ

1
n+1,2

ω

⇔ fn+1(α)(β) ∈ Cn+1 if

(α, β)∈ωω×2ω . Let

Q∈Π
1
n(ω

ω×2ω×2ω)⊆Π
1
n(ω

ω×ωω×2ω)

such that (α, β)∈S ⇔ ∀δ∈2ω (α, β, δ) /∈Q, and αQ∈ωω such that Q=U
Π

1
n,ω

ω×ωω×2ω

αQ . Note that

(α, β)∈S⇔ ∀δ∈2ω
(

R
(

R′(αQ, α), β
)

, δ
)

/∈UΠ
1
n,2

ω
⇔

(

R′(αQ, α), β
)

∈VΠ
1
n+1,2

ω

⇔ fn+1

(

R′(αQ, α)
)

(β)∈Cn+1 ⇔
(

fn+1

(

R′(αQ, α)
)

, β
)

∈Un+1.

As Cn∈Π
1
n , Cn+1∈Π

1
n+1 and Un+1∈Π

1
n+1. If A∈Π

1
n+1(2

ω), then A=U
Π

1
n+1,2

ω

α for some α∈ωω.

Applying the previous discussion to S :=UΠ
1
n+1,2

ω

, we get A=(Un+1)fn+1(R′(αQ,α)), so that Un+1

is Xn+2-universal for the analytic subsets of 2ω, effectively and uniformly.

(b) By definition, C1 ∈ Π
1
1 , and Cn+1 ∈ Π

1
n+1 if Cn ∈ Π

1
n . Assume first that E ∈ Π

1
n(2

ω). Then

E = (Un)h for some h∈C(2ω,Xn), by (a). Thus E = h−1(Cn). If Z is a zero-dimensional Polish

space and D∈Π
1
n(Z), then we may assume that Z is a Gδ subset of 2ω by 7.8 in [K2], so that

D∈Π
1
n(2

ω). The previous discussion gives g∈C(2ω ,Xn) with D=g−1(Cn). Thus D=(g|Z)
−1(Cn)

and Cn is Π1
n-complete. �

Proof of Theorem 1.7. By Theorem 5.9, it is enough to show that if UΠ
1
1,2

ω
∈ Π

1
1 is a good ωω-

universal set for the Π
1
1 subsets of 2ω , then there is a ∆

1
1-recursive map b :ωω → [0, 1]2

<ω
such that

(α, β) ∈ UΠ
1
1,2

ω
⇔ b(< α, β >) ∈ P if (α, β) ∈ ωω×2ω . Let H ∈ Π

0
2 (ω

ω×2ω×2ω) such that

¬UΠ
1
1,2

ω
=Πωω×2ω [H]. We set G :=

{

(α, β)∈ωω×2ω |
(

(α)0, (α)1, (β)1
)

∈H ∧ β∈K
}

, so that

G∈∆
1
1(ω

ω×2ω), has Gδ vertical sections and G⊆ωω×K. Lemma 3.10 gives a ∆
1
1-recursive map

F :ωω→ [0, 1]2
<ω

, taking values in M, and such that Gα=Vb(α) for each α∈ωω . If (α, β)∈ωω×2ω,

then
(α, β) /∈UΠ

1
1,2

ω
⇔ ∃δ∈2ω (α, β, δ)∈H ⇔ ∃δ∈2ω (< α, β >, δ)∈G
⇔ ∃δ∈2ω

(

b(< α, β >), δ
)

∈V ⇔ b(< α, β >) /∈P.

This finishes the proof. �

Questions. Let U be a Π
0
2 subset of ωω×2ω which is universal for Π0

2(2
ω). We set

G :=
{

(α, β)∈ωω×K |
(

α, (β)1
)

∈U
}

.

Note that G is a Π
0
2 subset of ωω×2ω contained in ωω×K which is universal for Π0

2(K). Indeed, fix

H ∈Π
0
2(K). Then H ′ :={γ∈2ω |< 0∞, γ >∈H} is Π0

2, which gives α0∈ω
ω with H ′=Uα0 . Then

H=Gα0 .
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Let α 7→
(

(α)k
)

k∈ω
be a homeomorphism between ωω and (ωω)ω, with inverse map

(αk)k∈ω 7→< α0, α1, ... > .

We set S′ :={α∈ωω | ∃γ∈ωω ∀i∈ω ∀β∈2ω β /∈G(α)γ(i)}. Note that S′ is Σ 1
2 .

(1) Is S′ a Borel Σ1
2-complete set?

Assume that this is the case. Then the set S2 :={(fk)k∈ω ∈Mω | ∃γ∈ωω ∀i∈ω fγ(i)∈P} of

sequences of martingales having a subsequence made of everywhere converging martingales is Borel

Σ
1
2-complete. Indeed, Lemma 3.10 gives a Borel map F : ωω →M such that Gα = VF (α) for each

α∈ωω . The map F̃ :ωω→Mω defined by F̃ (α)(k) :=F
(

(α)k
)

is Borel. Moreover,

F̃ (α)∈S2 ⇔ ∃γ∈ωω ∀i∈ω ∀β∈2ω β /∈D
(

F
(

(α)γ(i)
)

)

⇔ ∃γ∈ωω ∀i∈ω ∀β∈2ω β /∈VF ((α)γ(i))

⇔ ∃γ∈ωω ∀i∈ω ∀β∈2ω β /∈G(α)γ(i)

⇔ α∈S′,

so that S′= F̃−1(S2).

(2) Is there a Borel map f :C(2ω , [0, 1])→ωω such that, for each (hk)k∈ω∈
(

C(2ω, [0, 1])
)ω

and each

β∈2ω , the following are equivalent:

(a) limk→∞ hk(β)=0,

(b) ∀k∈ω β /∈Gf(hk)?

Assume that this is the case. Then S′ (and therefore S2) is Borel Σ1
2-complete, and thus Σ

1
2-

complete (see [P]). We define F :
(

C(2ω , [0, 1])
)ω

→ωω by F
(

(hk)k∈ω
)

:=< f(h0), f(h1), ... >, so

that F is Borel. Note that

F
(

(hk)k∈ω
)

∈S′ ⇔ ∃γ∈ωω ∀i∈ω ∀β∈2ω β /∈Gf(hγ(i))

⇔ ∃γ∈ωω ∀β∈2ω limi→∞ hγ(i)(β)=0

⇔ (hk)k∈ω∈S,

so that S=F−1(S′).
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