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Just Noticeable Distortion Profile
for Flat-Shaded 3D Mesh Surfaces

Georges Nader, Kai Wang, Franck Hétroy-Wheeler, and Florent Dupont

Abstract—It is common that a 3D mesh undergoes some lossy operations (e.g., compression, watermarking and transmission through
noisy channels), which can introduce geometric distortions as a change in vertex position. In most cases the end users of 3D meshes
are human beings; therefore, it is important to evaluate the visibility of introduced vertex displacement. In this paper we present a
model for computing a Just Noticeable Distortion (JND) profile for flat-shaded 3D meshes. The proposed model is based on an
experimental study of the properties of the human visual system while observing a flat-shaded 3D mesh surface, in particular the
contrast sensitivity function and contrast masking. We first define appropriate local perceptual properties on 3D meshes. We then detail
the results of a series of psychophysical experiments where we have measured the threshold needed for a human observer to detect
the change in vertex position. These results allow us to compute the JND profile for flat-shaded 3D meshes. The proposed JND model
has been evaluated via a subjective experiment, and applied to guide 3D mesh simplification as well as to determine the optimal vertex
coordinates quantization level for a 3D model.

Index Terms—Just noticeable distortion, human visual system, psychophysical experiments, contrast sensitivity function, contrast
masking, 3D mesh

F

1 INTRODUCTION

THREE-DIMENSIONAL (3D) meshes may be subject to var-
ious lossy operations such as compression and water-

marking. These operations introduce geometric distortions
in form of vertex displacement. Since computer graphics
applications are intended towards human subjects, it is
important to study the visibility of those distortions, taking
into account the properties of the human visual system.
Geometric measures like Hausdorff distance or root mean
square error (RMS) [1], [2] reflect the physical variation of
the mesh geometry. They do not correlate with the human
vision [3] and therefore cannot be used to predict whether
a distortion is visible or not. The visibility of the geomet-
ric distortions is also affected by the lighting conditions,
the viewpoint, the surface’s material and the rendering
algorithm. Figure 1 gives two examples of how the scene
parameters can affect the visibility of vertex noise. A slightly
visible noise is injected onto the 3D model (Fig. 1.(a)).
When the viewing distance is increased, the noise becomes
invisible (Fig. 1.(b)). When the light direction is changed
from front to top-left, the noise on the mesh becomes more
visible (Fig. 1.(c)).

The Just Noticeable Distortion (JND) threshold refers to
the threshold above which a distortion becomes visible to
the majority of observers [4]. If a distortion is below the JND
value, it can be considered as invisible. JND models reflect
the local properties of the human visual system, in partic-
ular the contrast sensitivity function and contrast masking. On
one hand, in image/video processing, JND models of 2D
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images and videos have proven to be helpful for various
applications such as evaluating the image visual fidelity
[5] and optimizing image compression [6], [7], [8]. On the
other hand, while perceptually driven graphics are popular
within the computer graphics community [3], [9], [10], there
has been little effort given to study the visibility of vertex
displacement and further to compute a JND profile for 3D
models.

This is exactly what this paper proposes. More specifi-
cally, our contributions are the following:

1) We define local perceptual properties that are ap-
propriate for a ”bottom-up” evaluation of vertex
displacement visibility on 3D meshes.

2) We design and conduct psychophysical experiments
to study properties of the human visual system
when observing a flat-shaded 3D mesh.

3) We propose a JND profile for 3D meshes that
takes into consideration the various circumstances
of mesh usage (display size, scene illumination,
viewing distance).

The rest of this paper is organized as follows: Section 2
briefly introduces the properties of the human visual system
that are essential to compute the JND profile, and discusses
existing work on perceptually driven graphics techniques.
Section 3 explains how perceptual properties are evaluated
on a 3D mesh and presents a series of psychophysical
experiments that were carried out in order to measure the
visibility threshold and their results. Section 4 describes our
method to compute the JND profile for a 3D mesh. In Section
5 we evaluate the proposed JND model’s performance via
subjective experiments. In Section 6 we apply our JND
profile to guide mesh simplification and to automatically
determine the optimal vertex coordinates quantization level.
Finally, we discuss the limitations and conclude the paper.
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original (b)(a) (c)

Fig. 1. (a) The noise injected onto the original 3D mesh is slightly visible. (b) Increasing the viewing distance makes the noise invisible. (c) Changing
the light direction from front to top-left increases the perceived intensity of the noise.

2 RELATED WORK

Before presenting the existing works on perceptually driven
graphics, we introduce the local properties of the human
visual system on which a large number of the existing
methods rely.

2.1 Local Properties of the Human Visual System

The visibility of a visual pattern depends on its local con-
trast and its spatial frequency [11]. Local contrast refers to
the change of light intensity over the light intensity of its
surrounding. The spatial frequency is defined as the size of
light patterns on the retina. In the field of visual perception,
the spatial frequency is expressed in terms of cycles per
degree (cpd) which represents the number of light patterns
on the retina in 1 degree of the visual angle. To show how
local contrast and spatial frequency affect the visibility of
a pattern, we briefly introduce the notions of contrast sensi-
tivity and contrast masking. Both these concepts describe the
basic human vision mechanisms and were largely exploited
for the development of many image processing methods
[12], [13] especially for JND profiles of 2D images [4]. We
refer to [11], [14] for a more detailed treatment of the human
visual perception.
Contrast sensitivity. A visual pattern can be detected by the
visual system only if the amount of contrast in the pattern
is above some threshold. This visibility threshold varies
under different spatial frequencies of the visual pattern.
This is mainly due to the optics in the eye and the size
of the photoreceptors on the retina. The reciprocal of this
detection threshold is the contrast sensitivity. The contrast
sensitivity function (CSF) describes the visibility threshold
with respect to the spatial frequency. The CSF represents
the visual system’s band-pass filter characteristics when it
comes to contrast sensitivity. In general, it exhibits a peak
at around 2 to 5 cpd then drops off to a point where no
detail can be resolved. The shape of the CSF (peak location
and drop off slope) depends on the nature of the visual
stimulus (complexity, periodicity) [15]. Since the CSF is the

main component in many perceptual models [12], [13], there
has been a great interest for measuring it in different circum-
stances [16]. Most notably, let us cite the Modelfest project
[17], in which 10 laboratories collaborated on measuring the
contrast threshold for 43 different types of visual stimuli.
Contrast masking. Contrast masking is the change in vis-
ibility of a stimulus (target) due to the presence of another
stimulus (mask). The visibility of the target depends on
different factors, in particular the spatial frequency and the
contrast of the mask and the target. Legge and Foley [18]
studied the contrast threshold necessary to detect the target
when varying the contrast and frequency of the mask. One
important observation was that this contrast threshold is
increased when the contrast of the mask is increased. The
effects of contrast masking can be described by a curve
which possesses two asymptotic regions: the first one with
a slope of zero and the second one with a positive slope of
about 0.6 to 1 (depending on the stimulus) [18]. The zero
slope occurs for mask contrast values below the mask’s
visibility threshold as given by the CSF, indicating that
there is no masking effect. By contrast, as the mask contrast
value increases beyond the CSF threshold in the second
asymptotic region, the threshold for detecting the target
increases too.

Despite being essential for the development of percep-
tual image processing algorithms, the contrast sensitivity
function and the contrast masking have, to the best of our
knowledge, never been carefully studied in the 3D setting.

2.2 Perceptually Driven Graphics

Over the last two decades, perceptually driven methods
have drawn more and more attention in the computer
graphics community. These methods have proven to be use-
ful for evaluating the quality of 3D models and optimizing
graphics applications. Perceptually driven methods can be
divided into two groups: top-down methods and bottom-up
ones.
Top-down methods. Top-down techniques do not rely on
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the exact internal mechanism of the human visual system.
Such techniques rather propose hypotheses, which are usu-
ally difficult to prove, about the overall behavior of the vi-
sual system in order to estimate how a specific visual artifact
is perceived. Based on the observation that visual artifacts
are less visible on rough regions than on smooth ones of a
3D mesh [19], several perceptual metrics have for instance
been proposed [20], [21], [22]. Other features used by such
top-down metrics include surface curvature [23], [24] and
dihedral angle [25]. Perceptual methods have also been
used to guide mesh simplification [26], [27], [28], [29] and
compression [30]. In the previously mentioned methods, the
perceptual analysis is carried out on the geometry of a 3D
mesh. In general, these methods are neither easily applicable
to models of different properties (size, details and density)
nor capable of adapting to varying circumstances of mesh
usage (display characteristics, scene illumination and view-
ing distance). In addition, they mainly study distortions
that are above the visibility threshold. Near-threshold vertex
displacement visibility is not the focus of these methods.
Bottom-up methods. A bottom-up approach explicitly
takes into account the mathematical models describing the
mechanisms of the human visual system. Bottom-up meth-
ods have been popular in computer graphics. They are usu-
ally based on the concepts of contrast sensitivity and contrast
masking (Section 2.1). One of the most popular methods
in image processing is Daly’s Visual Difference Predictor
(VDP) [31]. This algorithm outputs a map describing the
visibility of the difference between two images. The VDP
has recently been extended to 2D HDR images in [32]. Based
on Daly’s VDP algorithm, Ramasubramanian et al. [33]
computed a 2D threshold map in which each pixel contains
the value of the minimum detectable difference. This map
is used to guide global illumination computations. This
threshold model has later been improved in [34]. Bottom-
up analysis has also been used for mesh simplification
applications [35], [36], [37]. However, the visibility analysis
in those methods is still carried out in the 2D space of
rendered images.

In this paper, different from all the methods mentioned
in the previous paragraph that conduct the visibility anal-
ysis in a 2D space, we present a method for studying
the visibility of vertex displacement in the 3D space. This
method allows us to define a model for computing a JND
profile for 3D meshes. To the best of our knowledge, the
only existing JND-like model for a 3D mesh is the one of
Cheng et al. [38], [39]. However, their goal and approach are
very different from those of our method. Their goal was to
evaluate the visibility of removing a group of vertices from
one level of detail (LOD) to another. To do so, they used a
top-down approach where they assumed that the visibility
of removing vertices is related to the change in distance to
a predefined model skeleton. The limitation of this work is
that the JND depends on the predefined skeleton and is only
applicable for evaluating LOD techniques. By contrast, our
method for computing the JND model is based on a bottom-
up experimental study of the properties of the human visual
system and explicitly takes into account its internal mech-
anisms. The proposed JND model can cope with different
mesh properties (size, density) and different possible usage
of a mesh (illumination, display characteristics).

n1 + n2

(n1 − n2)× (n1 + n2)

α

n1 − n2

l
θ

n2

φ

n1

Fig. 2. The contrast between adjacent faces is computed using the angle
between their normals and the spherical coordinates of the light direction
in the local coordinate system defined by the face normals.

3 LOCAL PERCEPTUAL PROPERTIES AND PSY-
CHOPHYSICAL EXPERIMENTS

Existing top-down perceptual methods use surface rough-
ness [20], [21], surface curvature [23], [24], dihedral angle
[25] and face normal [40] as perceptually-relevant features
of a 3D mesh. In this section we define new local perceptual
properties for 3D meshes (i.e., local contrast and spatial fre-
quency) that are appropriate for a bottom-up evaluation of
vertex displacement visibility. These perceptual properties
allow us to study the effects of the contrast sensitivity and
the contrast masking in the 3D setting. In the following,
we start by explaining how the local contrast (Section 3.1)
and the local spatial frequency (Section 3.2) are evaluated
on a 3D mesh. We then present a series of psychophysical
experiments that were conducted to measure the detection
threshold (Section 3.3). In this study we consider 3D meshes
that are rendered with a flat shading algorithm. We also
limit our study to diffuse surfaces illuminated by a white
directional light source.

3.1 Local Contrast Estimation
As explained above, contrast is the measure of difference of
luminance. In the case of a flat-shaded rendering, each face
of the 3D mesh is attributed a luminance value proportional
to the cosine of the angle between its normal and the light
direction. The luminance of a face is given by:

L = max (l · n, 0) , (1)

where n is the unit face normal and l is the light direction.
The Michelson contrast between two adjacent faces can then
be defined by:

c =
‖ L1 − L2 ‖
L1 + L2

=
‖ max (l · n1, 0)−max (l · n2, 0) ‖

max (l · n1, 0) + max (l · n2, 0)
,

(2)
where n1 and n2 are the normals of the two adjacent
faces. Under the circumstances where the inner products
between the light direction and the two face normals are
both positive, the above equation yields to the following
equation:

c =‖ cosα× tan θ × tan
φ

2
‖, (3)

where α and θ are the spherical coordinates of the light
direction in the local coordinate system defined by n1−n2,
n1 + n2 and their outer product (see Fig. 2). φ is the angle
between the normals of the two faces.
Equation (3) shows how the contrast is affected by surface
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ω = 1◦

dobs

dview
ds

Fig. 3. The spatial frequency of a visual stimulus depends on the
observer’s distance (dobs) to the screen and the view distance (dview)
of the virtual camera to the 3D model.

geometry and the scene illumination. The term tan φ
2 indi-

cates the impact of surface geometry on the local contrast.
On one hand, if the surface is locally smooth (φ ≈ 0◦),
then the local contrast is minimal. On the other hand, if
the surface is locally rough (φ� 0◦), then the local contrast
tends to be high. In addition, the term cosα×tan θ describes
how the light direction affects the local contrast. A grazing
light direction will maximize the value of the contrast where
θ is close to 90◦ and α is close to 0◦ or 180◦, while a light
direction close to the normal direction (θ ≈ 0◦) makes the
contrast minimal.

3.2 Local Frequency Estimation

Spatial frequency refers to the size of a visual stimulus on
the retina. It is expressed in cycles per degree (cpd) [11].
The spatial frequency is affected by the physical size of the
object and the observer’s distance to the object. In our case,
the visual stimulus is displayed on a screen and consists
of the difference in luminance between a pair of adjacent
faces. The perceived size of this stimulus depends then on
the display’s properties (resolution and size), the observer’s
distance to the display, the position of the model in the
virtual 3D world and the size of the faces (see Fig. 3). As
a consequence, in order to compute the spatial frequency
we first need to evaluate the number of pixels that are
occupied by the pair of adjacent faces. This is achieved by
applying the perspective projection to the opposing vertices
of the pair of adjacent faces. We then convert the computed
number of pixels to cpd using the following approximation:

f =
ds

npx/ppcm
=

2dobs × tan 1
2
π

180

npx/ppcm
≈ dobs
npx/ppcm

× π

180
,

(4)
where ds is the spread of 1 cpd on the screen (see Fig. 3),
dobs is the observer’s distance to the screen in cm, npx is the
number of pixels occupied by the visual stimulus obtained
by applying perspective projection, and ppcm is the number
of pixels in 1 cm of the screen, computed as:

ppcm =

√
r2
X + r2

Y

s
, (5)

with rX the horizontal resolution in pixels, rY the vertical
one and s the diagonal length of the screen in cm. npx/ppcm
represents the size of the displayed stimulus in cm. The
density of the 3D mesh is related to the size of its faces.
This implies that a dense mesh will display high frequency
visual stimuli while a coarse mesh will show low frequency
ones under the same observation condition.

3.3 Threshold Measurement
Having defined the local contrast and spatial frequency on
the 3D mesh, we now explain how to measure the local
contrast threshold required to detect a change in the mesh.

3.3.1 Contrast Sensitivity Function
As detailed above, the contrast sensitivity function describes
the human visual system’s ability to detect contrast at dif-
ferent frequencies. The threshold given by the CSF refers to
the amount of contrast required to distinguish a stimulus
from its uniform surrounding (surrounding contrast is 0).

Fig. 4. Visual stimulus to measure the contrast sensitivity. Left: the
reference plane. Right: a regular plane where a vertex is displaced.

Stimulus. In order to be able to measure the CSF in the
3D setting, the natural visual stimulus consists of a vertex
displaced from the surface of a regular plane whose contrast
is 0 (Fig. 4). The displacement of the vertex alters the normal
of the adjacent faces and thus changes the contrast. In order
to measure the threshold of different frequencies we change
the density of the plane, which alters the size of its faces. The
threshold is measured for 8 spatial frequencies (1.12, 2, 2.83,
4, 5.66, 8, 11.30 and 16 cpd, also considered in the Modelfest
project [17]). The plane is tilted by 20◦ to give the observer
a 3D feel.
Experimental setup. Experiments took place in a laboratory
environment. The stimuli were displayed on an Asus 23-
inch display in a low illuminated room. Screen resolution
was 1920×1080. The stimuli were observed from a distance
of 1 m, which allowed us to measure the threshold for
frequencies between 1 and 16 cpd.
Method. Two planes were displayed side by side on the
screen, one of which exhibits a displayed vertex in its central
area. The participants were then asked to answer by Yes
or No whether they can see any difference between the
displayed planes. According to our experience, this method
is faster and less tiring for inexperienced subjects than 2AFC
methods. We used the QUEST procedure [41] with a fixed
number of trials (20 trials) to find the threshold. Each par-
ticipant repeated the experience 4 times each on a different
day. An additional ”dummy” frequency, whose data were
not taken into account, was included at the beginning of
each session to stabilize the subject’s answers. In order to
avoid any bias, frequency order was randomized for each
observer in each session. No user interaction was allowed.
Participants. 5 subjects (3 males and 2 females) participated
in our experiments. All had normal or corrected-to-normal
vision and were 22 to 26 years old. One of the participants
was experienced in perceptual subjective evaluations and
the other 4 were inexperienced.
Results. The results of this experiment are shown in Fig. 5.
The displacement of a vertex causes a variation in contrast
for multiple face pairs. We save the maximum contrast be-
tween the affected face pairs. The left panel of Fig. 5 plots the
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Fig. 5. Left: plot of the mean sensitivity for each observer over each fre-
quency. Right: plot of the subjects’ mean sensitivity over each frequency
fitted using Manos and Sakrison’s mathematical model.

mean sensitivity for each observer over each frequency. The
plot shows a high consistency between the participants: All
of them exhibit a peak in sensitivity at 2 cpd and the drop
off in sensitivity on either side of the peak is similar for all
participants. The right panel of Fig. 5 shows the subjects’
mean sensitivity over each frequency, fitted using Mannos
and Sakrison’s mathematical model [42] that is defined by:

csf(f) =

(
1− a+

f

f0

)
e−f

p

, (6)

with a = −15.13, f0 = 0.0096 and p = 0.64. The fit
predicts a peak in sensitivity at around 2 cpd that drops
rapidly at high frequencies. At low frequencies the drop in
sensitivity is much slower that the one measured with a
2D contrast grating [15], [17]. This is due to the aperiodic
nature of the visual stimulus [15]. Equation (6) shows the
relation between the density of a mesh and the visibility of a
local contrast alteration. As the density increases from a very
low value, it would be slightly easier for the human visual
system to notice the local contrast alteration on the mesh’s
surface until it reaches a certain limit (around 2 cpd) beyond
which it would be harder to detect contrast alteration as the
density increases.

3.3.2 Contrast Masking
Contrast masking refers to the ability of the human visual
system to discriminate between two visible visual stimuli
(a target and a mask). Since the visibility of a visual stimu-
lus depends on its spatial frequency, the contrast masking
threshold is different at each frequency. However, if we nor-
malize the threshold values by the mask’s CSF value, then
the resulting threshold will be independent of the stimulus’s
spatial frequency [31]. Therefore, measuring the masking
effect can be done by only changing the contrast value of a
mask signal without the need to pay too much attention to
its spatial frequency. Nevertheless, in our preliminary tests,
we measured the normalized contrast masking effects for 3
different frequencies and found that the results were indeed
the same (as stated in [31]), showing that measuring the
contrast masking effect can be done independently from the
spatial frequency of the visual stimulus.
Stimulus and method. In order to be able to measure

Fig. 6. Visual stimulus for measuring contrast masking. Left: a sphere
approximated by an icosahedron subdivided 3 times from which a vertex
is displaced. Right: the reference sphere.

the threshold relative to the contrast masking effect, the
visual stimulus needs to exhibit a visible initial contrast (i.e.,
above the CSF value). We then increase the initial contrast
and measure the value needed to notice that change. In
other words, if c is the initial contrast (mask signal) and
c′ is the increased value, we measure ∆c = c′ − c (target
signal) needed to discriminate between c and c′. Similarly to
the method used for measuring the CSF, two models were
displayed on the screen and the participants were supposed
to decide whether they saw the difference between the two
objects or not. The stimulus consists of a vertex displaced
from a sphere approximated by a subdivided icosahedron
(Fig. 6). The icosahedron is subdivided 3 times, which makes
the contrast between two adjacent faces (stimulus of about 2
cpd) visible for an observer. This initial contrast represents
the mask signal. Varying the light direction modifies the
value of the initial contrast between two adjacent faces.
We measured the threshold relative to 7 mask contrasts
that were log-linearly spaced from 0.6 to 4 times the CSF
threshold.
Experimental setup. The same experimental setup and the
same method than for the CSF measurement experiment
previously described have been used. The same 5 subjects
also participated in the contrast masking experiments.
Results. The results of this experiment are shown in Fig. 7.
The left panel plots for every participant the mean normal-
ized threshold over the normalized contrast mask. For mask
contrasts below the visibility threshold (normalized contrast
mask lower than 1), the measured normalized threshold
is close to 1. This indicates that the measured threshold
refers to the one given by the CSF and that no masking has
occurred. For mask contrasts above the visibility threshold,
the measured normalized threshold is above the one given
by CSF and lies close to the asymptotic region with a
slope near 0.7. The right panel of Fig. 7 shows the subjects’
mean threshold over each mask contrast fitted using Daly’s
mathematical masking model [31] that is defined by:

masking(c̃) =
(

1 + (k1 × (k2 × c̃)s)
b
)1/b

, (7)

with c̃ the normalized threshold, and the fitted values
k1 = 0.0078, k2 = 88.29, s = 1.00 and b = 4.207. The
fit exhibits the two asymptotic regions that characterize the
contrast masking effect with a transition between the two
regions at the CSF visibility threshold. To some extent, Eq.
(7) shows how an increase in surface roughness can hide
local geometric distortions on the mesh’s surface. A rough
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Fig. 7. Left: plot of the normalized mean threshold for each observer over
normalized mask contrast. Right: plot of the subjects’ mean normalized
threshold over each normalized mask contrast, fitted using Daly’s math-
ematical contrast masking model.

surface in general exhibits more contrast and thus is more
likely to be able to mask the visibility of a local distortion.

3.3.3 Contrast Visibility Threshold
Having measured the effects of the contrast sensitivity
function and the contrast masking, we can now compute
the threshold T needed to detect the difference between
a pair of adjacent faces. To do so, we first evaluate the
spatial frequency f and the local contrast c of the initial
face pair (Eqs. (4) and (3)). We then normalize the computed
contrast by the corresponding CSF value (Eq. (6)) and finally
obtain the threshold using the masking model (Eq. (7)). The
threshold T is expressed using the following equation:

T =
masking(c× csf(f))

csf(f)
, (8)

where c is the initial local contrast and f is the corre-
sponding spatial frequency. Accordingly, if a local geometric
distortion causes a change in contrast that is higher than the
computed threshold then it is classified as visible. In the
next section we explain how the JND profile for a 3D mesh
is obtained using the computed threshold T .

4 JUST NOTICEABLE DISTORTION PROFILE

The JND refers to the threshold beyond which a change in
contrast becomes visible for the average observer. The JND
profile that we propose in this section allows us to get this
threshold for an arbitrary displacement direction.

4.1 Overview

In the 3D setting, the JND is evaluated by computing the
maximum displacement each vertex can tolerate. On one
hand, a vertex displacement in a given direction will prob-
ably cause a change in the normals of adjacent faces and a
change in local density. On the other hand, we showed in
Section 3 that the face normals and the local density affect
the contrast and the spatial frequency, respectively. This
means that the displacement of a vertex probably alters the
local perceptual properties. The visibility of this alteration

v′1
v1

v3
v4

v2dir

v5

Fig. 8. The displacement of a vertex v1 in a direction dir causes a
change in contrast and spatial frequency for surrounding pairs of faces
sharing a common edge in 1-ring and 2-ring of the displaced vertex.

can be evaluated using the perceptual models presented in
Eqs. (6), (7) and (8). In this section, we present a numerical
method for computing the maximum displacement beyond
which the local distortion can be detected by an average
human observer.

4.2 Visibility of Adjacent Face Pairs

The displacement of a vertex alters the local perceptual
properties, i.e., contrast and spatial frequency, of the sur-
rounding pairs of adjacent faces (Fig. 8). In order to get the
maximum displacement a vertex can tolerate, we need to
evaluate the perceptual effect of any displacement on the
set of its surrounding pairs of faces. In the following, we
show how the visibility of a change in local perceptual
property is evaluated. To this end, we first compute the
change in contrast and spatial frequency and then evaluate
the probability of detecting this change.

4.2.1 Change in Contrast

The displacement of a vertex v1 in a direction dir causes
the normals of its adjacent faces to change. This change in
normals causes a variation in contrast for the surrounding
pairs of adjacent faces. Therefore, evaluating the change in
contrast requires evaluating the change in normal direction
of these adjacent faces. For example, having two adjacent
faces {v1, v3, v2} and {v2, v3, v4} (see Fig. 8) with normals
n1 and n2 respectively, we express the new normal n′1 after
displacing v1 in a direction dir with a magnitude d by:

ñ′1 = (v1 − v2)× (v3 − v2) + d · (dir× (v3 − v2)) ,

n′1 =
ñ′1
‖ ñ′1 ‖

.
(9)

Since none of the vertices of the second face {v2, v3, v4}
is displaced, its normal direction does not change. For the
cases where the displacement of v1 causes changes in the
normal directions of both faces (e.g., the pair of adjacent
faces {v1, v3, v2} and {v1, v5, v3} in Fig. 8), their new nor-
mals are evaluated similarly, according to an adaptation of
Eq. (9). The new contrast between adjacent faces is then
evaluated using Eq. (3), with the new face normal(s).

4.2.2 Change in Spatial Frequency

Moving the vertex v1 in the direction dir may cause a
change in spatial frequency as well, because the size of the
adjacent face pairs might be altered. Computing the new
spatial frequency requires evaluating the distance between
the opposing vertices v′1 and v4, v′1 being the position of
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2D representation

v4

v1

v4

v1

v′1
v′1

v3

v2

Fig. 9. When the displacement of a vertex alters the convexity of two
adjacent faces, the contrast might remain the same as long as the
angle between the light direction (yellow arrow) and the face normal
(red arrow) does not change.

v1 after its displacement. The new distance between the
opposing vertices is expressed as:

‖ v4 − v′1 ‖=
√
‖ v4 − v1 ‖2 +d2 − 2d× (v4 − v′1) · dir.

(10)
To obtain the spatial frequency in cpd, we apply the per-
spective projection to (v4 − v′1) in order to get the number
of pixels that the face pair occupies on the screen and then
apply Eq. (4).

4.2.3 Detection Probability
Having expressed how the displacement of a vertex in an
arbitrary direction affects the local contrast and the spatial
frequency of the surrounding pairs of adjacent faces, we
now explain how to determine whether this change is visible
or not. To do so, we compute the probability of detecting
this change. The method for computing this probability is
inspired by Daly’s VDP [31].
The so-called psychometric function describes the probability
for the human visual system to detect a visual stimulus. A
common choice for the psychometric function is given by
the following equation:

p(∆c) = 1− e−(∆c/T )β , (11)

where T is the threshold as computed in Eq. (8) and β
is the slope of the psychometric function. β is set to 3.5
across many psychophysical experiments and perceptual
studies [43]. Using the data collected from our psychophys-
ical experiments, we evaluated the detection probability
for contrasts near the measured threshold. The computed
probabilities are fitted to the psychometric function and we
obtain β of about 3.6. This fitted value will be used in our
calculation. ∆c is the change in contrast which corresponds
to contrast difference before and after the displacement of a
vertex and is evaluated as:

∆c =

{
‖ c′ − c ‖ if sgn(n1 · (v4 − v3)) does not change,
c′ + c if sgn(n1 · (v4 − v3)) changes,

(12)
where c and c′ are respectively the contrast of the adjacent
faces before and after the vertex displacement. We test
whether the vertex displacement causes a switch in sign of
n1 · (v4 − v3), which implies a change in convexity between
the adjacent faces. This allows us to detect the ambiguous
case as shown in Fig. 9, where the displacement does not
induce a change in the ”conventional” contrast between the
adjacent faces.

4.3 Vertex Displacement Threshold

In order to compute the threshold beyond which the dis-
placement of a vertex v in a direction dir is visible, we
proceed by the following steps. First, a list of the adjacent
pairs of faces that are affected by the displacement of v
is built. For each pair of faces, we start by computing
their original perceptual properties and the corresponding
contrast threshold using Eqs. (3), (4) and (8). In particular,
the display and observation parameters are the inputs of
the JND algorithm, therefore the proposed JND profile can
be adaptively computed for different viewing distances and
display sizes. Then we gradually increase the displacement
magnitude of v and compute the change in frequency and
contrast (Eqs. (10) and (9)) at each step. This allows us to
evaluate the probability of detecting the vertex displacement
(Eq. (11)) for each of the adjacent face pairs at different
displacement steps. Note that when the displacement causes
a change in spatial frequencies, we take into account the
most sensitive frequency that results in a higher detec-
tion probability. Finally, the threshold is attributed to the
displacement magnitude where the detection probability
reaches a certain threshold for at least one of the face pairs.
In practice we set the probability threshold at 0.95. To better
understand this process, let us consider the two vertices v1

and v2 in Fig 10. Both vertices are displaced in their normal
direction. The first vertex v1 is situated on a rough region
(initial contrast of all surrounding pairs of adjacent faces
> CSF threshold) and the second vertex v2 on a smooth
region (initial contrast < CSF threshold). The displacement
of v1 and v2 barely affects the spatial frequency of the
surrounding face pairs as can be seen in the left plots.
The middle plots show how displacing v1 and v2 in the
normal direction affects the local contrast. The probability of
detecting this change in contrast is shown in the right plots.
These plots show that v2 is more sensitive and can tolerate
less displacement than v1. This is due to the different initial
contrasts of the two vertices. The initial contrasts around v1

is above the CSF threshold. This implies that the visibility
threshold is increased due to the masking effect, which
explains the slow increase in detection probability. For v2 all
initial contrasts are below the CSF threshold. No masking
should occur which means that once the contrast is above
the CSF threshold the displacement should be visible. This is
exactly what we observe. When the contrast of ”face pair 4”
reaches the CSF level then the detection probability becomes
close to 1.

In the description above, we explain how to compute
the displacement threshold by brute-force incremental step
searching only for clarity purposes. In practice, we instead
use a half-interval search to find the threshold (as described
in Algorithm 1), which is simple yet very fast and accurate.
In our tests we have set the visibility threshold th to 0.95,
the precision p to 0.005 and the parameter very high value
to 1/10th of the mesh bounding box. In order to compute
the value of visibility, we call the psychometric function
(Eq. (11)) which again requires the evaluation of the change
of contrast (Eq. (12)) and the contrast threshold (Eq. (8)).

Computing the displacement threshold requires an esti-
mation of the spatial frequency and the local contrast. This
makes the obtained threshold dependent on the display
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Fig. 10. The evolution of the local perceptual properties and visibility, for two displaced vertices v1 and v2 on the Bimba model. Left plots show
the change in frequency, middle ones show the change in contrast and the right ones show the detection probability, of different pairs of affected
adjacent faces of the two vertices. Note that some of the faces have the same spatial frequency, so the color curves overlap in the left plots.

Algorithm 1: Half-interval search algorithm.
Data: v: vertex, dir: noise direction, l: light direction, th:

visibility threshold, p: precision
Result: dist: displacement threshold

min = 0;
max = very high value;
dist = max;
visibility = compute visibility(v, dir, l, dist);
while || visibility − th || > p do

dist = (max - min) / 2 + min;
visibility = compute visibility(v, dir, l, dist);
if visibility > th then

max = dist;
else

min = dist;
end

end

parameters (size and resolution), the observer’s distance
to the display and scene’s illumination. However, in an
interactive setting where the light source is fixed relative
to the viewpoint, the light direction varies with respect
to the 3D mesh. It is therefore important to compute the
displacement threshold independently of the light direction.

We hereby propose a light independent mode for com-
puting the displacement threshold. To do so, we simply
compute the threshold according to multiple light directions
and then choose the smallest one. Since the contrast between
two faces is defined only when the dot product between the
light direction and the normals is positive, then we consider
that the possible light directions are located and sampled
on the local half sphere around the displaced vertex. In
practice, it is not necessary to densely sample the entire
half sphere; Eq. (3) implies that if the light direction is close
to the normal, the contrast varies slowly. This means that
the displacement threshold is bigger for light directions that
are close to the normal direction than for light directions
close to the tangent direction. This suggests that it would

(a) (b) (c)0

10−3

Fig. 11. The JND profile for the Bimba model under different circum-
stances. (a) The threshold is computed with respect to a displacement in
the normal direction of each vertex in a light independent mode. (b) The
threshold is computed with respect to a displacement in the tangent
direction in a light independent mode. (c) The threshold is computed
with respect to a displacement in the normal direction of each vertex
with a light fixed in front of the model.

only be necessary to sample the half sphere near the tangent
direction.

In order to obtain the JND profile of a 3D mesh, we
compute for each of the vertices the displacement threshold
relative to a certain direction. Figure 11 shows the JND pro-
file for a mesh under different circumstances. Figure 11.(a)
displays the JND profile relative to a displacement in the
normal direction in a light independent mode. Due to the
effects of contrast masking, the rough region of the model
can tolerate more noise than the smooth part. This is not the
case when the JND is computed relative to a displacement in
the tangent direction (Fig. 11.(b)) where the smooth part can
tolerate more displacement. This is because a displacement
in the tangent direction for a smooth vertex will barely
alter the normal of the surrounding faces and thus the local
contrast will not be affected by the displacement. Figure
11.(c) shows the JND profile relative to a displacement in the
normal direction when the light source is fixed. As expected,
we can see that the obtained threshold is maximal when the
surface normals are in the same direction of the light.
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5 SUBJECTIVE VALIDATION

In order to test the performance of a Just Noticeable Distor-
tion profile, it is common in the image or video JND context
to perform a subjective experiment [44], [45], [46] where a
JND modulated random noise is added to the images or
videos. The participants should then rate the visibility of
the displayed noise. A JND model should be able to inject
noise into the image or video while keeping it invisible; the
best JND model being the one that is able to add the largest
amount of invisible noise. We have conducted a subjective
experiment where we have tested the performance of the
proposed JND model. We compared the visibility of noise
on altered 3D meshes, which were obtained by adding three
different types of noise to an initial mesh. The three types of
noise are:

• uniform random noise without any modulation;
• random noise modulated by the surface roughness;
• random noise modulated by the proposed JND

model.

Surface roughness is an important candidate to test our JND
model against since it is accepted in the computer graphics
community that noise is less visible in rough regions [19].
We also have reached this conclusion when the noise is in
the normal direction (Fig. 11.(a)).

5.1 Mesh Alteration
We injected noise into 3D meshes according to the following
equation:

v
′

i = vi + rnd×M (vi)× diri, (13)

where vi is the ith vertex of the initial mesh and v
′

i is the
corresponding noisy vertex. dir is the noise direction. rnd
is a random value equal to either +1 or −1 and M (vi)
represents the magnitude of the noise for vi. It is defined
as:

M (vi) =


βunif uniform noise,
βrough × lr (vi) roughness modulated noise,
βjnd × jnd (vi) JND modulated noise,

(14)
where βunif , βrough and βjnd regulate the global noise
energy for each of the noise injection methods. lr (vi) is the
local surface roughness as defined in [21] and jnd (vi) is the
JND value computed as explained in Section 4.3. In order to
allow user interaction during the experiment, the JND value
was computed independently from any light direction.
For the subjective experiments we injected noises of two
different energy levels: βjnd = 1 and βjnd = 2. These
levels correspond to a near-threshold noise and to a supra-
threshold noise, respectively. For βjnd = 1 the injected noise
is supposed to be difficult to notice while for βjnd = 2 the
noise is expected to be visible. We then fix βunif and βrough
such that for the meshes altered using our JND model, the
maximum root mean square error (MRMS) [1], [2], a widely
used purely geometric distance, is the biggest for each noise
level. Indeed, the objective here is to show that our JND
model is able to inject the highest amount of noise onto the
mesh among the three methods, while producing the least
visible one. In addition, we tested the performance of the
JND model for noise in a random direction for each vertex

and that in the normal direction for each vertex. To see the
effects of light direction we ran the experiment twice: once
with the light source in front of the model and another time
with the light on top left of the model.

5.2 Method
Procedure. The subjective experiment followed the “ad-
jectival categorical judgment method” [47]. This procedure
consists of displaying two 3D meshes side by side, the
reference on the left and the noisy one on the right. The
participants were asked to rate the visibility of the noise on
a discrete scale from 0 to 5, 0 being the score attributed
when the noise cannot be seen and 5 when the noise is
clearly visible. 5 ”dummy” models were included at the
beginning of each session to stabilize subjective scores. The
models were presented in a randomized order. To avoid
any memory-based bias, two meshes derived from the same
reference model were never displayed consecutively.
Settings. The experiment was conducted in a low illumi-
nated environment. We used a 23-inch Asus screen with
a 1920 × 1080 resolution to display the 3D models. The
participants viewed the models from a distance of 50 cm.
During the experiment, the two displayed meshes had a
synchronized viewpoint and subjects could freely rotate
around the displayed meshes. To encourage close exami-
nation of the displayed mesh, no score could be registered
before 10 seconds of interaction occur. The initial viewpoint
was manually set for all models. The light source was fixed
with reference to the camera position. A front and a top-left
light directions were used.
Participants. 12 subjects (7 females and 5 males) partic-
ipated in these experiments. All of them had normal or
corrected-to-normal vision and were between the age of 20
and 29.

5.3 Results
After collecting the subjective scores, we have computed
the mean score over each of the noise types. ”JND 1” and
”JND 2” refer to the models obtained by modulating the
random noise with our JND model for near-threshold and
supra-threshold levels, respectively. ”Rough 1” and ”Rough
2” refer to the ones obtained using the surface roughness
measure and ”Unif 1” and ”Unif 2” to the ones with uniform
random noise. Figure 12 displays the results of the subjective
experiments. Plots (a) to (c) present the results for the noise
in the normal direction and plots (d) to (e) the results for
the noise in a random direction. Figures 12.(a) and 12.(d)
show that the noise on the ”JND 1” models was indeed
difficult to detect as the mean subjective score is about 0.45.
Interestingly, the participants rated ”Unif 1” and ”Rough
1” models similarly to ”JND 2” which refers to the supra-
threshold noise level models that contain twice the noise
of ”Unif 1” and ”Rough 1”. Plots (b) and (e) also show
that ”JND 1” models were perceived almost identically both
under front and top-left illumination conditions. This is not
the case for ”Unif 1” and ”Rough 1” models where the
grazing light direction of the top-left illumination made the
noise more apparent. It is also important to note that the
visibility of the noise for ”JND 1” models was identical for
all models. This is not the case for ”Rough 1” and ”Unif
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Fig. 12. Mean subjective score values versus MRMS distance values. Plots (a) and (d) present, for different noise injections, the mean subjective
scores over all test models and the two illumination settings. Plots (b) and (e) show the difference in mean subjective scores between the
experiments in the two illumination settings. Plots (c) and (f) compare the mean subjective scores for the different models used in the experiments.

Original (a) JND 1 (b) Rough 1

Fig. 13. The proposed JND model takes into account the density of mesh
when computing the visibility threshold. When adding random noise
modulated by the JND profile, the noise will be added to the coarse
regions and avoid the dense area where the noise will be easily visible
(a). This is not the case when adding random noise modulated by the
surface roughness (b).

1” where the visibility of noise varied a lot for different
models (see Figs. 12.(c) and 12.(f)). This is mainly due to
the difference in mesh density between the models; high
density models are in general more sensitive to noise than
low density ones.
The main advantage of the proposed JND model over the
surface roughness measures is that it adapts to the mesh
characteristics (density, size), noise direction and scene il-
lumination. Figure 13 illustrates the importance of mesh
density. The Horse is a model with mostly smooth regions,
the rough regions are packed in the head’s features. In
addition, the head is densely sampled while the body is
coarsely sampled. The JND model avoids adding noise in
the dense head and takes advantage of the coarse body,
while surface roughness measures are not able to detect the
difference in sampling. The noise is thus rather injected in
the dense head features, which makes it visible.

These results show that the proposed JND model is
indeed able to add the largest amount of invisible noise onto
the mesh surface among the three methods. Furthermore,
the proposed JND model can accurately predict the visibility
threshold for 3D meshes, taking into account the noise di-
rection, the mesh characteristics and the scene illumination.
However, the proposed model cannot accurately describe
how the supra-threshold noise visibility (or annoyance) is
perceived since it has not been designed for this purpose;
the noise was perceived differently for each model in ”JND
2” (Figs. 12.(c) and (f)).

v1

v2

v′1

v′2

A

B
vn

Fig. 14. If v1v2 and v′
1v

′
2 are in opposite directions, then the edge

(v1, v2) can be collapsed to vn without causing any visible distortion.

6 APPLICATIONS

The JND models of 2D images and videos have been
used extensively throughout the literature to guide and
perceptually optimize several image and video processing
algorithms [6], [7], [8]. In this section, we show how the pro-
posed 3D JND profile can be integrated to mesh processing
algorithms. We used the proposed JND profile to guide the
simplification of 3D meshes and to automatically select the
optimal vertex coordinates quantization level.

6.1 JND-Driven Mesh Simplification
The goal of mesh simplification algorithms is to reduce the
number of vertices in a mesh to a certain degree by itera-
tively applying a simplification step (edge collapse or vertex
removal). Mesh simplification is usually used to efficiently
display highly detailed models or to create multiple levels of
details (LOD) of a mesh, so it is required that the simplified
mesh preserves the geometric features of the model as much
as possible. To do so, a simplification cost is assigned to
each of the mesh edges (or vertices), then the simplification
step is applied to the edge (or vertex) with the lowest cost
and finally the costs are updated prior to the next iteration.
Several perceptual methods have been proposed to compute
the simplification cost. However, existing perceptual meth-
ods either carry out the perceptual analysis on the rendered
image [35], [36], [37] or rely on a top-down estimation
of saliency [26], [28], [29]. Moreover, none of the existing
algorithms propose a method to automatically control the
quality of the resulting output; the simplification is usually
carried out until a manually prescribed number of edges or
vertices is reached.
We use our JND model to define both the simplification cost
for each edge and a stopping criterion that automatically
controls the quality of the simplified mesh.
Edge cost. In an edge collapse operation, an edge (v1, v2) is
removed and is replaced by a vertex vn (Fig. 14). This can
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be seen as if the vertices v1 and v2 moved towards the new
vertex vn. Using our JND model we analyze the visibility
of displacing v1 and v2 along the edge (v1, v2). Let A (resp.
B) be a part of (v1, v2) bounded by v1 and v′1 (resp. v2 and
v′2) (see Fig. 14) where v′1 (resp. v′2) is the vertex obtained
by displacing v1 (resp. v2) by exactly the JND value in the
direction of v1v2 (resp. v2v1). This means that replacing v1

(resp. v2) by a vertex belonging to A (resp. B) will not cause
any visible distortion. In order to apply an edge collapse
that is invisible to a human observer, we need to find a
new vertex vn such that vn ∈ A ∩ B. This requires that the
vectors v1v2 and v′1v

′
2 should be in opposite directions so

that A∩B 6= ∅. Otherwise, if v1v2 and v′1v
′
2 are in the same

direction, then we have A ∩ B = ∅, making the distortion
caused by the edge collapse visible. This analysis leads us
to define the simplification cost of an edge by:

c =
v1v2.v

′
1v
′
2

||v1v2||2
. (15)

The value of our simplification cost c varies between [−1, 1].
If c < 0 then the collapse operation does not affect the visual
fidelity of the model. If c > 0 then the edge collapse will be
visible. Figure 15 shows the simplification cost on a cube
where we have injected a random noise on each of its sides.
The simplification cost of the edges belonging to the top side
is below 0 as the injected noise is under the JND threshold.
Vertex placement. Having defined the simplification cost of
an edge, we now should decide how the position of the new
vertex vn is computed. In order to get the ”optimal” position
we have found that minimizing the following quadratic
energy produce very good results:

arg min

{( ||v1vn||
jndv1

)2

+

( ||v2vn||
jndv2

)2
}
, (16)

where jndv1
(resp. jndv2

) is the JND threshold of v1 (resp.
v2) in the direction of v1v2 (resp. v2v1). This yields to:

||v1vn|| = ||v1v2|| ×
jnd2

v1

jnd2
v1

+ jnd2
v2

, (17)

where ||v1vn|| and ||v2vn|| represent respectively the dis-
tances by which v1 and v2 are being displaced. The idea
behind minimizing this quadratic energy is to make the
displacement of v1 and v2 adaptive to their corresponding
JND values.
Stopping criterion. The value of the defined simplification
cost varies between [−1, 1]. For edges with a cost greater
than 0 the collapse operation will be visible. So in order
to have a simplified mesh that is visually similar to the
original version, we collapse all the edges whose cost is
less than or equal to 0. This allows us to define a stop-
ping criterion which consists in stopping the simplification
process once all edges have a simplification cost above 0.
Figure 16 shows a highly dense 3D mesh. The model is
then simplified with the JND-driven simplification method.
The resulting simplified mesh (Fig. 16.(a)) has 80% less
vertices and is visually very similar to the original version.
Removing 5% more vertices beyond the JND level intro-
duces slightly visible distortions to the model (Fig. 16.(b)). In
addition, simplifying the model using Lindstrom and Turk’s
method [48] (edge collapse with a different cost) to the

original simplified

wireframecost map

1

−1

Fig. 15. A random noise of different intensities is injected to different
sides of a dense cube mesh. The noise on the top side is below the
JND threshold. On the right side, the noise is barely visible as it is just
above the JND threshold and on the left side is injected a visible noise.
The JND driven simplification process will keep all of the visible noise
and simplify the top side with noise that is below the visibility threshold.

same number of vertices as the JND-driven simplification
also results in slightly visible distortions (Fig. 16.(c)). The
mesh LOD results of the simplification application can be
found in the supplementary material submitted along with
the manuscript.

6.2 Vertex Coordinates Quantization

Vertex coordinates quantization is an important step in
many mesh processing algorithms, especially compression.
This operation may introduce visible distortion to the orig-
inal mesh. It is thus important to find the optimal quanti-
zation level (in bits per coordinate, bpc), which is different
for each mesh due to differences in geometric complexities
and details. We define the optimal quantization level as the
one with the highest quantization noise energy that remains
visually indistinguishable from the original mesh.

The proposed JND model provides a simple and au-
tomatic way to determine the optimal quantization level
independently of the nature of the mesh. The idea is to
compute a score allowing us to compare the model’s JND
profile to the magnitude of introduced noise. To do so, we
start by computing the displacement vectors as:

dispi = v
′

i − vi, (18)

where v
′

i and vi are the ith vertices of respectively the
distorted mesh and the original one. The direction of dispi
represents the quantization noise direction. We then com-
pute the JND profile of the original mesh with respect to
the computed displacement direction. We finally compute
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(c) Lindstrom and Turk [48] - 48Koriginal - 237K (a) JND-Driven - 48K (b) 45.5K

Fig. 16. (a) The JND-driven mesh simplification process outputs a model that is visually very similar to the original model. (b) Removing 5% more
vertices will introduce slightly visible distortions to the simplified model. (c) The simplified model by using the method of Lindstrom and Turk [48] to
the same number of vertices as the JND-driven simplification. (b) and (c) contain slightly visible distortions, especially on the belly and thighs.

the score as the mean of the ratio between the norm of the
displacement vector and the JND value:

S =
1

n

n∑
i=1

‖ dispi ‖
jnd (vi)

, (19)

where n is the number of vertices in the mesh. This score
allows us to test whether the introduced distortion is visible.
If S < 1, the noise magnitude is globally below the visibility
threshold, which means that the distortion is not visible.
On the other hand if S > 1, the distortion becomes visible
as the noise magnitude is above the visibility threshold.
Figure 17 shows the JND comparison scores versus the
level of coordinates quantization for three different meshes.
According to the defined score the optimal quantization
level is respectively 12, 11 and 10 bpc for the Venus, Head
and Bimba models. These results are consistent with human
observations as shown in Fig. 18. Figure 17 shows also the
FMPD [21] scores versus the level of coordinates quanti-
zation for the three meshes. We cannot define a proper
threshold on the FMPD [21] scores that gives the same
optimal quantization levels for the Venus, Head and Bimba
models. One possible explanation is that the FMPD metric
has difficulties in producing consistent evaluation results on
meshes of different densities and geometric complexities.

7 LIMITATIONS

One of the limitations of the proposed JND model is that it
currently only works for diffuse surface that is illuminated
by a white directional light and rendered with a flat shading
algorithm. This is due to the simplified contrast definition
under that circumstance which is proposed in Section 3.1.
However, the JND threshold is based on the estimation of
visibility which is obtained using low-level proprieties of
human visual system (CSF and contrast masking) and relies
heavily on an estimation of local contrast. This means that
extending the JND model to different types of surfaces and
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Fig. 17. Left: The JND comparison score versus the quantization levels
(in bpc) of three meshes. Right: The FMPD [21] score versus the
quantization levels (in bpc) of the three meshes.

Fig. 18. Quantized meshes with different quantization levels. The middle
mesh corresponds to the optimal quantization level (12, 11 and 10 bpc
for Venus, Head and Bimba respectively). The right mesh corresponds to
a one bit higher than the optimal level while the one on left corresponds
to a one bit lower. (For better comparison between the models please
refer to the electronic version of this manuscript.)
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lights such as specular surfaces and point light illumination
requires a generalization of the definition of contrast under
the corresponding surface and lighting condition, probably
via an appropriate analysis of the rendering algorithm. This
will be the focus of our future work.

Another limitation of the proposed JND model is that
it relies on low-level properties of the human visual sys-
tem such as the contrast sensitivity function and contrast
masking. These low-level properties allow us to predict
whether a distortion is visible or not. If a distortion is
visible, the current JND model cannot accurately predict
to which extent this distortion affects the visual fidelity of
the model. Taking this into consideration requires adding to
the model some higher-level properties of the human visual
system such as entropy masking [49] or the free energy
principle [50]. We think that both of these properties could
be properly defined by analyzing the local contrast of the
surface in a certain neighborhood.

8 CONCLUSION AND FUTURE WORK

In this paper, we have presented a model for computing a
Just Noticeable Distortion (JND) profile for flat-shaded 3D
meshes. The proposed model takes into consideration the
different mesh properties (size, density) and the varying
circumstances of mesh usage (display parameters, light
direction, viewing distance). Our JND profile is based on
an experimental study of the local perceptual properties of
the human visual system, i.e., the local contrast and the
spatial frequency. These perceptual properties have been
defined for 3D meshes. They were then used to experimen-
tally measure the effects of the contrast sensitivity function
and contrast masking when the displacement of a vertex
occurs. The results of these experiments have been utilized
to evaluate the probability of detecting the displacement
of a vertex in an arbitrary direction, which allows us to
define a JND profile for flat-shaded 3D meshes. We have
tested the performance of the proposed JND model via a
subjective experiment where the participants had to rate the
visibility of JND modulated random noise added to a series
of models. The results show that our model can accurately
predict the visibility threshold of vertex noise.

We have used the proposed JND model to guide the
simplification of 3D meshes. The JND-driven simplification
method relies on a perceptual simplification cost assigned to
each edge, and it can automatically stop the simplification
process in order to obtain a visually very similar simplified
mesh. Finally, we have proposed a method to automatically
obtain the optimal vertex coordinates quantization level.

Our future work will first focus on generalizing the con-
trast definition of 3D meshes. This will broaden the usage of
the proposed JND model to include smooth shaded surface
and different types of illumination. We will also work to
add higher aspects of the human visual system to the JND,
which will allow us to predict the visibility/annoyance of
supra-threshold geometric distortions. Interestingly, there
have also been several studies on the perception of dynamic
3D meshes recently [51], [52]. By incorporating the dynamic
aspects of the human visual system we may be able to
extend the JND model to dynamic meshes.
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Just Noticeable Distortion Profile for Flat-Shaded 3D Mesh Surfaces

Georges Nader, Kai Wang, Franck Hétroy-Wheeler, and Florent Dupont

This Supplementary Material is organized as follows. Section 1 presents the results of additional psy-
chophysical experiments that were carried out in order to verify the accuracy and robustness of the measured
thresholds obtained by our original experiments. Section 2 provides some details about the accuracy and
performance of computing the JND threshold, especially for the light independent mode. Section 3 presents
an additional subjective experiment that validates the proposed JND profile. In Section 4 we give some
details and show additional results for the mesh simplification application, including the generation of mesh
levels of details (LODs) and a subjective validation. Section 5 provides some comparison results with mesh
perceptual quality metrics for the application of optimal vertex coordinates quantization, as well as an addi-
tional subjective validation. Finally, in Section 6 we discuss the difference between the proposed JND model
and mesh saliency measures.

1 Psychophysical Experiments

We have conducted additional psychophysical experiments in order to make sure that our previous contrast
sensitivity function (CSF) and contrast masking measurements were accurate and robust. The results of this
new set of experiments show that the previous measurements are indeed accurate and stable. We present
the results of the new experiments in this Supplementary Material and not in the manuscript because we
have validated the JND profile in Section 5 of the manuscript using the models fitted by the data from the
first set of experiments. In fact, it would be quite time consuming to redo the subjective validation using
the new models, and the corresponding results would be very close to the ones presented in the manuscript.
Therefore, we would like to present in the manuscript the original results, which however are proven to be
accurate and stable.

1.1 Experimental Procedure

We used the same experimental procedure as described in Section 3 of the manuscript. We display two models
on the screen one of which has a displaced vertex. The subjects have to answer by “yes” or “no” whether
they see a difference between the two models on the screen. The magnitude of the vertex displacement is
then regulated using the QUEST procedure [WP83]. 5 new subjects participated in the experiment. None
of them was a participant in any of our previous experiments.

1.2 Results
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Figure 1: Plot of the fitted contrast sensitivity function and contrast masking models for the data obtained
by the old and new experiments.
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Figure 1 shows the fitted models from the old and new sets of experiments. The new fit of the CSF model
is obtained using Eq. (6) of the manuscript with a = −13.59, f = 0.001 and p = 0.62 while the old fit
was computed with a = −15.13, f = 0.0096 and p = 0.64. For the contrast masking model, the new fit is
obtained from Eq. (7) of the manuscript with k1 = 0.006, k2 = 90.66, s = 1.05 and b = 4.53 while the old
fit was computed with k1 = 0.0078, k2 = 88.29, s = 1.00 and b = 4.207.

2 Light Independent JND and Algorithm Speed

Here we present some details that would help readers efficiently implement the proposed JND model in
particular for the light independent mode (indeed we plan to freely deliver a reference implementation in the
near future). We will also report some theoretical and practical results concerning execution time of the JND
computation.

2.1 Threshold Accuracy

v

local light direction JND threshold
(α, θ)

(10, 85) 0.00195312
(10, 55) 0.003125
(10, 25) 0.0078125
(100, 85) 0.0015625
(100, 55) 0.00390625
(100, 25) 0.0069725
(190, 85) 0.00107422
(190, 55) 0.00234375
(190, 25) 0.0046875
(280, 85) 0.00107422
(280, 55) 0.0021875
(280, 25) 0.004375

(0, 0) 0.015625

Figure 2: The JND threshold of a vertex v computed for different light directions.

The algorithm presented in Section 4.3 of the paper computes the JND threshold for a given light direc-
tion. However, in an interactive setting where the light source is fixed relative to the viewpoint, the light
direction varies with respect to the 3D mesh. It is therefore important to compute the displacement threshold
independently of the light direction.
To do so, we compute the threshold according to multiple light directions and then choose the smallest one.
The light independent threshold can then be seen as the one corresponding to the worst possible illumination
(i.e., the light direction that makes distortions the most visible). The set of all possible light directions
belongs to the sphere around a vertex. However, the contrast between two faces is only defined when the
dot product between the light direction and the normals is positive. This means that the set of all possible
light can be reduced to the local half sphere in the direction of the unit normal. In practice, we do not
need to densely sample all the half sphere. Figure 2 shows the JND threshold obtained from different light
directions belonging to the half sphere of a vertex v. We notice that as the light direction approaches the
base of the half sphere, the threshold gets smaller. This implies that the worst possible illumination is at the
most of time found near the base of the half sphere. This observation can also be deduced from Eq. (3) of the
manuscript. Through our testing we notice that it is actually not necessary to densely sample the half sphere
in order to obtain an accurate solution. It is observed that the algorithm begins to converge to an accurate
JND value with 8 samples as it can be seen in Fig. 3, where the normalized root mean square error (RMSE)
is computed with regard to the JND profile obtained with 64 light direction samples (shown in the rightmost
of Fig. 3). In practice, in order to obtain the results presented in Sections 4 and 5 of the manuscript, we
have used the 12-points sampling, as shown in Fig. 2 (excluding the point (0, 0)), which ensures a very good
trade-off between threshold accuracy and algorithm speed.
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Figure 3: The effect of the number of light samples on the JND computation accuracy. The illustrated JND
profiles are computed for noise in the normal direction for each vertex.

2.2 Algorithm Complexity

A theoretical analysis of the proposed JND algorithm shows that the complexity of computing the light
independent JND for one vertex is equivalent to:

O

(
L× log

(
xmax

xprecision

))
, (1)

where L is the number of light samples and xmax and xprecision are respectively the upper displacement
bound and the precision used in the half-interval search algorithm (Algorithm 1 of the paper).
This means that the complexity for computing the JND profile of a mesh is :

O

(
V × L× log

(
xmax

xprecision

))
, (2)

where V is the number of vertices. This shows that as the number of vertices increases the execution time
should increase in a linear way at a rate relative to the number of light samples and the precision of the
search procedure.

2.3 Execution Time
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Figure 4: JND profile execution time.

Having adopted a half-interval search algorithm makes finding the JND threshold a very efficient operation.
On average computing the JND threshold for a vertex in the light independent mode takes about 7 × 10−4

s. We have used an HP EliteBook 8570w with an i7-37400QM cpu (4 cores) and 16GB of RAM in our
computation.
When the number of vertices increases, we have observed that the execution time increases approximately
in a linear way (see Fig. 4, also analyzed in Section 2.2 of this Supplementary Material). In addition, since
the JND threshold of a vertex is independent from the threshold of other vertices then the JND profile on a
mesh can be computed in a parallel way. Using OpenMP, the algorithm performs about three to five times
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faster. For a model with 237K vertices, the JND profile took about 52 seconds to compute. Indeed, the
vertex displacement threshold searching consumes the most part of the computation time. However, with
the simple but efficient half-interval search, this step can be accomplished in a very reasonable time and thus
does not harm the efficiency of the whole algorithm.

3 JND Validation

We have conducted an additional subjective experiment in order to validate the proposed JND model. In the
manuscript we have presented a subjective experiment where the participants rate the visibility of an injected
noise on scale of 0 to 5. It showed that the models with a JND modulated noise were rated the lowest on
the visibility scale but meanwhile could tolerate the biggest amount of distortions. However, in the following
new experiment we gradually increase the intensity of the injected noise until the subject notices it.

3.1 Experimental Procedure

Similarly to the experiment presented in Section 5 of the manuscript, the noise is injected into the 3D meshes
according to the following equation:

v
′

i = vi + rnd×M (vi) × ~diri, (3)

where vi is the ith vertex of the initial mesh and v
′

i is the corresponding noisy vertex. ~dir is the noise direction.
rnd is a random value equal to either +1 or −1 and M (vi) represents the magnitude of the noise for vi. It
is defined as:

M (vi) =


βunif uniform noise,

βrough × lr (vi) roughness modulated noise,

βjnd × jnd (vi) JND modulated noise,

(4)

where βunif , βrough and βjnd regulate the global noise intensity for each of the noise injection methods. lr (vi)
is the local surface roughness as defined in [WTM12] and jnd (vi) is the JND value computed as explained
in Section 4 of the manuscript.

The idea behind this experiment is to find the minimum noise intensity (βunif , βrough and βjnd) starting
from which the participants notice the noise in the model. To do so, we have adapted the same experimental
procedure that we have used to measure the local contrast threshold in the studies of CSF and contrast
masking. Two models were displayed on the screen, one of which has noise injected. The subjects had to
answer by either “yes” or “no” whether they saw the noise on one of the model. The intensity of the noise
(βunif , βrough and βjnd) is then adjusted using the QUEST procedure [WP83]. The subjects were allowed
to interact with the displayed models by rotating the camera around them. 5 new subjects participated in
the experiment.

3.2 Results
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Figure 5: (a) Plot of the measured noise intensity relative to the JND modulated noise. (b) Plot of the
MRMS induced by noise injection for three different types of noise at the same visibility level.

Figure 5 displays the results of this subjective experiment. Plot (a) shows the mean measured intensity
required to make JND modulated noise visible on a 3D mesh. We see that the measured βjnd is close to 1 for
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all of the models, meaning that the proposed JND profile is able to accurately detect the threshold beyond
which a noise is visible. Plot (b) shows that the MRMS value of the mesh model with JND modulated noise
of just noticeable level is higher than those of the corresponding models with uniform noise or roughness
modulated noise at the same visibility level. This means that the JND model is able to tolerate the highest
amount of noise among the three candidates, which is what we expected.

4 JND-Driven Mesh Simplification

Integrating the JND model into the mesh simplification process allows us to define a perceptual simplification
cost for the edge collapse operation. In order to obtain a simplified model that is visually very similar to
the input, we run the simplification process until all the edges have a cost whose value is greater than 0.
Moreover, the defined JND profile takes into consideration the size of the display, the viewing distance, and
the position of the model in the virtual 3D world. This means that the JND-driven simplification can be
useful for generating model level of details (LOD) as it will automatically stop the simplification at different
stages for different settings. Figure 6 shows some mesh LODs generated by the JND-driven simplification
method at different viewing distances.

Original - 37K 23K 13K 8K 3K

Original - 50K 32K 20K 11K

Figure 6: LODs generated using the JND-driven simplification method at different viewing distances. Dif-
ferent adaptive numbers of vertices are obtained under different viewing distances.
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4.1 Subjective Validation

We have performed a subjective experiment in order to verify that the proposed JND-driven simplification
outputs a simplified mesh that is visually very similar to the original one. 10 subjects participated in the
experiment. We have adopted the same experimental procedure as the JND validation experiment presented
in Section 5 of the manuscript. We displayed two models on the screen and the participants had to rate the
visibility of the distortion on a scale from 0 to 5. 0 corresponds to the case where the subject cannot see any
distortion and 5 to the case where the noise is clearly visible. For this experiment we included three models
(Angel, Venus and Hand) with three simplified versions each: a JND-driven simplified mesh, a mesh that is
further simplified to 5% beyond the JND level and a mesh simplified with Lindstrom and Turk’s method to
the same number of vertices as the JND-driven simplified mesh. The results of this experiment are shown
in Fig. 7. It is clear that the geometric distortion that is due to the simplification process is not visible for
the models simplified with the JND-driven method. The average subjective score is below 0.2 for the three
models meaning that about 80% of the participants were unable to notice the distortion. For the models
where we removed 5% more vertices than the JND level the geometric distortion is visible as the average
subjective score given by the participants is greater than 1. As for meshes simplified with Lindstrom and
Turk’s method to the same number of vertices as the JND level, the mean subjective score is above 0.85 for
the three models meaning that most subjects were able to see the distortions introduced by the simplification
process.
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Figure 7: Plot of the subjective scores of the simplified meshes obtained by three different methods.

4.2 Implementation Details

We have implemented a prototype of the proposed perceptual mesh simplification using CGAL’s mesh sim-
plification module [Cac15]. The JND-driven simplification algorithm can be summarized as follows. The
collapse cost is first computed for all the edges of a mesh and then added to a priority queue. As long as
the stopping criterion has not been reached, we pick the edge with the lowest cost and perform the edge
collapse operation. After each collapse operation the algorithm will update the simplification costs of the
affected edges of the last edge collapse. Accordingly, we update the priority queue. A rather straightforward
theoretical complexity analysis shows that the complexity of this family of mesh simplification algorithms is
dominated by the complexity of managing the internal data-structure that handles the order by which the
edges are being collapsed. This means that both the proposed perceptual mesh simplification and Lindstrom
and Turk’s simplification methods perform similarly since they are implemented using the same edge-collapse-
based mesh simplification framework. From a computation perspective the only difference between the two
methods consists in the computation of the edge cost. For a suitable number of light samples (in mesh
simplification application we use 8 samples, number from which the JND computation starts to converge,
see Section 2.1 of this Supplementary Material), the execution time for computing both the JND-based and
Lindstrom and Turk’s edge costs is quite similar (see Table 1 of this Supplementary Material).

Table 1: Execution time (in seconds) for computing the JND-based (with 8 light direction samples) and
Lindstrom and Turk’s edge costs

# of edges 9124 16056 50000 162641
JND-based 0.4 0.76 1.93 3.65

Linstrom and Turk’s 0.31 0.65 1.89 3.39

6



5 Vertex Coordinates Quantization

For the application to optimal vertex coordinates quantization, we compare the JND scores to those of FMPD
[WTM12], MSDM2 [Lav11] and MRMS. The comparison results are shown in Fig. 8 of this Supplementary
Material (The comparison results of JND scores and FMPD are also illustrated in Fig. 17 of the paper). As
shown by this figure, MRMS is not correlated with human perception. For FMPD and MSDM2, it is not
possible to define a proper threshold that gives the correct and perceptually relevant optimal quantization
levels for all the three models. One possible explanation is that FMPD and MSDM2 have difficulties in pro-
ducing consistent evaluation results on meshes of different densities and geometric complexities. In addition,
the main advantage of the JND model is that it does not require manually defining a threshold. Instead, it
can automatically determine the optimal quantization level.
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Figure 8: Comparison between the JND scores and those of FMPD [WTM12], MSDM2 [Lav11] and MRMS,
versus the vertex coordinates quantization level (in bpc, bits per coordinate).

5.1 Subjective Validation

We have performed a subjective experiment in order to verify that the optimal quantization level obtained
using the JND profile is indeed the one beyond which quantization noise becomes visible. 10 subjects
participated in the experiment. We have adopted the same experimental procedure as the JND validation
experiment presented in Section 5 of the paper. We displayed two models on the screen and the participants
had to rate the visibility of the distortion on a scale from 0 to 5. 0 corresponds to the case where the
subject cannot see any distortion and 5 to the case where the noise is clearly visible. For this experiment
we included three models with five quantization levels each: the optimal quantization level, two immediate
higher levels and two immediate lower levels. The results of this experiment are shown in Fig. 9. It is clear
that the geometric distortion that is due to vertex quantization becomes visible when the quantization level
in bcp become even 1 bit lower that the optimal level. For the quantization levels that are higher than the
optimal one, the quantization noise is invisible as the participants rated its visibility by 0. As for the optimal
quantization level the average subjective score is between 0 and 1 meaning that some participants were able
to barely see the distortions while others were unable to notice it.
As a final remark concerning vertex coordinates quantization application, it is worth mentioning that the
coordinates of the original models are never quantized and are represented by high-precision floating numbers.
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Figure 9: Plot of the subjective scores of quantized meshes with different levels of bpc.
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6 JND vs Saliency

(a) (c)(b)(b)

Figure 10: (a) JND profile relative to the normal direction in a light independent mode. (b) JND profile
relative to a tangent direction in a light independent mode. (c) Mesh saliency value computed with the
method of Lee et al. [LVJ05]

Mesh saliency has been the basis of many perceptual geometry processing methods [LVJ05, WSZL13,
SLMR14]. By definition saliency is a measure of whether an area is visually attractive for the human visual
system or not. For example, Fig 10.(c) shows that the Horse’s neck, extremities of its legs and part of its
head are the most visually important features (saliency computed by the method of Lee et al. [LVJ05]). A
human observer will most likely focus his attention on these areas while observing the Horse model.

On the contrary, the proposed JND model computes the threshold beyond which a distortion becomes
visible using low-level properties of the human visual system such as the contrast sensitivity function and the
contrast masking effect. The JND profile in Fig. 10 indicates that the Horse’s body can tolerate the most
noise in the normal direction. This is because in that region the mesh is coarse, so the visibility threshold
is higher due to the CSF property of the human visual system. By contrast, if the noise is in a tangent
direction, then the head can tolerate the most noise. This is because in that area the geometry is relatively
flat, so the displacement of a vertex in a tangent direction does not cause any change in contrast.

It is clear from the example in Fig. 10 that the saliency and JND profile measure different properties
of a 3D mesh. The former points out the visually important regions that are more likely to be observed by
a human being, while the latter computes the threshold beyond which a displacement of a vertex becomes
visible. Integrating the JND model into a geometry processing application will allow us to (automatically)
control the visibility of the introduced distortion. In JND model the main components are low-level properties
of the human visual system such as CSF and contrast masking, while in mesh saliency higher-level properties
such as visual attention should be taken into account.

However, it would be interesting and possible to use the low-level properties studied in the proposed JND
model for the purposes of mesh saliency derivation, since a better understanding of the low-level properties
would be helpful for the development of accurate higher-level properties. In particular, a salient region is by
definition an area that stands out from its surrounding. It can be attributed to regions where a big change
of local contrast occurs. Such regions usually attract human’s visual attention. Having defined a measure
of contrast in Section 3 of the manuscript, we think that it would be possible to use it in order to define a
saliency measure. In addition, in perceptually oriented mesh processing, it would be beneficial to combine
both low- and high-level properties of the human visual system (e.g., both the concept of JND and that of
mesh saliency), so as to achieve better performance or to reach a good trade-off.
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