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Abstract. Terrorist fraud is a class of relay attacks against distance-
bounding (DB) protocols in which a distant malicious prover colludes
with an attacker located in a verifier’s proximity when authenticat-
ing. Existing DB protocols resisting such attacks are designed to be
lightweight and thus symmetric, relying on a secret shared by the prover
and the verifier. Recently, several asymmetric distance-bounding proto-
cols were proposed by Gambs, Onete and Robert as well as by Hermans,
Peter and Onete, but they fail to thwart terrorist fraud. One earlier asym-
metric protocol aiming to be terrorist-fraud resistant is the DBPK-Log
protocol due to Bussard and Bagga, which was unfortunately recently
proven to achieve neither distance- nor terrorist-fraud resistance. In this
work, we build on some ideas of the DBPK-Log scheme and propose
a novel DB protocol resistant to terrorist fraud that does not require
the pre-existence of a shared secret between the prover and the verifier.
Our construction, denoted as Vssdb (for Verifiable Secret Sharing and
Distance-Bounding Protocol) relies on a verifiable secret sharing scheme
and on the concept of modes, which we introduce as a novel element
to complement fast-round challenges in order to improve security. We
prove that Vssdb resists mafia-, distance-, and terrorist fraud, as well as
impersonation attacks.

1 Introduction

Authentication is a critical building block in cryptography and security, enabling
a prover to demonstrate his legitimacy to a verifier. Whereas most secure authen-
tication protocols provide partial protection against some Man-in-the-Middle
(MIM) attacks, they are completely insecure against relay attacks. Such threats
are critical to authentication and to proximity-testing protocols, as demonstrated
for RFID-based Passive Keyless Entry and Start (PKES) systems in cars [16],
NFC smartcards [17] and geosocial networks such as Foursquare [10]. A relay
adversary takes advantage of the fact that the prover is far away from the verifier



and unaware of the attack. This adversary relays information between the two
honest parties in order to impersonate the prover.

Distance-bounding (hereafter denoted DB) protocols were specifically de-
signed by Brands and Chaum [7] to counter relay attacks (also called mafia
fraud [11]). They allow the verifier to authenticate the prover only if the latter
is within proximity. This proximity testing is done by means of a clock, which
the verifier uses to measure the round trip time (RTT) between the sending of a
challenge and the reception of the associated response. While DB protocols are
generally still only a theoretical concept, they are now also optionally available
on a commercial product, the NXP’s MIFARE Plus RFID card.

DB protocols must be able to withstand four main types of attacks. The
most basic attack is impersonation (also called soundness by Hermans, Peeters,
and Onete [20]) in which the MiM adversary aims at impersonating a legitimate
prover in his absence. A more advanced attack is mafia fraud, in which the MiM
adversary A can directly interact with the prover during the impersonation. The
main difficulty is that A cannot simply relay messages during the fast rounds
since this will be detected as a delay by the verifier’s clock. In distance fraud, the
prover is malicious and outside proximity (as measured by tmax), and he aims to
authenticate to the verifier.

Finally, the last of the classical attacks against DB protocols is called terrorist
fraud [4]. In this attack, a MiM adversary colludes actively with a malicious
prover outside his proximity to authenticate (in contrast, in mafia fraud the
prover is honest and unaware of the MiM adversary). Terrorist fraud is the most
controversial of the four attacks, being also differently formalized in the three
main security models in DB literature [1,12,15,26], as we also discuss in Section 2.

Terrorist fraud is a very strong attack and thus many existing DB protocols
(notably including that of Hancke and Kuhn [19]) do not address it. In general,
most DB protocols in the literature are lightweight and symmetric. This is the
case for the Swiss-Knife protocol [21] and for the scheme of Avoine, Lauradoux,
and Martin [2], which address terrorist fraud by using secret sharing. In these
schemes, the shared private key is masked by another random string and used to
respond to fast challenges. The class of SKI protocols [6], which prevent terrorist
fraud in a provable way, is also symmetric. A notable exception to this approach
is the DBPK-Log protocol [9] due to Bussard and Bagga. Currently, none of the
asymmetric (public-key) DB protocols existing in the literature [7,20,18] pre-
vent terrorist fraud. In addition, recent analyses show that the DBPK-Log and
other protocols [2,3,14,27] aiming for terrorist-fraud resistance, are vulnerable
to attacks such as a form of key leakage.

Our contributions. To address this issue, we propose an asymmetric Ver-
ifiable Secret Sharing and Distance-Bounding protocol (denoted Vssdb) that
resists all main classes of attacks. One of the novelties of our protocol is the use
of modes, which determine together with fast-round challenges, the fast-round re-
sponses. By using homomorphic commitment schemes and verifying in a bitwise
manner the soundness of the shares with respect to the secret key, we prevent
the attacks suggested by [3].



Table 1 puts our results in perspective, comparing the properties of our
Vssdb protocol to others in the literature. These figures also take into account
recent attacks by [3,6,14].
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Table 1: Security bounds for several DB protocols run with m time-critical
rounds. We denote by AdvUnf

A the unforgeability bound of a signature scheme.
∗ No generic bounds are applicable. A specific instantiation is NOT mafia-fraud
resistant, but resists distance fraud with probability 3

4 per round [14]. ∗∗ In fact,
stronger assumptions on f are needed for the claimed bound of 3

4 per round [3].
The value m′ := 50 is a system parameter defined by [9].

Structure. First in Section 2, we provide a brief overview of DB protocols
and their security as well as the building blocks such used in our protocol.
Afterwards in Section 3, we introduce our Vssdb protocol and state its exact
security properties before concluding in Section 4.

2 Preliminaries

2.1 Security of Distance-Bounding Protocols

The principle of DB protocols is that fast (i.e., speed of light) exchanges of bits
between a prover P and a verifier V can be timed and used by the verifier to
upper-bound his distance to P . By using a clock, V will measure the round-
trip time (RTT) between the moment he sends a challenge and the time at
which he receives the response. The verifier associates the trusted proximity
between himself and the prover with a clock value tmax. If the measured RTT
value is less than tmax and the responses are correct, V accepts P as legitimate
while otherwise, the prover is rejected. DB protocols usually consist of multiple



communication phases, also called rounds. The rounds in which the verifier uses
his clock to measure the RTT are called time-critical (or fast) while the ones in
which the verifier does not measure the RTT value are called slow (or lazy).

The security of such schemes was first consistently defined by Avoine and
co-authors [1]. Their semi-formal definitions served as a cornerstone to the later
formalizations of Dürholz, Fischlin, Kasper, and Onete [12,15], and Boureanu
and co-authors [6,26]. While the model of Vaudenay [26] is more generic, as it
allows for multiple provers and takes into account distance hijacking, we prefer
to use the more practical game-based notion of terrorist-fraud resistance due
to Fischlin and Onete [15]. Thus, our proofs are written in their underlying
framework [12], which we refer to as the DFKO model.

In this model, the adversary (denotedA) can open sessions, to observe honest
protocol runs between P and V (such sessions are called prover -verifier), or to
interact with P (called adversary-prover) or with V (called verifier-adversary).
In the security definitions of each of the attacks, the attack is quantified in
terms of the number of sessions of each type that he opens. These parameters
are denoted, respectively, qobs for the prover-verifier sessions, qP for adversary-
prover sessions, and qV for verifier-adversary sessions.

The implicit assumption on DB protocol is that the clock used always cor-
rectly detects the fact that the source of a message is outside the verifier’s prox-
imity. The two direct consequences are (1) that no MIM adversary can relay
the exact same messages between an honest verifier and an honest, but distant
prover, and (2) that not even a malicious prover can make his messages travel
faster than the communication speed. In particular, such a prover must send the
responses before receiving the challenges during the time-critical rounds if the
responses are to arrive on time. In the DFKO model, the prover must commit
to each time-critical response before the corresponding round starts. Note that
in this case the commitment is not cryptographic – it mainly ensures that the
prover chooses the response before receiving the challenge.

We intuitively state below the attacks covered by this formalization [12,15]
and refer the interested reader to the original papers for their precise definitions.

Distance-fraud resistance. A prover situated outside the proximity of the verifier
should be rejected except with negligible probability.

Mafia-fraud resistance. A MiM adversary, having access to an honest but dis-
tant prover and to the verifier, should be rejected except with negligible
probability. The verifier’s clock is assumed to detect any pure relays by the
adversary during the fast rounds.

Slow impersonation resistance. A MiM adversary that can communicate with
both the prover and the verifier, but not duplicate the session transcripts,
should only pass the slow rounds of the protocol with negligible probability.

Terrorist-fraud resistance. If a malicious prover can help an adversary authenti-
cate to the verifier, this adversary should later have a probability of winning
in mafia fraud attacks better than without the prover’s help.

The last of these four properties, namely terrorist-fraud resistance, is a con-
troversial notion in the distance-bounding literature. The crux of the definition



is to formalize the restriction on the prover’s collusion with the adversary. In par-
ticular, this condition is modeled differently in the three existing security models
(and their extensions)[2,1,12,15,26]. In particular, Avoine and co-authors require
that after the attack, the adversary should have zero-knowledge of the secret.
Originally, the DFKO notion of terrorist-fraud resistance [12] was simulation-
based and required that if the prover helps a specific adversary A authenticate
with a certain probability, a simulator having access to A’s view should succeed
to authenticate in a fresh verifier-adversary session with the same probability.
This definition was relaxed by Fischlin and Onete [15] to the notion of GameTF-
security. This notion demands that after the prover helps a certain adversary
A authenticate with non-negligible probability, this same adversary can then
authenticate to the verifier with better than mafia-fraud probability.

2.2 Building Blocks

Hereafter, we briefly highlight the building blocks that we used to construct our
solution and provide some intuition about how we use them.

Homomorphic commitments. In our protocol, the prover will commit to each bit
of the prover’s secret value x using a homomorphic bit commitment scheme.
These commitments prevent the direct knowledge of x while ensuring that
the prover’s responses are tied to the committed bits of the secret key. We
overcome the weakness of DBPK-Log through a bitwise verification of x.

Verifiable secret sharing. The use of verifiable secret sharing in DB protocols has
already been used by Avoine, Lauradoux, and Martin [2] to thwart terrorist
fraud. More precisely, their approach relies on threshold secret-sharing. Their
main idea is that if a terrorist adversary is aided by a malicious prover, after
k such sessions the adversary will have learned a number of the bits of
the secret key, enabling him to later authenticate on his own. In most DB
protocols, the prover masks the secret value with a single share. In contrast,
we rely on two additional shares in our protocol, which are committed to in
the first message of the protocol. These shares serve to construct the fast-
round responses, but they always mask x. We refer the interested reader
to [13] for the description of Feldman’s verifiable secret sharing scheme,
which combines classical secret-sharing and homomorphic commitments.

Modes. While the prover keeps x secret from the verifier, we prevent distance
fraud by introducing different response formats. These response formats de-
pend on binary challenges and on a sequence of modes, chosen at random by
the verifier among four possible ones. The prover’s responses, depending on
both modes and challenges, are then verified by opening the corresponding
commitments.

Signature of the transcript. In Vssdb, we prevent key-leakage attacks by using
the countermeasure of Brands and Chaum [7] and the Swiss-Knife proto-
col [21], which consists in signing the entire transcript at the end.



3 Verifiable Secret-Sharing DB

We present our protocol Vssdb, in two steps. First, we build on a preliminary
construction, which is mafia-, distance-, and impersonation resistant, but does
not achieve terrorist-fraud resistance (Section 3.1). Then, we add a backdoor,
enabling the terrorist-fraud adversary to use the information learnt from the
prover to then authenticate with higher probability to the verifier (Section 3.2).

3.1 The Vssdb protocol

Intuition. In our protocol, the prover chooses at each session two m-bit long
strings – denoted respectively k and ` – that are used to mask the private
key x, bit by bit, into a new string e. At initialization, the prover commits to
these values and sends the commitments to the verifier. The latter generates
an m-bit random value (essentially a string of bits Mi ∈ {0, 1}) encoding a
specific response mode among two possible ones. The response bits required
from the prover during the time-critical rounds will depend both on the fast-
phase challenges and on the mode. In particular, the response function, denoted
f, takes as input Mi and the round challenge ci, and outputs a corresponding
response ri. The fact that the modes are chosen honestly by the verifier and the
response components (i.e., k, ` and e) are committed before receiving the mode
values enforce distance-fraud resistance. We hide the committed values from
the adversary by encrypting them with the verifier’s public key. Furthermore,
we prevent the adversary from forwarding self-generated values by including a
signature on these values within the plaintext to be encrypted. Finally, we avoid
replay attacks by making the verifier send a session-specific nonce at each session.

Given the commitments ai, bi, di for respectively ki, `i, and ei, the use of ho-
momorphic commitments allows one to verify the relation that aibidi = Comi (for
i = 1, . . . ,m). Furthermore, a non-interactive zero-knowledge (NIZK) proof of
knowledge ensures that the value used by the prover is really his secret key, con-
sistent with the values Comi and with the ciphertext cP . During the time-critical
rounds, the verifier measures and stores the RTT of each exchange, denoted δti.
In order to enable the verifier to check each response value ri, the prover must
then open the relevant commitments of the values used to generate ri. Thus, in a
subsequent verification step, the prover sends the necessary auxiliary information
(the randomness used to commit and possibly the response values themselves),
which we denote as a function γ, taking two inputs Mi and ci. Finally, we use the
countermeasure proposed in [21] and sign the modes, challenges, and responses
used in this session, as well as the session-specific nonce.

In more details, the protocol consists of the following phases.

Set up. All the provers and verifiers are initialized by a trusted third party
(TTP) acting as a registration authority. The TTP begins by setting-up the
global parameters. First, it picks at random two distinct large prime numbers

p and q and computes their product n ← pq. The TTP also generates t
$← Z∗n



Protocol 1: Verifiable Secret Sharing and Distance-Bounding (VSSDB).

Verifier V Prover P
Public key pk = {Com, pkSign} Private key x, skSign, {ν1, . . . νm}

with Com := (Com1, . . . ,Comm)
Private encryption key: skV

Initialization phase
For i = 1 to m generate:

ki, `i
$← {0, 1}

ei = Eki||`i(xi)

ui, vi
$← Z∗n

wi = u−1
i v−1

i Hi(x) mod n
ai = Commit(ki, ui)
bi = Commit(`i, vi)
di = Commit(ei, wi)

0||NV−−−−−−−−−−−−−−−−→
Set: mP := {ai, bi, di}mi=1||NV

Compute: cP = Enc(pkV,mP ||Sign(skSign,mP))
Set: W := {x, {ki, `i, ei, ui, vi, wi,

ai, bi, di, νi}mi=1, skSign}
π := Prove{W : cP well formed ∧

consistent with {Comi}mi=1}cP , π←−−−−−−−−−−−−−−−−
Decrypt cP to m′||N∗V ||σ∗;

If π and σ∗ do not check or N∗V 6= NV, abort
For i = 1 to m generate

Mi
$← {0, 1} {Mi}mi=1−−−−−−−−−−−−−−−−→

Parse as:

M̂1, . . . M̂m ∈ {0, 1}
For i = 1 to m, compute f(M̂i, 0), f(M̂i, 1),

γ(M̂i, 0), and γ(M̂i, 0) as below:
f(0, 0) = ei
f(0, 1) = ki ⊕ `i
f(1, 0) = ki
f(1, 1) = ei ⊕ `i

γ(0, 0) = wi

γ(0, 1) = (ki, ui, `i, vi)
γ(1, 0) = ui

γ(1, 1) = (ei, wi, `i, vi)

Interactive phase
For i = 1 to m

Picks ci
$← {0, 1} ci−−−−−−−−−−−−−−−−→ Parse as ĉi

Store ri and RTT δti
ri←−−−−−−−−−−−−−−−− ri ← f(M̂i, ĉi)

Verification Phase

{γ(M̂i, ci)}mi=1←−−−−−−−−−−−−−−−− σ ← Sign(skSign, {Mi}mi=1||{ci, ri}mi=1||NV)
σ←−−−−−−−−−−−−−−−−

Verify σ, open commit for f(M̂i, ĉi) with γ(M̂i, ĉi), check δti ≤ tmax ∀i. Accept only if all checks succeed.



such that t 6= ±1 of order ϕ(n)/4 and computes s = t2 mod n. In particular,
s = −1 mod n and n is such that the Jacobi symbol (−1n ) is +1. Then, for
any two bits a and b, it holds that sa+b = sa⊕b. The parameters n and s are
considered to be public and thus known to all parties, while p, q and t are secret
parameters known only to the TTP. These parameters will enable the use of the
(homomorphic) commitment scheme (originally called a blob) due to Brassard,
Chaum, and Crépeau [8].

Later, at prover registration, the TTP generates a private/public signature
keypair (skSign, pkSign)← SSKGen(). The signature scheme is modeled as a tuple
S = (SSKGen,Sign,Vf) and can be any unforgeable signature scheme (e.g., El-
gamal or DSA). We assume that the verifier has certified secret/public keys for
an IND-CCA public-key encryption scheme (EKGen,Enc,Dec). The TTP is also
assume to honestly generate a secret key x ∈ {0, 1}m to each prover such that
each bit of the key is 0 with probability 1/2 (independently). This assumption
is used in the bound for distance-fraud resistance. Afterwards, each bit xi is
committed to a value Comi as follows: the TTP generates a witness νi and sets
Comi ← z2i s

xi mod n with νi = Hi(x). In this equation, H denotes a crypto-
graphically secure hash function with pseudo-random output, while Hi(x) is the
ith iteration of H on x. The values νi for each i are given to the prover while
the tuple Com := (Com1, . . . ,Comm), pkSign is the prover’s public key given to
all verifiers.

Initialization. As described previously, the verifier generates a session-specific
nonce NV that he sends to the prover. We add at the beginning a 0 to this
value as an encoding, to differentiate between an honest protocol run and the
all-or-nothing disclosure function in Protocol 2. In return, the prover generates
randomly two m-long bitstrings k and `. These strings are used to symmetri-
cally encrypt (we specifically use bitwise XOR) each bit xi of the private key.
In particular, ei ← Eki||`i(xi) = xi ⊕ ki ⊕ `i. Subsequently, the prover uses a
secure bit-commitment scheme Cmt = (Commit,COpen) to commit to each bit
ki, `i, and ei, using respectively the randomly generated witnesses ui, vi, and
wi = (uivi)

−1Hi(x) mod n. Each commitment takes two inputs, the committed
value b and the randomness r, and outputs Commit(b, r) := r2sb for the param-
eter s generated at setup. The prover concatenates these commitments and the
nonce NV, forming the message mP . This message is signed as Sign(skSign,mP)
and this signature is appended to the message itself before being encrypted into
cP := Enc(mP ,Sign(skSign,mP)). Finally, the witnesses consisting of the prover’s
secret keys x and skSign, the commitments {νi}mi=1, as well as the auxiliary val-
ues {ki, `i, ei}, the commitment witnesses ui, vi, wi, and the commitment values
ai, bi, di for each i, are used as inputs to a NIZK proof of knowledge π.This NIZK
demonstrates that the value x is the one used in computing ei from ki and `i,
and that it is also the value used in computing the verifier’s public commitments
Comi for all i. Furthermore, the NIZK proof also shows that the ciphertext and
signature included in cP are well formed with respect to these values.

The prover sends the ciphertext cP and the NIZK proof π to the verifier,
who, upon successful verification of the proof, decrypts the ciphertext and checks



the signature. If this verification is successful, the verifier generates randomly a
sequence of m response modes Mi ∈ {0, 1}. These modes form one of the two
inputs required for the computation of the responses during the time-critical
rounds. Finally, the prover pre-computes the responses for each received mode
Mi and for each possible bit challenge ci = {0, 1}. The response function f :
{0, 1} × {0, 1} −→ {0, 1} is computed as follows:

f(Mi = 0, ci) =

{
ei if ci = 0

ki ⊕ `i if ci = 1
f(Mi = 1, ci) =

{
ki if ci = 0

ei ⊕ `i if ci = 1

Furthermore, for each tuple of inputs (Mi, ci), the function γ : {0, 1} ×
{0, 1} −→ Z2|u1| × Z2|a1| lists values allowing the verifier to later open the rele-
vant commitments amongst ai, bi, and di and verify the responses. Although we
define the range of γ to be a tuple of four values, two of the bit-length of the
randomness to commit (i.e., ui) and two of the bit-length of the output com-
mitments (i.e., ai), the prover sometimes needs to send only a subset of these
values. In this case by convention the remaining output values are ignored by
the verifier. More precisely for each input (Mi, ci), the function γ outputs the
values of the shares used to compute f(Mi, ci) if these are not given in clear (but
rather XORed) and the relevant witnesses. For example, since f(0, 0) = ei, the
corresponding γ(0, 0) is equal to wi, which is the randomness used to construct
the commitment di of ei. In contrast, f(0, 1) = ki⊕`i, thus the output γ(0, 1) will
consist of the two component shares ki, `i, as well as the randomness ui, vi that
opens the commitments ai and bi. The complete output space of γ is described
in details in Protocol 1.

Interactions. The prover and verifier then begin the time-critical rounds,
which are effectively a sequence of m challenge-response exchanges in which the
verifier sends a bit challenge ci and the prover replies with the response bit
f(Mi, ci). The verifier stores the RTT of the exchange, which we denote as δti.
We point out that implementing a precise measurement of the RTT during the
challenge-response rounds is still a difficult technological challenge, although one
implementation has recently been proposed [23].

Verification. During this phase, the prover provides the output γ(Mi, ci) for
each round, as well as a final signature, generated with skSign, of the modes,
the concatenation of challenges and responses, and the session nonce NV. Then,
the verifier performs the following verification steps: (1) he checks the received
signature σ̂ based on his view of the transcript, (2) he opens the commitments
and validates the received responses, (3) he checks that δti ≤ tmax for all i = 1
to m, in which tmax is the trusted proximity bound, and (4) he checks that for
each i = 1 to m, it holds that Comi = aibidi mod n. If any of these verification
steps fails, the verifier aborts, which result in rejecting the prover. Otherwise,
the verifier accepts (i.e., authenticates) the prover.



3.2 Introducing Cheat Modes

In order to ensure terrorist-fraud resistance, we have to build a backdoor into
the protocol. To do this, we use an idea similar to that proposed by Fischlin and
Onete [15]. However, we cannot directly import their solution as our protocol is
asymmetric, whereas the original trick in [15] assumes that the verifier knows
the prover’s secret key. Instead, we take an approach similar to all-or-nothing
security and modify the protocol in two steps. More precisely during the first
step, if the prover receives a message starting with a 1 instead of the first protocol
message (0|NV), he will compare the remainder of the message with the secret
key x. If the received message is sufficiently close, he returns the full key x as
well as the witnesses νi that were used by the TTP to compute the commitments
Comi as depicted in Protocol 2.

Protocol 2: All-or-nothing key disclosure.

Party Party Prover P
Input x̂ Private key x, skSign, {ν1, . . . νm}

1||x̂−−−−−−−−−−−−−−−−→
With probability 2−(x⊕x̂) do:
Set: Keys := {x, skSign, {ν1, . . . , νm}}.

Keys←−−−−−−−−−−−−−−−−

Any party, including an adversary, can run this strategy. However, note that
the protocol does not return the secret signature key of the prover, thus on its
own knowing x will not significantly help an adversary to authenticate due to the
final signature. To enable a successful terrorist-fraud adversary to authenticate
afterwards without the prover’s help, we also change the authentication protocol.
More precisely, we introduce a “cheat” running mode, in which a party can use
the values of x and νi to authenticate just by echoing the received challenges. As
an honest prover only discloses the values of x and νi in exchange for a good guess
of the secret key x, these values will not occur when observing honest-prover to
honest-verifier communications. We also prevent distance fraud, as using this
strategy will reduce the success probability of a distance-fraud adversary to just
1
2 per round (the probability of guessing the challenges in advance).

However, if a malicious prover helps a MIM adversary to authenticate during
terrorist fraud, the adversary will learn a significant part of the secret key x. This
will enable the terrorist-fraud MIM adversary to learn (with high probability)
the values of x and νi, which in turn enable him to make the verifier run the
protocol in cheat mode, as depicted in Protocol 3.



Protocol 3: Terrorist VSSDB.
Verifier V Prover P

Public key {x,Com, pkSign} Private key x, skSign

with Com := (Com1, . . . ,Comm)
Private encryption key: skV

Initialization phase
Initialize as in Protocol 1

0||NV−−−−−−−−−−−−−−−−→
If first bit is 0, run Protocol 1
Else react as in Protocol 2 and halt

0|cP , π←−−−−−−−−−−−−−−−−
If first bit is 0, run Protocol 1
Else: parse message as x̂, {ν̂i}mi=1

If ∃i such that Commit(x̂i, ν̂i) 6= Comi reject P
Else, set SBit = cheat

Interactive phase
For i = 1 · · ·m

Pick ci
$← {0, 1} ci−−−−−−−−−−−−−−−−→

Store ri and RTT δti
ri←−−−−−−−−−−−−−−−−

Verification Phase

Accept if and only if for all i, ri = ci and δti ≤ tmax

3.3 Security Analysis

Despite the fact that our protocol is presented in two steps, we provide below the
security statement corresponding to the full construction (including the cheat
modes). We refer the reader to Appendix for the detailed proofs.

Theorem 1. The Vssdb protocol (including the cheat modes described in Pro-
tocols 2 and 3) has the following properties, if the function H produces pseudo-
random output:

– For any (t, qV )-distance-fraud adversary A against VSSDB, there exist the
following adversaries: A1 against the pseudorandomness of the output of H,
A2 against the binding property of the commitment scheme Cmt = (Commit,COpen),
A3 against the correctness of the symmetric encryption scheme, A4 against
the correctness of the commitment scheme Cmt, A5 against the soundness
of the NIZK-PK proof π, and A6 against the binding property of the com-
mitment scheme such that:

AdvDist
A ≤ mqV AdvH−PRF

A1
+ 3mqV AdvCom.Bind

A2
+ qVmAdv

E().Corr
A3

+qVmAdvCom.Corr
A4

+ qV AdvNIZK.Sound
A5

+mqV AdvCom.Bind
A6

+ qV

(
3

4

)m

.

– For any (t, qobs, qP , qV )-mafia-fraud adversary A against Vssdb, there ex-
ist the following adversaries: A1 against the correctness of the public-key



encryption scheme, A2 against the correctness of the signature scheme S =
(SSKGen,Sign,Vf), A3 against the unforgeability of the same signature scheme,
A4 against the IND-CCA security of the public-key encryption scheme (EKGen,
Enc,Dec), and A5 against the zero-knowledge property of the NIZK, such
that:

AdvMafia
A ≤ qV

(
1

2

)m

+ qV AdvPKE.Corr
A1

+ qV AdvSign.Corr
A2

+ qV AdvUnf
A3

+(qobs + qP )(AdvPKE.IND−CCA
A4

+ AdvNIZK.ZK
A5

) + qV 2−m

+qP 2(−2−log2 3)m +

(
qV
2

)
2−|NV|.

– For any (t, qobs, qP , qV )-impersonation adversary A against Vssdb, there
exist the following adversaries: A1 against the correctness of the public-
key encryption scheme, A2 against the correctness of the signature scheme
S = (SSKGen,Sign,Vf), A3 against the unforgeability of the same signa-
ture scheme, A4 against the IND-CCA security of the public-key encryption
scheme (EKGen,Enc,Dec), and A5 against the zero-knowledge property of the
NIZK, such that:

AdvImpSec
A ≤ qV AdvPKE.Corr

A1
+ qV AdvSign.Corr

A2
+ qV AdvUnf

A3
+

(
qV
2

)
2−|NV|

+(qobs + qP )(AdvPKE.IND−CCA
A4

+ AdvNIZK.ZK
A5

) + +qP 2(−2−log2 3)m.

– The Vssdb protocol is GameTF-secure.

4 Conclusion

In this paper, our main contribution is a DB protocol called Vssdb, which is
asymmetric (i.e., the prover and verifier do not share a common secret) while
provably resisting terrorist-fraud attacks (as captured by the GameTF flavor of
terrorist-fraud resistance [15]). One of the main novelties of our protocol is the
use of modes, which are communicated during slow phases, and complement the
challenges sent during the time-critical rounds. More precisely, the responses
answered by the prover during one of these rounds depend both on the mode
of this round and the challenge. This feature improves the protocol’s security,
while preserving the lightweightness of computations performed during the time-
critical rounds. In addition, in contrast to other DB protocols, we rely on the
use of three shares rather than two, which allows for more richness in the re-
sponses while better hiding the secret. In particular, by using a homomorphic
commitment scheme and bitwise verification of the commitment, we essentially
prevent the attack of Bay and co-authors [3] against DBPK-Log scheme on which
Vssdb builds. We also rely on the countermeasure of signing the entire protocol



transcript at the end to ensure strong mafia-fraud resistance. Finally to achieve
GameTF-security, we add a cheating mode that relies on a trick proposed by Fis-
chlin and Onete [15]. In a nutshell, if the adversary can supply a close-enough
guess of the secret key x, the prover will return the correct secret key x as well
as the witnesses that were used to generate the commitments of each bit of x
that the verifier has. By using these values, the adversary can then authenticate
to the verifier.

As future research directions, we mention adding privacy for VSSDB – of
which the asymmetric nature of the prover secret key is a necessary first step,
as well as investigating the possibility of using other secret-sharing techniques
to obtain better distance- and terrorist-fraud resistance.
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16. Francillon, A., Danev, B., Čapkun, S.: Relay Attacks on Passive Keyless Entry
and Start Systems in Modern Cars. In: Network and Distributed System Security
Symposium, NDSS 2011. The Internet Society, San Diego, CA, USA (February
2011)

17. Francis, L., Hancke, G., Mayes, K., Markantonakis, K.: Practical NFC peer-to-peer
relay attack using mobile phones. In: International conference on Radio frequency
identification: security and privacy issues - RFIDSec’10. pp. 35–49. Springer-Verlag,
Istanbul, Turkey (2010)

18. Gambs, S., Onete, C., Robert, J.: Prover Anonymous and Deniable Distance-
Bounding Authentication. In: Proceedings of ACM AsiaCCS’14, Accepted for pub-
lication. ACM Press (2014)

19. Hancke, G., Kuhn, M.: An RFID distance bounding protocol. In: Security and Pri-
vacy for Emerging Areas in Communications Networks, 2005. SecureComm 2005.
First International Conference on. pp. 67–73. IEEE (2005)

20. Hermans, J., Peeters, R., Onete, C.: Efficient, secure, private distance bounding
without key updates. In: ACM Conference on Security and Privacy in Wireless
and Mobile Networks, WISEC’13. pp. 207–218. ACM, Budapest, Hungary (April
2013)

21. Kim, C., Avoine, G., Koeune, F., Standaert, F., Pereira, O.: The swiss-knife RFID
distance bounding protocol. In: Information Security and Cryptology–ICISC 2008,
pp. 98–115. Springer (2009)

22. Pedersen, T.P.: Non-interactive and information-theoretic secure verifiable secret
sharing. In: Advances in Cryptology-CRYPTO’91. pp. 129–140. Springer (1992)
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A Preliminaries

A.1 General Notations

We give a tabular overview of our notations in Table 2.

p, q Large prime numbers.
g A generator of a cyclic group G.
G Finite cyclic group generated by g, usually G = Z∗p.
x Prover’s private key.
(skSign, pkSign) A tuple of private/public secret keys for a signature scheme.
m The number of fast rounds and bit-length of x.
y Prover’s public key in DBPK-Log.
ai, bi, di Commitment values, each for a single bit.
γi Witnesses to open commitments for DBPK-Log.
f Response function for VSSDB.
γ Opening function for VSSDB.
ci 1-bit challenge from the verifier at round i.
ri 1-bit response from the prover at round i.
ki, `i Randomly-generated bit shares masking x.
Comi A commitment to the i-th bit of x in VSSDB.

Cmt A commitment scheme with algorithms (Commit,COpen).
SE A symmetric encryption scheme with algorithms (E , D).
Γ Discrete logarithm function in DBPK-Log: Γ (x) := gx.
Ω The Pedersen commitment scheme in DBPK-Log.
H Cryptographic hash function modelled as a random oracle.
Hi i-th iterative run of the function H.
∈R Randomly chosen in.
δti RTT for i-th fast challenge-response round.
tmax Proximity bound for the fast-round RTT.
ZKPoK Zero-knowledge proof of knowledge protocol.

Table 2: Summary of notations.

A.2 The DBPK-Log Protocol

Bussard and Bagga were the first to consider terrorist-fraud resistance in distance
bounding [9]. We describe their DBPK-Log scheme in Protocol 4. This protocol
is run in a cyclic multiplicative group G of prime order p −1 generated by an
element g. The prover P has a secret key x along with an associated public key
y := Γ (x) = gx certified by a trusted third party and known to the verifier
V. DBPK-Log is based on three ingredients: a (2, 2) secret-sharing scheme (i.e.,
two shares are distributed and both are needed to reconstruct the secret), a
homomorphic bit commitment scheme (namely Pedersen’s commitment [22])
and a zero-knowledge proof of knowledge (ZKPoK).



Protocol 4: DBPK-Log [9]

Verifier V Prover P
Public key y := Γ (x) Private key x

Initialization phase

k
$← {0, 1}m

e ← Ek(x)
For i = to m

vi, wi
$← {0, 1}∗

ai = Ω(ki, vi)
bi = Ω(ei, wi){ai, bi}mi=1←−−−−−−−−−−−−−−−−

Interactive phase
For i = 1 to m

Choose ci
$← {0, 1} ci−−−−−−−−−−−−−−−−→ ri =

{
ki if ci = 0
ei otherwise

Measure δti
ri←−−−−−−−−−−−−−−−−

Verification phase

γi←−−−−−−−−−−−−−−−− γi =

{
vi if ci = 0
wi otherwise

ZKPoK[well formed]←−−−−−−−−−−−−−−−→
Accept if and only if all ri are coherent with respect to ai, bi, γi, δti ≤ tmax ∀i, and ZKPoK verifies.

Protocol description. During the initialization phase the prover picks a
random m-bit integer k and uses it to encrypt the long-term secret x as e ←
Ek(x) = x− k mod p. The values k and e act as shares in a (2,2)-secret sharing
scheme. Then, the prover commits in a bitwise manner to each bit of each share
using a homomorphic commitment scheme1, which leads to commitments of the
form a = {ai}mi=1 and b = {bi}mi=1, with ai = Ω(ki, vi) = gkihvi mod p and
bi = Ω(ei, wi) = geihwi mod p. Finally, this string of commitments is sent to the
verifier, thus completing the initialization phase.

Afterwards during the interactive phase, the prover and verifier exchange bi-
nary challenges and their corresponding binary responses to estimate the roundtrip-
time (RTT). Each response is equal to either a bit of the random share k or a
bit of the encrypted secret e.

Finally during the verification phase, the prover sends the randomness (either
vi or wi) used to generate the commitment of the fast round responses (this
value is denoted as γi). Since the commitment is homomorphic, the verifier can

compute z =
∏m

i=1 (aibi)
2i−1

= Ω((k + e), v). Then, the prover and verifier runs
a ZKPoK protocol in which the prover demonstrates the knowledge of a tuple
(x, v) such that z = Ω(x, v) and y = Γ (x)]. The verifier accepts this proof if (1)
all the fast responses are coherent with respect to the committed values, (2) all
RTT values are below tmax and (3) the ZKPoK succeeds.

1 The authors suggest Pedersen’s commitments [22].



A.3 Attacks on DBPK-Log

Avoine, Lauradoux and Martin [2] proposed a key-recovery attack against DBPK-
Log as well as other DB protocols. This key-leakage attack also enables to con-
duct a mafia fraud against another protocol due to Bussard and Bagga (see [14]
for more details). However, this key-recovery attack does not work if the prover
is honest in the DBPK-Log protocol. Indeed when sent the complement of the
challenge, the prover will also send the randomness to open the commitment
for the complementary challenge, thus preventing the adversary from knowing
whether or not ki = ei for some round i.

However at Inscrypt 2012, Bay and co-authors [3] proposed another terrorist
fraud whose probability of success is 1

2 . Their attack is based on the observation
that the homomorphic commitment check proceeds over all the commitments.
Thus, the adversary can generate random values for the shares k and e and use
them, as long as it sacrifices one of the commitments to add a value given by the
prover ensuring the correct homomorphic verification. More precisely, the prover
computes z′ := Ω(x, v′) with a newly generated v′ and sends z′ to the adversary
A. Now A generates two random m-bit strings k and e, for which he generates
honestly the commitments ai and bi (for i = 1 to m).

Using these values, A constructs two strings of commitments to send to the
verifier, using as many of the honestly-computed commitments as possible, but
also ensuring that the homomorphic verification still holds. More specifically A
sends two arrays A and B with m elements each, which he fills from position 2
to m with the commitments ai and bi that he has generated himself. For A1 and
B1, the adversary guesses c1 with probability 1

2 and inserts in the corresponding
array (A if ci = 0 and B otherwise) the correct, self-generated commitment (i.e.,
respectively a1 and bi). In the other array (corresponding to the complement of

c1), A adds a value ensuring that z =
∏m

i=1(AiBi)
2i−1

mod p.
Now A can correctly answer to all challenges and reveal unconditionally the

correct randomness for the rounds 2 to m as well as the correct randomness for
the round 1 if he has correctly guessed c1. Afterwards, the malicious prover helps
the adversary to succeed in conducting the ZKPoK Thus, no information about
x is leaked (except a commitment and a ZKPoK, which reveals nothing) and the
adversary A wins with probability 1

2 .

B Security Proofs of VSSDB

In this section, we present the detailed security proofs of the VSSDB protocol
(Section 3.1).

Proof. Distance-fraud resistance. Our proof relies on the fact that for each mode
M̂i, the XOR of the responses for the two challenges f(M̂i, 0) ⊕ f(M̂i, 1) = xi,
whose value is 1 with probability exactly 1

2 if x is chosen at random in an honest
manner. In particular, for each mode the adversary has a probability of at most
3
4 to win the round, regardless of his choice of ki and `i.



We first rule out the possibility that the adversary cheats on the commitments
he sends in cP . Consider an adversary that, concretely, chooses a value ki = 0
(without loss of generality) in the initial phase of one of the qV sessions, computes
ai for this value using some witness ui, and sends it within cP . Later, the same
adversary is queried on ki, sends k̃i = 1, and yet manages to authenticate.
For this adversary, we can easily build a reduction A∗ that wins the binding
game against the commitment scheme. The same holds for a commitment on a
value `i for a specific i, and for a commitment on a value ei (once we assume
that the output of the function H is truly random, for which we lose a total of
mqV AdvH−PRF

A1
). Thus, the probability that the adversary, having committed

to the values ki, `i, ei, is able to respond with a different value when queried in
the time-critical phases is: 3mqV AdvCom.Bind

A2
(accounting for the length of each

string, and for qV sessions against the verifier).

Now consider an adversary who is able to cheat on the generation of the value
ei (i.e., an adversary who can generate ei such that ei 6= Eki||`i(xi)). Assuming

the correctness of the decryption process (losing a term qVmAdv
E().Corr
A3

) and

of the homomorphic commitments respectively (losing a term qVmAdvCom.Corr
A4

),
this leaves the possibility that the adversary was able to open the (bitwise)
commitment of x to a different value x′ 6= x. More formally, the adversary
was able to find some witnesses {ν̂1, . . . , ν̂m} such that at least one witness
ν̂i 6= νi, which ensure Comi = Commit(νi, xi) = Commit(ν̂i, x

′
i). However, since

the witnesses must be used to generate the NIZK proof π sent together with
cP , if the latter is sound (we lose a term qV AdvNIZK.Sound

A5
), then we can extract

the witness that breaks the binding property of the commitment. The latter
can only happen with probability mqV AdvCom.Bind

A6
. As discussed before, the

remaining probability to win is now upper-bounded by a probability of at most 3
4

of winning a round for each of the two modes, thus leading to a global probability
of 3

4 per round per verifier-adversary session.

Mafia-fraud resistance (without cheat modes). For mafia-fraud resistance, we
first rule out the possibility that A sends a ciphertext cP that the prover has
not generated before. In particular, we consider a slightly modified game, in
which we keep track of values cP that the adversary has seen or extracted from
the prover in the at most qobs prover-verifier and the at most qP adversary-
prover sessions. In this game, the verifier immediately aborts if the adversary
sends (in a verifier-adversary session) a ciphertext c′P different from all the ob-
served/extracted ciphertexts. These two games are equivalent as long as the
verifier detects any unobserved/unextracted ciphertext injected by the adver-
sary A. If the decryption of the public-key encryption scheme is correct (we lose
a term qV AdvPKE.Corr

A1
) and the signature scheme is complete (we lose a term

qV AdvSign.Corr
A2

), we can build a reduction between the equivalence of the two
games and the unforgeability of the signature scheme. This reduction outputs
the string parsed as the signature in the decryption of c′P as the forgery for the
string parsed as the message mP in the decryption of c′P . Such a possibility can

be ruled out, except with probability qV AdvUnf
A3

.



Thus, the adversary cannot inject self-generated commitments into a verifier-
adversary session. In addition, as in this game the prover is honest, the values for
ki,`i, and ei (due to the choice of x) are all 0 with probability. 1

2 for each session.
Furthermore, for each given mode, the probability that the two responses are
equal is 1

2 .
Since the public-key encryption scheme is IND-CCA, the adversary can-

not distinguish between two ciphertexts cP generated for the same auxiliary
values k and `, or for different values, except with total probability (qobs +
qP )AdvPKE.IND−CCA

A4
. Similarly, due to the zero-knowledge property of the NIZK

proof of knowledge, the adversary is unable to tell whether two proofs π and π′

are generated using the same witness (we lose here a term (qobs+qP )AdvNIZK.ZK
A5

).
In particular, the only way an adversary can know whether two sessions

share the same responses is to forward the encryption cP and the proof π) from
an adversary-prover session sid’ to a verifier-adversary session sid (these two
sessions share the answer). Moreover, we rule out the possibility of a replay
of the ciphertext by the adversary due to the fact that two verifier-adversary
sessions will share the nonce NV with probability

(
qV
2

)
2−|NV|. Thus, we now

have that any verifier-adversary session sid shares responses with at most one
adversary-prover session sid′.

We now examine the adversary’s strategy for the interactive part of the
protocol, considering in particular a single time-critical round i. The possible
situations are the following.

– Sessions sid and sid′ share the same mode Mi (with probability 1
2 ). In this

case, the adversary maximizes his probability to win this phase if he guesses
the challenge or the response (both happen with probability 1

2 ). Else, if
he wrongly guesses the challenge (or sends the wrong challenge/response on
purpose), then he fails to authenticate, except with probability AdvUnf

A . This
probability corresponds to the possibility of building a reduction against the
unforgeability of the signature scheme (specifically the final signature in the
protocol).

– Sessions sid do not share the same mode Mi for this phase. In this case, the
best strategy of the adversary is to guess the response (since guessing the
challenge will not help), which happens with probability 1

2 . However in this
case the adversary will not be able to use the signature given by the prover
in session sid′ since the message signed includes the value of the modes.

Overall, regardless of whether the two sessions share or not the same mode,
the adversary has a probability of winning each round with an independent
probability of 1

2 per time-critical phase (to a total of qV 2−m).
Mafia fraud (with cheating). We also have to account for an adversary that

can guess the key x sufficiently close to be given x and skSign by the prover.
Similarly to the proof of Fischlin and Onete [15], we sum up over all the “near
guesses” (with the respective probabilities of having the correct responses), which
leads to a global probability of qP 2(−2−log2 3)m.

Impersonation resistance. Similarly to the proof for mafia-fraud resistance,
we first rule out the possibility that two sessions share responses (unless they



are a verifier-adversary session and an adversary-prover session run at the same
time). Thus, any verifier-adversary session the adversary opens has at most one
adversary-prover session with which it shares respectively modes and commit-
ments. At this point, the definition requires that the adversary wins without
producing the same transcript as the concurrent adversary-prover session. We
upper-bound this probability by observing that any change in the transcript
requires the adversary to be able to forge the signature, thus obtaining the
claimed bound. This bound also relies on the fact that, for the commitments
we have chosen, it is not possible to find two witnesses w and w′ such that
Commit(x,w) = Commit(x,w′). This latest issue is considered separately, since
in the verification phase the witnesses are not signed. We furthermore integrate,
as for mafia fraud, for the probability of successfully receiving x and skSign from
the prover.

GameTF. This statement is proven in two steps. We first consider a successful
terrorist fraud adversary A. Our goal is to show that either this adversary has
a negligible success probability or he is helpful to a mafia-fraud adversary A′ in
the sense of [15]. In the first step of the proof, we show how the adversary A′
reconstructs a guess of the secret x by running A as a black box. Afterwards,
we show that this gives A′ a non-negligible probability to recover x and skSign,
and thus trivially authenticate afterwards.

We consider an adversary A′ who runs A internally, and who ends up with a
guess x̂ of x. For each verifier-adversary session of the terrorist-fraud adversary
A, the adversary A′ queries A for each fast round and for each of the two
challenges (A′ does not change the mode). If A answers on both branches, A′
sets x̂i to be the XOR of the two responses. If the adversary does not respond
on at least one branch, A′ sets x̂i to be a randomly chosen bit. This strategy
yields the following alternatives.

– A knows both bits correctly. In this case, A always passes the round, but
the guessed bit x̂i is also correct.

– A gets exactly one bit correctly. In this case, A′ has the wrong bit. On the
other hand, the adversary fails the session with probability 1

2 .
– A gets both bits wrong, in which case A fails the session, but A′ gets the

right bit.
– A refuses to answer at least for one branch. At this point, the adversary has

a probability of at least 1
2 to fail, while A′ guesses the corresponding guessed

bit of x is 1
2 .

As outlined in the similar proof in [15], the adversary A′ will recover as
many bits of x as is the first adversary’s (A’s) success probability to pass the fast
rounds. With this probability, A′ now recovers x and skSign by using the cheating
mode. Thus, if we assume that A wins with a non-negligible probability, so does
A′ in the subsequent attack. In particular, A has been helpful to A′ since the
protocol is mafia-fraud resistant.

ut


