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Abstract. Recent years have witnessed an increased interest in lattice
cryptography. Besides its strong security guarantees, its simplicity and
versatility make this powerful theoretical tool a promising competitive
alternative to classical cryptographic schemes.

In this paper, we introduce NFLlib, an efficient and open-source C++

library dedicated to ideal lattice cryptography in the widely-spread poly-
nomial ring Zp[x]/(xn + 1) for n a power of 2. The library combines al-
gorithmic optimizations (Chinese Remainder Theorem, optimized Num-
ber Theoretic Transform) together with programming optimization tech-
niques (SSE and AVX2 specializations, C++ expression templates, etc.),
and will be fully available under the GPL license.

The library compares very favorably to other libraries used in ideal lat-
tice cryptography implementations (namely the generic number theory
libraries NTL and flint implementing polynomial arithmetic, and the
optimized library for lattice homomorphic encryption HElib): restricting
the library to the aforementioned polynomial ring allows to gain several
orders of magnitude in efficiency.

Keywords: C++ Library, Implementation, Ideal Lattice Cryptography,
Number Theoretic Transform, Chinese Remainder Theorem, SEE Spe-
cializations.

Note: NFLlib is available under an open source license at
https://github.com/quarkslab/NFLlib

1 Introduction

Lattice cryptography is often praised for its simplicity, its versatility and its
possible resistance to quantum attacks. However, its large memory requirements
makes its practical use strenuous. The introduction of ideal lattice cryptography
completely reshaped this belief [27, 33]. In ideal lattice cryptography, primitives
rely on the hardness of problems involving polynomial rings in which lattices can



be represented by a few polynomials. In recent years, several hardware and soft-
ware implementations of lattice signaturesand encryptionhave been developed.
These implementations show performances competitive with (or even surpassing)
those of currently used primitives such as RSA or elliptic curves (see e.g. [10,
31]). Due to its efficiency and security arguments, ideal lattice cryptography
starts to be deployed in products1 and is promised a bright future.

Besides signature and encryption, lattice cryptography has shown to be amaz-
ingly versatile. In particular, most of the homomorphic encryption (HE) schemes
rely on lattices. The latter research area is really active, and recent years have
seen loads of HE implementations using polynomial rings. Lattices are also used
to instantiate schemes with advanced properties, such as identity-based encryp-
tion (IBE), functional encryption or multilinear maps.

To work efficiently over polynomials rings in software, we are aware of three
main approaches:

(1) Use the generic number theory library NTL [36]. This is the approach used
in lots of HE implementations (and in particular HElib [18, 19]), and in the
IBE implementation of [11].

(2) Use the generic number theory library flint [20]. This is the approach used
in [24] to implement two HE schemes, and in [1] for multilinear maps.

(3) Use home-made libraries that implement operations in the polynomial ring
Zp[x]/(xn + 1).
This is the approach used in the open-source VPN implementation [37], Mi-
crosoft homomorphic encryption implementation [5], SIMD-optimized im-
plementations [17, 14], GPU implementations [23, 8] and also [10, 31].

Note that all the aforementioned implementations consider uniquely (or may
be instantiated with) the polynomial ring

Rp
def
= Zp[x]/(xn + 1)

for a modulus p ≡ 1 (mod 2n) and n some power of 2. This setting is wide-
spread in ideal lattice cryptography because of its simplicity of exposition and of
implementation. Among other advantages, in that setting, polynomials can be
multiplied in quasi-linear time using the Number Theoretic Transform (NTT),
a Fast Fourier Transform on finite rings [34]. Now, home-made implementations
(i.e. item (3)) of polynomial operations in the latter setting have shown to achieve
better performances than using the generic libraries NTL or flint (see e.g. [24,
Tab. 4]).2 This leads us to the following question:

How fast can a specialized polynomial library dedicated to lattice cryptography
over Rp be?

1 The open-source IPsec-based VPN solution strongSwan [37] includes the BLISS lat-
tice signature [10] as an IKEv2 public key authentication method starting from
version 5.2.2.

2 This is also hinted at in the HElib library [18, 19] which modifies the internal routines
of NTL to achieve better performances — although for any cyclotomic polynomial
ring Zp[x]/(Φ).
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1.1 Our Contribution: NFLlib

In this work, we present NFLlib, an efficient and scalable C++ library special-
ized for cryptography over Rp = Zp[x]/(xn + 1). NFLlib includes optimized
subroutines to perform arithmetic operations over polynomials and allows to
easily implement ideal lattice cryptography.3 The library contains algorithmic
optimizations (Double-CRT representation, Number-Theoretic Transform, lazy
modular reduction), and programming optimizations (Streaming SIMD Exten-
sions, Advanced Vector Extensions, C++ expression templates).

We benchmarked the library’s arithmetic operations over Rp against the
generic libraries NTL, flint, and against the HE library HElib. Our results
show that focusing on a setting widely used in ideal lattice cryptography allowed
to gain several orders of magnitude of efficiency compared to generic libraries.

NFLlib will be open-source and available under the GNU General Public
License v3.0. It is designed for ideal lattice cryptography, provides a complete
set of operations, and minimizes the amount of new code needed to add new
features. In short, one of our hopes is that making this library open-source
(and thus seeking for contributions) spurs on the development of ideal lattice
cryptography in prototypes in the very near future.

1.2 Related Work

Libraries. The NFLlib library is specialized for a particular polynomial ring and
therefore differs completely from the generic libraries NTL [36] and flint [20].
These latter libraries allow to perform powerful number theory, while NFLlib
focus on a particular polynomial ring. This specialization allowed us to optimize
the underlying operations while being designed to be used for ideal lattice cryp-
tography. Another library that implements lattice cryptography is HElib [18,
19], which uses NTL. HElib has become a reference to benchmark HE because
it implements a full-fledged HE scheme [6] and features efficient packing tech-
niques and other optimizations. Note that NFLlib does not compare to HElib
in term of functionality, but NFLlib could replace NTL in HElib when working
over Rp, and would yield a much more efficient implementation.

Double-CRT representation. Using moduli that split completely to store the
polynomial coefficients in CRT form (first layer of CRT), and using the NTT
representation of the polynomials (second layer of CRT) is a technique that
has been used previously in lattice cryptography. In particular, it is used in the
HElib library [15, 18, 19] and in the GPU implementation [8]. However, NFLlib
features specific primes in the moduli decomposition, chosen to optimize the
NTT and allow lazy modular multiplication.

3 Even though architecture-optimized implementations will always outperform generic
libraries, this paper tackles the issue of designing an efficient library that can be
used on a large range of architecture. Also, NFLlib includes state-of-the-art SSE
and AVX2 optimizations for the NTT and the modular multiplication operation.
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1.3 Outline

In Sec. 2 we describe the basic cryptographic and mathematical notions needed
in our paper. In Sec. 3 we present our library, its main components and how these
allowed us to get our performance results. In Sec. 4 we compare the performance
of our library with other libraries on different algorithms (NTT, multiplications,
additions, etc.). Finally, in Sec. 5, we describe some implementations of lattice
cryptographic algorithms and highlight the performance results obtained.

2 Preliminaries

Throughout the paper, we let n be a power of 2 and p > 0 be a modulus (not

necessarily prime as we will see later). Define R to be the ring R
def
= Z[x]/(xn+1),

i.e. the ring of polynomials having integer coefficients, modulo xn + 1. For any

integer p, define Rp
def
= Zp[x]/(xn + 1) the ring R modulo p, i.e. polynomials

modulo xn + 1 with coefficients modulo p. We denote by a mod b the remainder
of the euclidean division of a by b, and c ≡ a (mod b) represents any number
such that c mod b = a. We use the classical Landau notation.

Ideal Lattice Cryptography. In most of existing implementations, the structured
lattices used in ideal lattice cryptography have an interpretation in terms of
arithmetic in the ring Zp[x]/(xn + 1), for n a power of 2. Jumping ahead, note
that we will chose particular values for p in order to optimize the polynomial
multiplications when using the Number Theoretic Transform (see also [35, 10,
17]) in combination with the Chinese Remainder Theorem.

The Chinese Remainder Theorem (CRT). Throughout the paper, the modulus
p will be composite and square-free, and its factorization is denoted p = p1 · · · p`.
The CRT yields an isomorphism Zp ' Zp1

× · · ·×Zp`
, which extends directly to

polynomials rings. In particular, we have that Rp ' Rp1
× · · · × Rp`

. Jumping
ahead of Sec. 3.1, the latter equivalence shows that, instead of working with a
polynomial a(x) ∈ Rp, we will choose p = p1 · · · p` with particular pi’s and work
with ` polynomials ai(x) ∈ Rpi

.

The Number Theoretic Transform (NTT). To multiply polynomials efficiently,
we use the quasi-linear polynomial multiplication algorithm called the NTT [34].
The advantages of using NTT for ideal lattice cryptography were recently demon-
strated in hardware and software implementations [16, 35, 10, 17].

3 NFLlib: A Library for Ideal-Lattice Cryptography

In this section, we introduce NFLlib, a C++ library for ideal-lattice cryptogra-
phy, i.e. for manipulating polynomials of Rp = Zp[x]/(xn + 1). The entry point
to our library is a templated class poly < class T, size t degree, size t

sizeModulus > .
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To obtain a usable class, one must define three parameters before compilation:
the word type (uint16 t, uint32 t or uint64 t), the degree n of the polynomial
xn + 1 that defines Rp (which must be a power of two), and the bit-size of the
modulus p, which will be internally constructed as a product of ` fixed-size
primes: p = p1 × · · · × p` .

The poly class features: overloaded operators for modular arithmetic and
data manipulation (and the associated static functions); C++ template expres-
sions to minimize the inherent performance degradation of overloaded operator;
functions to sample polynomials in Rp with different distributions for the coeffi-
cients (uniform distribution modulo p, uniformly bounded distribution, discrete
Gaussian distribution); transformation-related functions (NTT, CRT, export,
import); SSE and AVX2 optimizations for compatible architectures.

The word type T is the most critical parameter. It defines which (and how
many) primes pi’s are available, what is the maximal polynomial degree n possi-
ble, and which underlying code is used. Indeed, the code is specialized and might
feature SIMD optimizations (especially when using 32-bit and 16-bit words).

All the functions provided by the poly class have been developed from
scratch, and are based on the native (scalar or vectorial) instructions of a mod-
ern CPU. Only exceptions, the Salsa20-based pseudo-random number generator,
and the CRT inversion function which uses GMP if the modulus used is too large
for native instructions.

NFLlib is a specialized polynomial library dedicated to ideal-lattice cryp-
tography. It is well known that in this setting representing polynomials by their
values instead of their coefficients (i.e. representing them in NTT form) and us-
ing the CRT to represent values is very beneficial for performance. We therefore
use such a representation.

NFLlib’s performance results are mainly due to the fact that most of the
functions have been developed directly based on native operations, and to four
major choices that have proven to be very efficient. These choices are:

– the fixed-size CRT representation — see Sec. 3.1;
– the modular multiplication for scalars — see Sec. 3.2;
– the NTT algorithm — see Sec. 3.3.
– the SSE and AVX2 optimizations — see Sec. 4.

In the aforementioned sections, we describe the particular choices we made
in NFLlib, and discuss their respective impacts.

3.1 Fixed-Size CRT Representation

For efficiency reasons, we selected the moduli p used in our ideal lattice setting
as a product of ` fixed-size primes pi’s fitting on one word.4 Thus, one can
work with the CRT representation (a1(x), . . . , a`(x)) ∈ Rp1

× · · · × Rp`
of a

4 At the heart of many kinds of ideal-lattice schemes (ranging from classical encryp-
tion to fully homomorphic encryption and multilinear maps) is the decision-Ring-
Learning-With-Errors (dRLWE) assumption. Working with cyclotomic polynomials
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Algorithm 1: Prime selection algorithm

Input: s word size, s0 margin bits, nmax maximum polynomial degree
Output: (p1, . . . , pt) a list of primes satisfying Constraints 1-3

1 β = 2s, i = 1, outputList = ()
2 do
3 c = β/2s0 − i · 2nmax+1 + 1
4 if isPrime(c) and c > (1 + 1/23s0) · β/(2s0 + 1) then
5 Add c to outputList

6 end
7 i = i+1

8 while c > (1 + 1/23s0) · β/(2s0 + 1)
9 return outputList

polynomial a(x) ∈ Rp, where ai(x) = a(x) mod pi. All the ai(x) can then be
processed independently.

The primes forming the moduli are chosen with the following constraints:

Constraint 1. Their size must be at most the word size minus two bits, so
that we can do lazy modular reductions in the NTT algorithm (which gives
roughly a 30% speedup);

Constraint 2. They must satisfy Eq. (1) for a given parameter s0, in order to
use the modular multiplication algorithm of Sec. 3.2;

Constraint 3. For any possible value of n — the degree of the quotient poly-
nomial in Rp — they must be congruent to 1 (mod 2n), so that we can find
n-th roots of −1 to use the NTT algorithm of Sec. 3.3 and do polynomial
multiplications modulo xn + 1.

Constraint 2 will ensure that Constraint 1 is satisfied when s0 ≥ 2. By default,
NFLlib sets s0 = 2. In order to satisfy Constraint 3, we had to arbitrarily select
a maximal polynomial degree nmax in NFLlib. (Note that the constraint is then
satisfied for any degree n 6 nmax). The higher nmax is, the less primes verify
Constraint 3. When the word size is 16 bits, these constraints are stronger than
for larger words. For example for nmax = 2048, only one 14-bit prime verifies
Constraint 3 (supposing s0 = 2). For 64-bit words on the other hand, it is
possible to find thousands of primes verifying the constraints even for very large
polynomial degrees such as nmax = 220. Alg. 1 returns the primes satisfying
Contraints 1-3.

Defining these primes statically is beneficial for performance, and therefore
they have been included in a parameter file params.hpp with nmax = 512 when
s = 16 (2 primes), nmax = 215 when s = 32 (291 primes), and nmax = 220 when
s = 64 (primes limited voluntarily to one thousand). All of these have been

Φ(x) = xn + 1 implies that we have provable worst-case hardness for dRLWE with
essentially any large enough p — splitting, inert, or anywhere in between [7]. In
NFLlib, we therefore chose a p that splits completely for efficiency reasons.
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Table 1: Time per componentwise multiplication of polynomials of degree 1024
modulo a 62-bit prime (average over 100,000 polynomial multiplications on an
Intel Xeon CPU E5-2666 v3 at 2.90GHz). We implemented Algorithms 1 and 4
of [30] (with 4p instead of p and two conditional subtractions at the end), but
they perform one order of magnitude slower than our improved algorithm.

Algorithm Naive [30] [30] Ours
(i.e. using %) Alg. 1 Alg. 4 Alg. 2

Polynomial Modular Mult. (µs) 29.8µs 15.5µs 12.9µs 2.90µs

chosen with s0 = 2 as explained before. Of course other values of s0 and nmax

may be defined by the user of NFLlib.5

3.2 Optimizing the Modular Multiplication

As explained in Sec. 3.1, NFLlib includes invariant primes of 14, 30 and 62 bits,
and computations are performed independently over these primes. However — as
already emphasized in [30] — computing modular reductions with an invariant
integer using a well-tuned Newton reciprocal followed by multiplications and
adjustments wins over the hardware division instructions.

During the library construction, we observed that the gcc compiler automat-
ically optimized the modular multiplications when working with 16-bit or 32-bit
words (i.e. for 14- and 30-bit primes), but not with 64-bit words. In this section,
we consider the problem of dividing a two-word integer by a single word integer.
This problem was extensively studied in [30] which proposed a new algorithm
(Alg. 4 in the latter paper) giving a speedup of roughly 30% over the Newton re-
ciprocal algorithm [30, Alg. 1]. The former algorithm was included in the version
4.3 of the gmp library.

However, in NFLlib, the primes are feature so that their (two) most signif-
icant bits equal to 0, and the algorithms in [30] are optimized for numbers with
their most significant bit equal to 1. In the rest of the section, we describe a new
algorithm which significantly improves over [30] for numbers p smaller than the
word base β = 2s, as illustrated in Table 1.

Assume that one wants to compute a modular reduction with a modulus p
such that

(1 + 1/23s0) · β/(2s0 + 1) < p < β/2s0 , (1)

for an integer 1 6 s0 6 s− 1 (note that all our 62-bit primes verify Eq. (1)). For
any number u ∈ [0, β2), denote 〈u1, u0〉 its decomposition in words smaller than
β, so that u = u1 · β + u0. We describe our new modular reduction in Alg. 2.

5 NFLlib has been designed to work with a wide range of parameters: polynomial
degrees 2 6 n 6 220 and moduli 213 < p < 21000·62. However, the users of NFLlib
are responsible for selecting parameters (n, p) that ensure κ bits of security for the
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Algorithm 2: Modular reduction with a modulus verifying Eq. (1)

Input: u = 〈u1, u0〉 ∈ [0, p2), p verifying Eq. (1), v0 = bβ2/pc mod β,
1 6 s0 6 s− 1 margin bits

Output: r = u mod p
1 q ← v0 · u1 + 2s0 · u mod β2

2 r ← u− bq/βc · p mod β
3 if r > p then r ← r − p
4 return r

We have the following theorem. For space constraints, we defer its proof to
the final version of the paper.

Theorem 1. Assume 1 6 s0 6 s− 1 and p verifies Eq. (1) and u = 〈u1, u0〉 ∈
[0, p2). Let v = 〈v1, v0〉 = bβ2/pc. Then Alg. 2 with input (u, p, v0, s0) outputs
(u mod p).

3.3 A lazy NTT Algorithm

We use Harvey’s NTT algorithm [21]. This algorithm uses two techniques to
reduce its computational costs: pre-computed quotients to accelerate modular
multiplications, and lazy reductions (i.e. inputs and outputs can be up to twice
the modulus). Quotient pre-computations in the NTT was already performed by
NTL [36] but Harvey proves elegantly that the NTT butterflies can be modified
so that the output is in [0, 2p) when the input is in [0, p), using only one condi-
tional subtraction (instead of three in the initial algorithm). This gives a very
nice performance boost of about 30%, as shown in [21]. Note that this justifies
to select primes ad in Sec. 3.2.

As usual, before applying the NTT we multiply the i-th coordinate of the
polynomial we are going to transform by ψi, where ψ is an n-th root of −1
which allows us to have negatively wrapped convolutions when we multiply two
elements (i.e. reductions modulo xn + 1). After the NTT, we reduce the coeffi-
cients to [0, p) but we do not apply the bit-reverse permutation by default. The
reason for this is that, in lattice based cryptography, we often want to offload
work from the NTT to the inverse NTT. For example in an LWE encryption
scheme, at encryption time one needs to: (1) generate multiple noise polynomi-
als, (2) convert each of them with an NTT, and (3) multiply/add them. In the
decryption phase, on the other hand, there is no noise polynomials to generate
and there is just one multiplication, one addition and a single inverse NTT. If
in a given case, such as the one described in Sec. 5.1 we want to balance both
transformations, such a change can be activated with a compilation option.

Our library has no particular contribution concerning the NTT, we just show
in this paper that it is a lot more efficient than the Bluestein FFT used in HElib

specific application they are developing. We refer to [25, 2, 3] for selecting concrete
security parameters of lattice encryption schemes.
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(see Sec. 4). Our implementation does not use assembly language, but it is quite
efficient, scalable and general.

4 Performances Evaluation and Comparison with NTL,
FLINT and HElib

In this section we analyze the performance of our library and report comparative
benchmarks with the NTL [36], flint [20] and HElib [18] libraries.

Recall that NTL and flint are generic libraries that allow to work with
polynomials in any modular rings, and HElib is a software library (based on
NTL) that implement an optimized version of the Brakerski-Gentry-Vaikuntana-
than [6] (BGV) homomorphic encryption scheme. We chose to compare to these
libraries because they are widely used in the literature on lattice cryptography
implementations. We restricted them to the same settings as NFLlib, i.e. to
work over Rp = Zp[x]/(xn + 1) with moduli p as in Sec. 3.1.
Setting. We benchmarked NFLlib against NTL, flint and HElib on random
polynomial generation, NTT and inverse NTT, modular addition and multipli-
cation in NTT representation. All the benchmarks were made using the following
fixed parameter sets:

(1) n = 256 with a modulus p of 14 bits,
(2) n = 512 with a modulus p of 30 bits,
(3) n = 1024 with a modulus p of 62 bits,
(4) n = 1024 with a modulus p of about 6200 bits (product of 100 62-bit moduli).

As expected, NFLlib has been instantiated with 16-bit words and 32-bit words
respectively for the parameters sets 1 and 2. For NTL, we used the zz pX objects
for the parameters sets 1 and 2, and ZZ pX otherwise. For flint, we used the
type fmpz mod poly t. Finally, HElib includes a DoubleCRT class with the same
representation as NFLlib.6

We performed all our benchmarks on a c4.2xlarge instance of Amazon Web
Services with an Intel Xeon CPU E5-2666 v3 (Haswell) at 2900 Mhz and 15 GB
of RAM with gcc 4.9, GMP 6.0, NTL 8.1, flint 2.5.7

Remark 1. To demonstrate the performance of our library on different architec-
tures, we also benchmarked the NTT transformation on a MacBook Air (called

6 In HElib, the instantiation of a FHEContext — storing the modulus decomposition —
is needed to use DoubleCRT objects. Now, this constructor try to produced primes of a
size close to 44 bits and this size is hard-coded in the value FHE p2Size (maybe to fit
largely the long primitive type and be able to do specific homomorphic operations?).

For the sake of comparison, we kept this hardcoded value. Therefore the bench-
marks of HElib are with a 44-bit prime for parameters (1) and (2), with two 44-bit
primes for parameters (3) and 141 44-bit primes for parameters (4).

7 TurboBoost and Hyperthreading were disabled during the benchmarks. We chose an
AWS machine as a typical cloud environment which allows reproductibility of the
results.
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Table 2: Timings to generate random polynomials in Zp[x]/(xn + 1) using the
built-in functions of different libraries on c4.2xlarge.

Library NTL flint HElib NFLlib
random fmpz mod poly randtest nfl::uniform

(1) = (256, 14) 9.2µs 4.8µs 69µs 0.6µs

(2) = (512, 30) 23.2µs 9.1µs 135.5µs 2.6µs

(3) = (1024, 62) 173.0µs 18.3µs 540.0µs 9.7µs

(4) = (1024, 6200) 8675µs 1082µs 37929µs 1029.6µs

macbookair) with an Intel Core i7-4650U Processor at 1700 Mhz and 8 GB of
RAM, using the native clang++ (Apple LLVM version 6.0), GMP 6.0, NTL 8.1,
flint 2.5. (We restricted ourselves to the benchmark of the NTT transform to
be concise.)

Random polynomial generation. To benchmark random generation, we used the
ntl::random function of NTL, the fmpz mod poly randtest function of flint
and the default random generator of NFLlib (described only in the full version
due to space constraints). We present our results in Table 2. Note that the
flint library implements the Mersenne Twister algorithm that is unsuitable for
a cryptographic use.

NTT and iNTT. Working with the NTT representation of polynomials (after
the negative wrapped convolution) is a cornerstone of our optimization, since
additions and multiplications become essentially linear in the number of coeffi-
cients. We report in Table 3 the benchmarks of the NTT (including the negative
wrapped convolution). Note that NTL provides an NTT functions thanks to
TofftRep and to toFFTRep (resp. for zz pX and ZZ pX); no such functions seem
to be available in the flint library.8 In HElib, the DoubleCRT class has two
functions to convert from (via negative wrapped convolution and NTT) and to
(via inverse NTT and inverse of the convolution) a polynomial ZZX. (For space
constraints, the timings of the inverse NTT are provided in the full version of
the paper).

SEE and AVX2 Optimizations. Because of the highly parallel nature of oper-
ations over polynomials (the same operations are to be performed on multiple
data objects), using Streaming SIMD Extensions (SSE) and Advanced Vector
Extensions (AVX) instructions might greatly increase performance. This has
been shown in [17, 14] respectively for lattice signature and encryption.

8 We neglected the cost of the (linear) negative wrapped convolution computation in
NTL to mitigate the impact of a non highly-optimized hand-made implementation;
one would therefore have to expect slightly worse timings when working over Rp.
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Table 3: Timings to compute the Number Theoretic Transform of a polynomial
in Zp[x]/(xn+1) using (when possible) the built-in functions of different libraries.

(a) NTT on c4.2xlarge using gcc

Library NTL flint HElib NFLlib
toFFT/ToFFT conv(DoubleCRT,ZZX)

(1) = (256, 14) 7.2µs – 33.7µs 2.5µs

(2) = (512, 30) 14.7µs – 70.7µs 4.5µs

(3) = (1024, 62) 45.7µs – 317.7µs 13.9µs

(4) = (1024, 6200) 33921µs – 23240µs 1341.0µs

(b) NTT on macbookair using clang

Library NTL flint HElib NFLlib

(1) = (256, 14) 7.7µs – 37.6µs 1.7µs

(2) = (512, 30) 16.0µs – 74.9µs 5.7µs

(3) = (1024, 62) 47.5µs – 333.8µs 15.3µs

(4) = (1024, 6200) 34799µs – 24713µs 1163.4µs

NFLlib includes SSE and AVX2 specializations of the NTT algorithm and
of the modular operations for 16-bit and 32-bit words. We compared NFLlib’s
NTT to Güneysu et al. AVX-optimized NTT [17] (where once again the NTT
includes the negative wrapped convolution Ψ) on c4.2xlarge.

The GOPS implementation works with the double type for a 23-bit modulus
p (lazy-reduction) and takes 5030 cycles. NFLlib can be instantiated with 14-bit
primes or 30-bit primes and takes respectively 3324 and 7334 cycles when using
SSE4 instructions, and 2767 and 5956 cycles when using AVX2 instructions. As
a comparison, the 62-bit version (i.e. non-SIMD) of the NTT takes 10020 cycles.

5 Implementing Ideal Lattice Cryptography with NFLlib

5.1 High Performance Key Exchange

In this section, we consider an equivalent of the key transport protocol RSASVE
of NIST SP 800 56B, using [25] encryption scheme, to illustrate the performances
of our library in a concrete setting. The client chooses a random message and
encrypts it with the server public key then, the server decrypts this random
value that is used to derivate (with a hashing function) a common secret.

Server-side focus. As a server usually has to handle many clients, the main issue
is how costly is the server-side computation. Thus, we focus on the server cost.
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Server authentication and forward secrecy. The public key sent by the server
may be a certificate signed by any algorithm (e.g. DSA) so that the client is able
to be convinced of the server’s identity. Since this has no cost for the server we do
not focus on which signature scheme is used. We note that as suggested in [22],
the server can send two keys: one signed to prove his identity, and one ephemeral
key generated to ensure forward secrecy. Then the client sends two secrets and
the common secret is derived from both initial secrets with a key derivation
function (e.g. a hash function). Due to the signature of one of the public keys,
the client knows that only the server can get the common secret and if the
ephemeral key is destroyed at the end of the key exchange, forward secrecy is
ensured. This means that from the server side multiplying the communication
and computational costs just by two, allows to have a forward secrecy property.

The algorithm we implemented is the RLWE encryption scheme of [25].9

The code for the encryption and decryption functions (see [25]) is presented
in Algorithms 3 and 4. This code highlights how simple is to implement algo-
rithms with NFLlib: the encryption function and decryption functions are very
readable, and have respectively 9 and 4 lines of code.

Algorithm 3: Ring-LWE based public key encryption function

Input: P a polynomial type, g prng Gaussian generator, pka, pkb public key, m
the message

Output: resa, resb an encryption of m
using value_t = typename P::value_type;

P tmpu = nfl::gaussian<value_t>(g_prng); // no noise multiplier

P tmpe1 = nfl::gaussian<value_t>(g_prng, 2); // noise multiplier: 2

P tmpe2 = nfl::gaussian<value_t>(g_prng, 2); // noise multiplier: 2

tmpe2 += m;

tmpu.ntt_pow_phi();

tmpe1.ntt_pow_phi();

tmpe2.ntt_pow_phi();

resa = tmpu * pka + tmpe1;

resb = tmpu * pkb + tmpe2;

Table 4 shows the performances of the protocols for 80, 128 and 256 bits
of security. In RSA and NFLlib, the server needs to do a decryption, while in
ECDH it performs a modular exponentiation. NFLlib allows to deal with more

9 We choose two parameter sets from [25], a 14-bit modulus with polynomials of degree
256, and the same modulus with polynomials of degree 512. These two parameter
sets correspond roughly to 128 and 256 bits of security. Note that if these estimates
are too low it is possible to choose parameters such as (14, 1024) and the performance
presented in Table 4 is just divided by two.
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Algorithm 4: Ring-LWE based public key decryption function

Input: P a polynomial type, resa, resb a ciphertext, s a secret key, p a modulus
Output: A polynomial m
m = resb - resa * s;

m.invntt_pow_invphi();

for(auto & v : m)

v = (v<modulus/2) ? v%2 : 1-v%2;

Table 4: Number of key exchanges per second on a server with an i7-4770 proces-
sor using only one core. When the four cores are used, performance are multiplied
by a factor four. There is no standard implementation of RSA15360 and our li-
brary does not work with 80 bits of security for this application (hence the input
N/A). RSA and ECDH (p curves) results have been obtained with the speed
test of openssl 1.0.1f. The results noted NFLlib correspond to the amount of
decryptions per second with our implementation of the RLWE scheme of [25].

Protocol 80 bits 128 bits 256 bits

RSA 7.95 Kops/s 0.31 Kops/s N/A

ECDH 7.01 Kops/s 5.93 Kops/s 1.61 Kops/s

NFLlib N/A 1020 Kops/s 508 Kops/s

clients or to use less CPU time for the same amount of clients. The gap is around
a factor 200, so it is possible to process 10 times more clients with 10 times less
CPU time and to increase by a factor two the security with respect to ECDH
(or maintain the security level and add forward secrecy).

5.2 Using NFLlib for Homomorphic Encryption

A trending application of ideal lattice cryptography is homomorphic encryption;
a fully homomorphic encryption (FHE) scheme enables one to process any func-
tion on encrypted data. The first implementations of FHE were quite inefficient,
but in six years the landscape has considerably changed and recent implementa-
tions run in reasonable time [19, 12]. However, the bootstrapping procedure —
necessary to achieve fully homomorphic encryption — remains a bottleneck.

To overcome thereof, the cryptographic community focused on somewhat
homomorphic encryption (SHE) schemes, i.e. schemes only able to handle a
bounded number of homomorphic operations (and especially of homomorphic
multiplications). However, even for this simplified setting, to homomorphically
evaluate non trivial functions the parameter sizes remain very large (see e.g. [24,
9]); to handle around 40 levels, one usually works with parameters such that
210 6 n, log q 6 220.
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Table 5: Using NFLlib in the FV implementation of [24], instead of flint. The
polynomial degree is n = 4096 and the modulus p has 124 bits. The relatively
small gain on the homomorphic multiplication can be explained by the fact that
the scale-invariant procedure is essentially constituted of operations independent
of NFLlib, such as divisions and rounding.

Encrypt Decrypt Hom. Add. Hom. Mult.

[24] with flint 26.7ms 13.3ms 1.1ms 91.2ms

[24] with NFLlib 0.9ms 0.9ms 0.01ms 17.2ms

Gain ×30 ×15 ×110 ×5.5

These large parameters explain why the static parameters in NFLlib were
selected to handle polynomials up to degree 220 and modulus up to 62, 000 bits.
Now, from the results of Sec. 4, we estimate that implementations using NTL
or flint with Rp should immediately gain a factor 15 to 50 in performances by
using NFLlib. As an example, we modified the open-source implementation of
the somewhat homomorphic encryption scheme FV of [24] and directly replaced
flint by NFLlib — we obtained the improvements described in Table 5.

6 Conclusion

This work introduces NFLlib, an optimized open-source C++ library designed
to handle polynomials over Zp[x]/(xn + 1), a widespread setting in ideal lat-
tice cryptography. Because of its algorithmic and programming optimizations,
NFLlib is much faster than NTL and flint, and as fast as AVX-optimized im-
plementations of the literature. We hope the library will help building efficient
prototypes using lattice cryptography in the very near future.
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