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ESTIMATING THE CONDITIONAL DENSITY BY HISTOGRAM TYPE

ESTIMATORS AND MODEL SELECTION

MATHIEU SART

Abstract. We propose a new estimation procedure of the conditional density for indepen-
dent and identically distributed data. Our procedure aims at using the data to select a func-
tion among arbitrary (at most countable) collections of candidates. By using a deterministic
Hellinger distance as loss, we prove that the selected function satisfies a non-asymptotic oracle
type inequality under minimal assumptions on the statistical setting. We derive an adaptive
piecewise constant estimator on a random partition that achieves the expected rate of conver-
gence over (possibly inhomogeneous and anisotropic) Besov spaces of small regularity. Moreover,
we show that this oracle inequality may lead to a general model selection theorem under very
mild assumptions on the statistical setting. This theorem guarantees the existence of estimators
possessing nice statistical properties under various assumptions on the conditional density (such
as smoothness or structural ones).

1. Introduction

Let (Xi, Yi)1≤i≤n be n independent and identically distributed random variables defined on an
abstract probability space (Ω, E ,P ) with values in X×Y. We suppose that the conditional law
L(Yi | Xi) admits a density s(Xi, ·) with respect to a known σ-finite measure µ. In this paper,
we address the problem of estimating the conditional density s on a given subset A ⊂ X× Y.

When (Xi, Yi) admits a joint density f(X,Y ) with respect to a product measure ν⊗µ, one can
rewrite s as

s(x, y) =
f(X,Y )(x, y)

fX(x)
for all x, y ∈ X× Y such that fX(x) > 0,

where fX stands for the density of Xi with respect to ν. A first approach to estimate s was
introduced in the late 60’s by Rosenblatt (1969). The idea was to replace the numerator and the
denominator of this ratio by Kernel estimators. We refer to Hyndman et al. (1996) for a study of
its asymptotic properties. An alternative point of view is to consider the conditional estimation
density problem as a non-parametric regression problem. This has motivated the definition
of local parametric estimators which have been asymptotically studied by Fan et al. (1996);
Hyndman and Yao (2002); De Gooijer and Zerom (2003). Another approach was proposed by
Faugeras (2009). He showed asymptotic results for his copula based estimator under smoothness
assumptions on the marginal density of Y and the copula function.
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The aforementioned procedures depend on some parameters that should be tuned according
to the (usually unknown) regularity of s. The practical choice of these parameters is for instance
discussed in Fan and Yim (2004) (see also the references therein). Nonetheless, adaptive esti-
mation procedures are rather scarce in the literature. We can cite the procedure of Efromovich
(2007) which yields an oracle inequality for an integrated L

2 loss. His estimator is sharp mini-
max under Sobolev type constraints. Bott and Kohler (2015) adapted the combinatorial method
of Devroye and Lugosi (1996) to the problem of bandwidth selection in kernel conditional density
estimation. They showed that this method allows to select the bandwidth according to the reg-
ularity of s by proving an oracle inequality for an integrated L

1 loss. The papers of Brunel et al.
(2007); Akakpo and Lacour (2011) are based on the minimisation of a penalized L

2 contrast
inspired from the least squares. They established a model selection result for an empirical L2

loss and then for an integrated L
2 loss. These procedures build adaptive estimators that may

achieve the minimax rates over Besov classes. The paper of Chagny (2013) is based on projec-
tion estimators, Goldenshluger and Lepski methodology and a transformation of the data. She
showed an oracle inequality for an integrated L

2 loss from which she deduced that her estima-
tor is adaptive and reaches the expected rate of convergence under Sobolev constraints on an
auxiliary function. Cohen and Le Pennec (2011) gave model selection results for the penalized
maximum likelihood estimator for a loss based on a Jensen-Kullback-Leibler divergence and
under bracketing entropy type assumptions on the models.

Another estimation procedure that can be found in the literature is the one of T -estimation
(T for test) developed by Birgé (2006). It leads to much more general model selection theorems,
which allows the statistician to model finely the knowledge he has on the target function to
obtain accurate estimates. It is shown in Birgé (2012) that one can build a T -estimator of
the conditional density. We now define the loss used in that paper to compare it with ours.
We suppose henceforth that the distribution of Xi is absolutely continuous with respect to a
known σ-finite measure ν. Let fX be its Radon-Nikodym derivative. We denote by L

1
+(A, ν⊗µ)

the cone of non-negative integrable functions on X × Y with respect to the product measure
ν ⊗ µ vanishing outside A. Birgé (2012) measured the quality of his estimator by means of the
Hellinger deterministic distance δ defined by

δ2(f, g) =
1

2

∫

A

(

√

f(x, y)−
√

g(x, y)
)2

dν(x) dµ(y) for all f, g ∈ L
1
+(A, ν ⊗ µ).

It is assumed in that paper that the marginal density fX of X is bounded from below by a
positive constant. This classical assumption seems natural in the sense that the estimation
of s is better in regions of high value of fX than regions of low value as stressed for instance
in Bertin et al. (2013). In the present paper, we bypass this assumption by measuring the quality
of our estimators through the Hellinger distance h defined by

h2(f, g) =
1

2

∫

A

(

√

f(x, y)−
√

g(x, y)
)2
fX(x) dν(x) dµ(y) for all f, g ∈ L

1
+(A, ν ⊗ µ).

The marginal density fX can even vanish, in contrast to most of the papers cited above. We
propose a new and data-driven (penalized) criterion adapted to this unknown loss. Its definition
is in the line of the ideas developed in Baraud (2011); Sart (2014); Baraud et al. (2016).

The main result is an oracle type inequality for (at most) countable families of functions
of L1

+(A, ν ⊗ µ). This inequality holds true without additional assumptions on the statistical
setting. We use it a first time as an alternative to resampling methods to select among families
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of piecewise constant estimators. We deduce an adaptive estimator that achieves the expected
rates of convergence over a range of (possibly inhomogeneous and anisotropic) Besov classes,
including the ones of small regularities. A second application of this inequality leads to a new
general model selection theorem under very mild assumptions on the statistical setting. We
propose 3 illustrations of this result. The first shows the existence of an adaptive estimator that
attains the expected rate of convergence (up to a logarithmic term) over a very wide range of
(possibly inhomogeneous and anisotropic) Besov spaces. This estimator is therefore able to cope
in a satisfactory way with very smooth conditional densities as well as with very irregular ones.
The second illustration deals with the celebrated regression model. It shows that the rates of
convergence can be faster than the ones we would obtain under pure smoothness assumptions
on s when the data actually obey to a regression model (not necessarily Gaussian). The last
illustration concerns the case where the random variables Xi lie in a high dimensional linear
space, say X = R

d1 with d1 large. In this case, we explain how our procedure can circumvent
the curse of dimensionality.

The paper is organized as follows. In Section 2, we carry out the estimation procedure and
the oracle inequality. We use it to select among a family of piecewise constant estimators and
study the quality of the selected estimator. Section 3 is dedicated to the general model selection
theorem and its applications. The proofs are postponed to Section 4.

We now introduce the notations that will be used all along the paper. We set N⋆ = N \ {0},
R+ = [0,+∞), R⋆

+ = (0,+∞). For x, y ∈ R, x ∧ y (respectively x ∨ y) stands for min(x, y)
(respectively max(x, y)). The positive part of a real number x is denoted by x+ = x ∨ 0.
The distance between a point x and a set A in a metric space (E, d) is denoted by d(x,A) =
infy∈A d(x, y). The cardinality of a finite set A is denoted by |A|. The restriction of a function f
to a set A is denoted by f A. The indicator function of a set A is denoted by 1A . The notations
c, C, c′, C ′, c1, C1, c2, C2, . . . are for the constants. These constants may change from line to line.

2. Selection among points and hold-out

Throughout the paper, n > 3 and A is of the form A = A1 ×A2 with A1 ⊂ X, A2 ⊂ Y.

2.1. Selection rule and main theorem. Let L(A,µ) be the subset of L1
+(A, ν ⊗ µ) defined

by

L(A,µ) =
{

f ∈ L
1
+(A, ν ⊗ µ), sup

x∈A1

∫

A2

f(x, y) dµ(y) ≤ 1

}

,

and let S be an at most countable subset of L(A,µ). The aim of this section is to use the data
(Xi, Yi)1≤i≤n in order to select a function ŝ ∈ S close to the unknown conditional density s. We
begin by presenting the procedure. The underlying motivations will be further discussed below.

Let ∆̄ be a map on S satisfying

∀f ∈ S, ∆̄(f) ≥ 1 and
∑

f∈S

e−∆̄(f) ≤ 1.
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We define the function T on S2 by

T (f, f ′) =
1

n

n
∑

i=1

√

f ′(Xi, Yi)−
√

f(Xi, Yi)
√

f(Xi, Yi) + f ′(Xi, Yi)

+
1

2n

n
∑

i=1

∫

A2

√

f(Xi, y) + f ′(Xi, y)
(

√

f ′(Xi, y)−
√

f(Xi, y)
)

dµ(y)

+
1√
2n

n
∑

i=1

∫

A2

(

f(Xi, y)− f ′(Xi, y)
)

dµ(y),

where the convention 0/0 = 0 is used. We set for L > 0,

γ(f) = sup
f ′∈S

{

T (f, f ′)− L
∆̄(f ′)

n

}

.

We finally define our estimator ŝ ∈ S as any element of S such that

γ(ŝ) + L
∆̄(ŝ)

n
≤ inf

f∈S

{

γ(f) + L
∆̄(f)

n

}

+
1

n
.(1)

Remarks. The definition of T comes from a decomposition of the Hellinger distance initiated
by Baraud (2011) and taken back in Baraud (2013); Sart (2014, 2015); Baraud et al. (2016).
We shall show in the proof of Theorem 1 that for all f, f ′ ∈ L(A,µ), ξ > 0, the two following
assertions hold true with probability larger than 1− e−nξ:

• If T (f, f ′) ≥ 0, then h2(s, f ′) ≤ c1h
2(s, f) + c2ξ

• If T (f, f ′) ≤ 0, then h2(s, f) ≤ c1h
2(s, f ′) + c2ξ.

In the above inequalities, c1 and c2 are positive universal constants. The sign of T (f, f ′) allows
thus to know which function among f and f ′ is the closest to s (up to the multiplicative
constant c1 and the remainder term c2ξ). Note that comparing directly h2(s, f) to h2(s, f ′) is
not straightforward in practice since s and h are both unknown to the statistician.

The definition of the criterion γ looks like the one proposed in Section 4.1 of Sart (2014) for
estimating the transition density of a Markov chain as well as the one proposed in Baraud et al.
(2016) for estimating one or several densities. The underlying idea is that γ(f) + L∆̄(f)/n is
roughly between h2(s, f) and h2(s, f)+L∆̄(f)/n. It is thus natural to minimize γ(·)+L∆̄(·)/n
to define an estimator ŝ of s. To be more precise, when L is large enough, the proof of Theorem 1
shows that for all ξ > 0, the following chained inequalities hold true with probability larger than
1− e−nξ uniformly for f ∈ S,

(1− ε)h2(s, f)−R1(ξ) ≤ γ(f) + L
∆̄(f)

n
≤ (1 + ε)h2(s, f) + 2L

∆̄(f)

n
+R2(ξ)

where

R1(ξ) = inf
f ′∈S

{

(1 + ε)h2(s, f ′) + L
∆̄(f ′)

n

}

+ c3ξ

R2(ξ) = −(1− ε)h2(s, S) + c4ξ
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for universal constants c3 > 0, c4 > 0, ε ∈ (0, 1). We recall that h2(s, S) is the square of the
Hellinger distance between the conditional density s and the set S, h2(s, S) = inff∈S h

2(s, f).
Therefore, as ŝ satisfies (1),

(1− ε)h2(s, ŝ) ≤ γ(ŝ) + L
∆̄(ŝ)

n
+R1(ξ)

≤ inf
f∈S

{

γ(f) + L
∆̄(f)

n

}

+ 1/n +R1(ξ)

≤ inf
f∈S

{

(1 + ε)h2(s, f) + 2L
∆̄(f)

n

}

+ 1/n+R1(ξ) +R2(ξ).

Rewriting this last inequality and using that ∆̄ ≥ 1 yields:

Theorem 1. There exists a universal constant L0 such that if L ≥ L0, any estimator ŝ ∈ S
satisfying (1) satisfies

∀ξ > 0, P

[

h2(s, ŝ) ≤ C1 inf
f∈S

{

h2(s, f) + L
∆̄(f)

n

}

+ C2ξ

]

≥ 1− e−nξ,(2)

where C1, C2 are universal positive constants. In particular,

E
[

h2(s, ŝ)
]

≤ C3 inf
f∈S

{

h2(s, f) + L
∆̄(f)

n

}

,

where C3 > 0 is universal.

Note that the marginal density fX influences the performance of the estimator ŝ through the
Hellinger loss h only. Moreover, no information on fX is needed to build the estimator.

We can interpret the condition
∑

f∈S e
−∆̄(f) ≤ 1 as a (sub)-probability on S. The more

complex S, the larger the weights ∆̄(f). When S is finite, one can choose ∆̄(f) = | log S|, and
the above inequality becomes

P

[

h2(s, ŝ) ≤ C1

(

h2(s, S) + L
| logS|
n

)

+ C2ξ

]

≥ 1− e−nξ.

The Hellinger quadratic risk of the estimator ŝ can therefore be bounded from above by a sum
of two terms (up to a multiplicative constant): the first one stands for the bias term while the
second one stands for the estimation term.

Let us mention that assuming that S is a subset of L(A,µ) is not restrictive. Indeed, if f
belongs to L

1
+(A, ν ⊗ µ) \ L(A,µ), we can set

π(f)(x, y) =















f(x,y)∫
A2

f(x,t) dµ(t)
if
∫

A2
f(x, t) dµ(t) > 1 and

∫

A2
f(x, t) dµ(t) <∞

f(x, y) if
∫

A2
f(x, t) dµ(t) ≤ 1

0 if
∫

A2
f(x, t) dµ(t) = ∞.

The function π(f) belongs to L(A,µ) and does always better than f :

Proposition 2. For all f ∈ L
1
+(A, ν ⊗ µ),

h2(s, π(f)) ≤ h2(s, f).
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Thereby, if S is only assumed to be a subset of L1
+(A, ν ⊗ µ), the procedure applies with

S′ = {π(f), f ∈ S} ⊂ L(A,µ) in place of S (and with ∆̄(π(f)) = ∆̄(f)). The resulting estimator
ŝ ∈ S′ then satisfies (2).

Remark: the procedure does not depend on the dominating measure ν. However, the set S,
which must be chosen by the statistician, must satisfy the above assumption S ⊂ L

1
+(A, ν ⊗ µ),

which usually requires the knowledge of ν. Actually, this assumption can be slightly strengthened
to deal with an unknown, but finite measure ν. This may be of interest when ν is the (unknown)
marginal distribution of Xi (in which case fX = 1). More precisely, let L1

+,sup(A,µ) be the set
of non-negative measurable functions vanishing outside A such that

sup
x∈A1

∫

A2

f(x, y) dµ(y) <∞.

The assumption S ⊂ L
1
+,sup(A,µ) can be satisfied without knowing ν and implies S ⊂ L

1
+(A, ν⊗

µ).

2.2. Hold-out. As a first application of our oracle inequality, we consider the situation in
which the set S is a family of estimators built on a preliminary sample. We suppose therefore
that we have at hand two independent samples of Z = (X,Y ): Z1 = (Z1, . . . , Zn) and Z2 =
(Zn+1, . . . , Z2n). This is equivalent to splitting an initial sample (Z1, . . . , Z2n) of size 2n into
two equal parts: Z1 and Z2.

Let Ŝ = {ŝλ, λ ∈ Λ} ⊂ L
1
+(A, ν ⊗ µ) be an at most countable collection of estimators based

only on the first sample Z1. In view of Proposition 2, we may assume, without loss of generality,
that for all λ ∈ Λ,

∀x ∈ A1,

∫

A2

ŝλ(x, y) dµ(y) ≤ 1.

Let ∆ ≥ 1 be a map defined on Λ such that
∑

λ∈Λ e
−∆(λ) ≤ 1.

Conditionally to Z1, Ŝ is a deterministic set. We can therefore apply our selection rule to
S = Ŝ, ∆̄(ŝλ) = ∆(λ) and to the sample Z2 to derive an estimator ŝ such that:

∀ξ > 0, P

[

h2(s, ŝ) ≤ C1 inf
λ∈Λ

{

h2(s, ŝλ) + L
∆(λ)

n

}

+ C2ξ
∣

∣

∣ Z1

]

≥ 1− e−nξ.

By taking the expectation with respect to Z1, we then deduce:

∀ξ > 0, P

[

h2(s, ŝ) ≤ C1 inf
λ∈Λ

{

h2(s, ŝλ) + L
∆(λ)

n

}

+ C2ξ

]

≥ 1− e−nξ.(3)

Note that there is almost no assumption on the preliminary estimators. It is only assumed that
ŝλ ∈ L

1
+(A, ν ⊗ µ). Besides, the non-negativity of ŝλ can always be fixed by taking its positive

part if needed. We may therefore select among Kernel estimators (to choose the bandwith for
instance), local polynomial estimators, projection estimators. . . It is also possible to mix in the
collection {ŝλ, λ ∈ Λ} several type of estimators. From a numerical point of view, the procedure
can be implemented in practice provided that |Λ| is finite and not too large.

We shall illustrate this result by applying it to some families of piecewise constant estimators.
As we shall see, the resulting estimator ŝ will be optimal and adaptive over some range of
possibly anisotropic Hölder and possibly inhomogeneous Besov classes.
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2.3. Histogram type estimators. We now define the piecewise constant estimators. Let m
be a (finite) partition of A ⊂ X× Y, and

ŝm(x, y) =
∑

K∈m

∑n
i=1 1K (Xi, Yi)

∑n
i=1 (δXi

⊗ µ) (K)
1K (x, y),

where the conventions 0/0 = 0, x/∞ = 0 are used. Györfi and Kohler (2007) established an
integrated L

1 risk bound for ŝm under Lipschitz conditions on s. We are nevertheless unable
to find in the literature a non-asymptotic risk bound for the Hellinger deterministic loss h. We
propose the following result (which is assumption free on s):

Proposition 3. Let m be a (finite) partition of A such that each K ∈ m is of the form I × J
with I ⊂ A1, J ⊂ A2 and µ(J) < ∞. Let Vm be the cone of non-negative piecewise constant
functions on the partition m defined by

Vm =

{

∑

K∈m

aK1K , ∀K ∈ m, aK ∈ [0,+∞)

}

.

Then,

E
[

h2(s, ŝm)
]

≤ 4h2(s, Vm) + 4
|m|
n
.

This result shows that the Hellinger quadratic risk h2(s, ŝm) of the estimator ŝm can be
bounded by a sum of two terms. The first one h2(s, Vm) corresponds to a bias term whereas the
second one |m|/n corresponds to a variance or estimation term. A deviation bound can also be
established for some partitions:

Proposition 4. Assume that m is a (finite) partition of A of the form

m = {I × J, I ∈ I, J ∈ JI} ,
where I is a (finite) partition of A1, and, for each I ∈ I, JI is a (finite) partition of A2 such
that µ(J) <∞ for all J ∈ JI .

Then, there exist universal constants C1, C2 > 0 such that for all ξ > 0,

P

[

h2(s, ŝm) ≤ 4h2(s, Vm) + C1
|m|
n

+ C2ξ

]

≥ 1− e−nξ.

2.4. Selecting among piecewise constant estimators by Hold-out. The risk of a his-
togram type estimator ŝm depends on the choice of the partition m: the thinner m, the smaller
the bias term h2(s, Vm) but the larger the variance term |m|/n. Choosing a good partition m,
that is a partition that realizes a good trade-off between the bias and variance terms is difficult
in practice since h2(s, Vm) is unknown (as it involves the unknown conditional density s and the
unknown distance h). Nevertheless, combining (3) and Proposition 3 immediately entails the
following corollary.

Corollary 1. Let M be an at most countable collection of finite partitions m of A. Assume
that each K ∈ m is of the form I × J with I ⊂ A1, J ⊂ A2 and µ(J) <∞. Let ∆ ≥ 1 be a map
on M satisfying

∑

m∈M

e−∆(m) ≤ 1.
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Then, there exists an estimator ŝ such that

E
[

h2 (s, ŝ)
]

≤ C inf
m∈M

{

h2 (s, Vm) +
|m|+∆(m)

n

}

,(4)

where C is a universal positive constant.

The novelty of this oracle inequality lies in the fact that it holds for an (unknown) deterministic
Hellinger loss under very mild assumptions both on the partitions and the statistical setting. We
avoid some classical assumptions that are required in the literature to prove similar inequalities
(see, for instance, Theorem 3.1 of Akakpo and Lacour (2011) for a result with respect to a L

2

loss).

2.5. Minimax rates over Hölder and Besov spaces. We can now deduce from (4) estima-
tors with nice statistical properties under smoothness assumptions on the conditional density.
Throughout this section, X× Y = R

d, A = [0, 1]d and µ is the Lebesgue measure.

2.5.1. Hölder spaces. Given α ∈ (0, 1], we recall that the Hölder space Hα([0, 1]) is the set
of functions f on [0, 1] for which there exists |f |α > 0 such that

|f(x)− f(y)| ≤ |f |α|x− y|α for all x, y ∈ [0, 1].(5)

Given α = (α1, . . . , αd) ∈ (0, 1]d, the Hölder space Hα([0, 1]d) is the set of functions f on [0, 1]d

such that for all (x1, . . . , xd) ∈ (0, 1]d, j ∈ {1, . . . , d},

fj(·) = f(x1, · · · , xj−1, ·, xj+1, . . . xd)

satisfies (5) with some constant |fj|αj
independent of x1, . . . , xj−1, xj+1, . . . , xd. We then set

|f |α = max1≤j≤d |fj|αj
. When all the αj are equals, the Hölder space Hα([0, 1]d) is said to be

isotropic and anisotropic otherwise.

Choosing suitably the collection M of partitions allows to bound from above the right-hand
side of (4) when

√
s [0,1]d is Hölderian. More precisely, for each integer N ∈ N

⋆, let mN be the

regular partition of [0, 1] with N pieces

mN = {[0, 1/N [ , [1/N, 2/N [ , . . . , [(N − 1)/N, 1]} .

We may define for each multi-integer N = (N1, . . . , Nd) ∈ (N⋆)d,

mN =







d
∏

j=1

Ij , ∀j ∈ {1, . . . , d}, Ij ∈ mNj







.

We now choose M =
{

mN, N ∈ (N⋆)d
}

, ∆(mN) = |mN| to deduce (see, for instance, Lemma 4
and Corollary 2 of Birgé (2007) among numerous other references):

Corollary 2. There exists an estimator ŝ such that for all α ∈ (0, 1]d and
√
s [0,1]d ∈ Hα([0, 1]d),

E
[

h2 (s, ŝ)
]

≤ C

[

∣

∣

∣

√
s [0,1]d

∣

∣

∣

2d
d+2ᾱ

α

n−
2ᾱ

2ᾱ+d + n−1

]

,
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where ᾱ stands for the harmonic mean of α

1

ᾱ

=
1

d

d
∑

i=1

1

αi
,

and where C is a positive constant depending only on d.

The estimator ŝ achieves therefore the optimal rate of convergence over the anisotropic Hölder
classes Hα([0, 1]d), α ∈ (0, 1]d. It is moreover adaptive since its construction does not involve
the smoothness parameter α.

2.5.2. Besov spaces. The preceding result may be generalized to the Besov classes under a
mild assumption on the design density.

We refer to Section 2.3 of Akakpo (2012) for a precise definition of the Besov spaces. Accord-
ing to the notations developed in this paper, Bα

q (L
p([0, 1]d)) stands for the Besov space with

parameters p > 0, q > 0, and smoothness index α ∈ (R⋆
+)

d. We denote its semi norm by | · |α,p,q.
This space is said to be homogeneous when p ≥ 2 and inhomogeneous otherwise. It is said to
be isotropic when all the αj are equals and anisotropic otherwise. We now set for p ∈ (0,+∞],

B
α(Lp([0, 1]d)) =



















Bα

∞(Lp([0, 1]d)) if p ∈ (0, 1]

Bα

p (L
p([0, 1]d)) if p ∈ (1, 2)

Bα

∞(Lp([0, 1]d)) if p ∈ [2,+∞)

Hα([0, 1]d) if p = ∞

and denote by | · |α,p the semi norm associated to the space Bα(Lp([0, 1]d)).

The algorithm of Akakpo (2012) provides a collection M of partitions m that allows to bound
the right-hand side of (4) from above when

√
s [0,1]d belongs to a Besov space. More precisely:

Corollary 3. Suppose that the (possibly unknown) density fX of Xi is upper bounded by a
(possibly unknown) constant κ and that ν is the Lebesgue measure.

Then, there exists an estimator ŝ such that, for all p ∈ (2d/(d + 2),+∞], α ∈ (0, 1)d, ᾱ >
d(1/p − 1/2)+ and

√
s [0,1]d ∈ Bα(Lp([0, 1]d)),

E
[

h2 (s, ŝ)
]

≤ C

[

∣

∣

∣

√
s [0,1]d

∣

∣

∣

2d
d+2ᾱ

α,p
n−

2ᾱ
2ᾱ+d + n−1

]

,(6)

where C > 0 depends only on κ,d,α,p and where ᾱ denotes the harmonic mean of α.

Remark: the control of the bias term h(s, Vm) in (4) naturally involves a smoothness assump-
tion on the square root of s instead of s. However, the regularity of the square root of s may be
deduced from that of s. Indeed, we can prove that if s ∈ Bα

q (L
p([0, 1]d)) with α ∈ (0, 1)d then

√
s ∈ B

α/2
2q (L2p([0, 1]d)) and |√s|

α/2,2p,2q ≤
√

|s|α,p,q. If, additionally, s is positive on [0, 1]d,

then
√
s also belongs to Bα

q (L
p([0, 1]d)) and

|
√
s|α,p,q ≤

|s|α,p,q

2
√

infx∈[0,1]d s(x)
.
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Under the assumption of Corollary 3, we deduce that if s ∈ Bα

∞(Lp([0, 1]d)) for some p ∈
(2d/(d + 2),+∞], α ∈ (0, 1)d, ᾱ > d(1/p − 1/2)+,

E
[

h2(s, ŝ)
]

≤ Cmin





















∣

∣

∣
s [0,1]d

∣

∣

∣

α,p,∞
(

infx∈[0,1]d s(x)
)1/2







2d
d+2ᾱ

n−
2ᾱ

2ᾱ+d ,
∣

∣

∣s [0,1]d

∣

∣

∣

d
d+ᾱ

α,p,∞
n−

ᾱ

ᾱ+d , n−1















,

where C > 0 depends only on κ,d,α,p.

3. Model selection

The construction of adaptive and optimal estimators over Hölder and Besov classes follows
from the oracle inequality (4). This inequality is itself deduced from Theorem 1. Actually, this
latter theorem can be applied in a different way to deduce a more general oracle inequality. We
can then derive adaptive and (nearly) optimal estimators over more general classes of functions.

3.1. A general model selection theorem. From now on, the following assumption holds.

Assumption 1. The (possibly unknown) density fX of Xi is bounded above by a (possibly
unknown) constant κ. Moreover, ν(A1) ≤ 1.

Let L2(A, ν⊗µ) be the space of square integrable functions on A with respect to the product
measure ν ⊗ µ endowed with the distance

d22(f, f
′) =

∫

A

(

f(x, y)− f ′(x, y)
)2

dν(x) dµ(y) for all f, f ′ ∈ L
2(A, ν ⊗ µ).

We say that a subset V of L2(A, ν ⊗ µ) is a model if it is a finite dimensional linear space.

The discretization trick described in Section 4.2 of Sart (2014) can be adapted to our statistical
setting. It leads to the theorem below.

Theorem 5. Suppose that Assumption 1 holds. Let V be an at most countable collection of
models. Let ∆ ≥ 1 be a map on V satisfying

∑

V ∈V

e−∆(V ) ≤ 1.

Then, there exists an estimator ŝ such that for all ξ > 0

P

[

h2(s, ŝ) ≤ C

(

inf
V ∈V

{

κd22
(√
s, V

)

+
∆(V ) + dim(V ) log n

n

}

+
κ

n2
+ ξ

)]

≥ 1− e−nξ,(7)

where C > 0 is universal. In particular,

E
[

h2(s, ŝ)
]

≤ C ′ inf
V ∈V

{

d22
(√
s, V

)

+
∆(V ) + dim(V ) log n

n

}

,

where C ′ > 0 depends only on κ.
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As in Theorem 1, the condition
∑

V ∈V e
−∆(V ) ≤ 1 has a Bayesian flavour since it can be inter-

preted as a (sub)-probability on V. When V does not contain too many models per dimension,
we can set ∆(V ) = (dimV ) log n, in which case (7) becomes

P

[

h2(s, ŝ) ≤ C ′′

(

inf
V ∈V

{

κd22
(√
s, V

)

+
dim(V ) log n

n

}

+
κ

n2
+ ξ

)]

≥ 1− e−nξ,

where C ′′ is universal.

This theorem is more general than Corollary 1 since it enables us to deal with more general
models V . Moreover, it provides a deviation bound for h2(s, ŝ), which is not the case of Corol-
lary 1. As a counterpart, it requires an assumption on the marginal density fX and the bound
involves a logarithmic term and κ.

Another difference between this theorem and Corollary 1 lies in the computation time of the
estimators. The estimator of Corollary 1 may be built in practice in a reasonable amount of
time if |M| is not too large. On the opposite, the procedure leading to the above estimator
(which is described in the proof of the theorem) is numerically very expensive, and it is unlikely
that it could be implemented in a reasonable amount of time. This estimator should therefore
be only considered for theoretical purposes.

3.2. From model selection to estimation. It is recognized that a model selection theorem
such as Theorem 5 is a bridge between statistics and approximation theory. Indeed, it remains
to choose models with good approximation properties with respect to the assumptions we wish
to consider on s to automatically derive a good estimator ŝ.

A convenient way to model these assumptions is to consider a class F of functions of L2(A, ν⊗
µ) and to suppose that

√
s A belongs to F . The aim is then to choose (V,∆) and to bound

εF (f) = inf
V ∈V

{

d22 (f, V ) +
∆(V ) + dim(V ) log n

n

}

for all f ∈ F

from above since

E
[

h2(s, ŝ)
]

≤ C ′εF (
√
s)

P
[

h2(s, ŝ) ≤ C ′′εF (
√
s) + C ′′′ξ

]

≥ 1− e−nξ for all ξ > 0

where C ′, C ′′ depend only on κ and where C ′′′ is universal. This work has already been carried
out in the literature for different classes F of interest. The flexibility of our approach enables
the study of various assumptions as illustrated by the three examples below. We refer to Sart
(2014); Baraud and Birgé (2014) for additional examples. In the remainder of this section, µ
and ν stand for the Lebesgue measure.

Besov classes. We suppose that X × Y = R
d, A = [0, 1]d and that F is the class of smooth

functions defined by

F = B([0, 1]d) =
⋃

p∈(0,+∞)











⋃

α∈(0,+∞)d

ᾱ>d(1/p−1/2)+

B
α(Lp([0, 1]d))











.
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It is then shown in Sart (2014) that one can choose a collection V provided by Theorem 1
of Akakpo (2012) to get:

for all f ∈ B([0, 1]d), εF (f) ≤ C

[

|f |2d/(d+2ᾱ)
α,p

(

log n

n

)2ᾱ/(2ᾱ+d)

+
log n

n

]

,(8)

where p ∈ (0,+∞), α ∈ (0,+∞)d, ᾱ > d(1/p − 1/2)+ are such that f ∈ Bα(Lp([0, 1]d)) and
where C > 0 depends only on d, p, α.

With this choice of models, the estimator ŝ of Theorem 5 converges at the expected rate
(up to a logarithmic term) for the Hellinger deterministic loss h over a very wide range of
possibly inhomogeneous and anisotropic Besov spaces. It is moreover adaptive with respect to
the (possibly unknown) regularity index α of

√
s [0,1]d .

Regression model. We can also tackle the celebrated regression model Yi = g(Xi)+εi where g
is an unknown function and where εi is an unobserved random variable. For the sake of simplicity,
X = Y = R, A1 = A2 = [0, 1]. The conditional density s is of the form s(x, y) = ϕ (y − g(x))
where ϕ is the density of εi with respect to the Lebesgue measure.

Since ϕ and g are unknown, we can, for instance, suppose that these functions are smooth,
which amounts to saying that

√
s [0,1]2 belongs to

F =
⋃

α>0

{f, ∃φ ∈ Hα(R),∃g ∈ B([0, 1]), ‖g‖∞ <∞, ∀x, y ∈ [0, 1], f(x, y) = φ(y − g(x))} .

Here, Hα(R) stands for the space of Hölderian functions on R with regularity index α ∈
(0,+∞) and semi norm | · |α,∞. The notation ‖ · ‖∞ stands for the supremum norm: ‖g‖∞ =
supx∈[0,1] |g(x)|. An upper bound for εF (f) may be found in Section 4.4 of Sart (2014). Actually,
we show in Section 4.6 that this bound can be slightly improved. To be more precise, the result
is the following: for all α > 0, p ∈ (0,+∞], β > (1/p − 1/2)+, φ ∈ Hα(R), g ∈ Bβ(Lp([0, 1])),
such that ‖g‖∞ <∞, and all function f ∈ F of the form f(x, y) = φ(y − g(x)),

εF (f) ≤ C1

(

log n

n

)
2β(α∧1)

2β(α∧1)+1

+ C2

(

log n

n

)
2α

2α+1

,(9)

where C1 depends only on p, β, α, |g|β,p, ‖g‖∞, |φ|α∧1,∞ and where C2 depends only on α,
‖g‖∞, |φ|α,∞.

In particular, if φ is more regular than g in the sense that α ≥ β∨1, then the rate for estimating
the conditional density s is the same as the one for estimating the regression function g (up to
a logarithmic term). As shown in Sart (2014), this rate is always faster than the rate we would
obtain under smoothness assumptions only that would ignore the specific form of s.

Remark. The reader could find in Sart (2014) a bound for εF when F corresponds to the
heteroscedastic regression model Yi = g1(Xi) + g2(Xi)εi, where g1, g2 are smooth unknown
functions.

A single index type model. In this last example, we investigate the situation in which the
explanatory random variables Xi lie in a high dimensional linear space, say X = R

d1 with d1
large. On the contrary, the random variables Yi lie in a small dimensional linear space, say
Y = R

d2 with d2 small. Our aim is then to estimate s on A = A1 ×A2 = [0, 1]d1 × [0, 1]d2 .
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It is well known (and this appears in (8)) that the curse of dimensionality prevents us to
get fast rate of convergence under pure smoothness assumptions on s. A solution to overcome
this difficulty is to use a single index approach as proposed by Hall and Yao (2005); Fan et al.
(2009), that is to suppose that the conditional distribution L(Yi | Xi = x) depends on x through
an unknown parameter θ ∈ R

d1 . More precisely, we suppose in this section that s is of the form
s(x, y) = ϕ (< θ, x >, y) where < ·, · > denotes the usual scalar product on R

d1 and where ϕ
is a smooth unknown function. Without loss of generality, we can suppose that θ belongs to
the unit ℓ1 ball of Rd1 denoted by B1(0, 1). We can reformulate these different assumptions by
saying that

√
s [0,1]d1+d2 belongs to the set

F =
⋃

α∈(0,+∞)1+d2

{

f, ∃g ∈ Hα([0, 1]1+d2),∃θ ∈ B1(0, 1),

∀(x, y) ∈ [0, 1]d1+d2 , f(x, y) = g(< θ, x >, y)
}

.

A collection of models V possessing nice approximation properties with respect to the elements f
of F can be built by using the results of Baraud and Birgé (2014). We prove in Section 4.6 that
we can bound εF (f) as follows: for all α ∈ (0,+∞)1+d2 , g ∈ Hα([0, 1]1+d2), θ ∈ B1(0, 1), and
all function f ∈ F of the form f(x, y) = g(< θ, x >, y),

εF (f) ≤ C1 |g|
2(1+d2)
1+d2+2ᾱ
α,∞

(

log n

n

) 2ᾱ
2ᾱ+1+d2

+ C2d1
log n ∨ log

(

|g|2α1∧1,∞/d1
)

n
,(10)

where C1 depends only on d2, α, and where C2 depends only on d2, α1. Although s is a function
of d1 + d2 variables, the rate of convergence of ŝ corresponds to the estimation rate of a smooth
function g of 1 + d2 variables only (up to a logarithmic term).

4. Proofs

4.1. Proof of Theorem 1.

Lemma 1. For all f, f ′ ∈ S, and ξ > 0, there exists an event Ωξ(f, f
′) such that P [Ωξ(f, f

′)] ≥
1− e−nξ and on which:

(1− ε) h2
(

s, f ′
)

+ T
(

f, f ′
)

≤ (1 + ε) h2 (s, f) + L1ξ,

where L1 > 0, ε ∈ (0, 1) are positive universal constants.

Proof. Let ψ1 and ψ2 be the functions defined on (R+)
2 by

ψ1(x, y) =

√
y −√

x√
x+ y

ψ2(x, y) =

√

x+ y

2
−
(√
x+

√
y
)

where the convention 0/0 = 0 is used. Let

T1,i(f, f
′) = ψ1

(

f(Xi, Yi), f
′(Xi, Yi)

)

T2,i(f, f
′) =

1√
2

∫

A2

ψ2

(

f(Xi, y), f
′(Xi, y)

)

(

√

f ′(Xi, y)−
√

f(Xi, y)
)

dµ(y).
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We decompose T (f, f ′) as

T (f, f ′) =
1

n

n
∑

i=1

(

T1,i(f, f
′) + T2,i(f, f

′)
)

and define Z(f, f ′) = T (f, f ′)− E[T (f, f ′)].

We need the claim below whose proof requires the same arguments than those developed in
the proofs of Corollary 1 and Proposition 3 of Baraud (2011). As these arguments are short, we
make them explicit at the end of this section to make the paper self contained.

Claim 1. For all f, f ′ ∈ S,
(√

2− 1
)

h2
(

s, f ′
)

+ T
(

f, f ′
)

≤
(

1 +
√
2
)

h2 (s, f) + Z
(

f, f ′
)

(11)

E
[

T 2
1,i

(

f, f ′
)]

≤ 6
[

h2(s, f) + h2(s, f ′)
]

.(12)

By using Cauchy-Schwarz inequality,

(

T2,i(f, f
′)
)2 ≤

(∫

A2

(

ψ2

(

f(Xi, y), f
′(Xi, y)

))2
dµ(y)

)

×
(

1

2

∫

A2

(

√

f ′(Xi, y)−
√

f(Xi, y)
)2
dµ(y)

)

.(13)

Note that the function

z ∈ [0,∞) 7→
√
1 + z

1 +
√
z

is bounded below by 1/
√
2 and bounded above by 1. Therefore, for all z ≥ 0,

1√
2
≤

√
1 + z

1 +
√
z
≤ 1 ⇐⇒ 1 +

√
z

2
≤
√

1 + z

2
≤ 1 +

√
z√

2

⇐⇒ −1 +
√
z

2
≤
√

1 + z

2
− (1 +

√
z) ≤ 1−

√
2√

2

(

1 +
√
z
)

=⇒
∣

∣

∣

∣

∣

√

1 + z

2
− (1 +

√
z)

∣

∣

∣

∣

∣

≤ 1 +
√
z

2
.

For all x, y ≥ 0, we derive from this inequality with z = x/y that

|ψ2(x, y)| ≤
√
x+

√
y

2
for all x, y ≥ 0.

Thereby,

(ψ2(x, y))
2 ≤ (

√
x+

√
y)2

4
≤ x+ y

2
,

which together with f, f ′ ∈ L(A,µ) and (13) yields

E

[

(

T2,i(f, f
′)
)2
]

≤ h2(f, f ′)

≤ 2h2(s, f) + 2h2(s, f ′).
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By using (12), we get

E

[

(

T1,i(f, f
′) + T2,i(f, f

′)
)2
]

≤ 2E
[

(

T1,i(f, f
′)
)2

+
(

T2,i(f, f
′)
)2
]

≤ 16h2(s, f) + 16h2(s, f ′).

Now, T1,i(f, f
′) ≤ 1 as ψ1 is bounded by 1 and

T2,i(f, f
′) ≤ 1√

2

∫

A2

∣

∣

∣

∣

∣

√

f ′(Xi, y) +
√

f ′(Xi, y)

2

∣

∣

∣

∣

∣

∣

∣

∣

√

f ′(Xi, y)−
√

f(Xi, y)
∣

∣

∣
dµ(y)

≤ 1√
2

∫

A2

f ′(Xi, y) + f(Xi, y)

2
dµ(y)

≤ 1√
2
.

Bernstein’s inequality and more precisely equation (2.20) of Massart (2003) shows that for all
ξ > 0,

P

[

Z(f, f ′) ≤
√

32 (h2(s, f) + h2(s, f ′)) ξ + (1 + 1/
√
2)ξ/3

]

≥ 1− e−nξ.

Using now that

2
√
xy ≤ αx+ α−1y for all x, y ≥ 0 and α > 0,

we get with probability larger than 1− e−nξ,

Z(f, f ′) ≤ α
√
8
(

h2(s, f) + h2(s, f ′)
)

+
(

(1 + 1/
√
2)/3 +

√
8α−1

)

ξ.

Therefore, we deduce from (11),
(√

2− 1− α
√
8
)

h2
(

s, f ′
)

+ T
(

f, f ′
)

≤
(√

2 + 1 + α
√
8
)

h2 (s, f) +
(

(1 + 1/
√
2)/3 +

√
8α−1

)

ξ.

It remains to choose α to complete the proof. Any value α ∈ (0, (
√
2− 1)/

√
8) works. �

Lemma 2. For all ξ > 0 and f ∈ S, there exists an event Ωξ(f) such that P [Ωξ(f)] ≥ 1− e−nξ

and on which:

∀f ′ ∈ S, (1− ε) h2
(

s, f ′
)

+ T
(

f, f ′
)

≤ (1 + ε) h2 (s, f) + L1
∆̄(f ′)

n
+ L1ξ,(14)

where L1 > 0, ε ∈ (0, 1) are given in Lemma 1. Moreover, there exists an event Ωξ such that

P [Ωξ] ≥ 1− e−nξ and on which:

∀f, f ′ ∈ S, (1− ε) h2
(

s, f ′
)

+ T
(

f, f ′
)

≤ (1 + ε) h2 (s, f) + L1
∆̄(f ′)

n
+ L1

∆̄(f)

n
+ L1ξ.(15)

Proof. The result follows easily from Lemma 1 by setting

Ωξ(f) =
⋂

f ′∈S

Ω
ξ+

∆̄(f ′)
n

(f, f ′) and Ωξ =
⋂

f∈S

Ω
ξ+ ∆̄(f)

n

(f).

�



16 MATHIEU SART

Lemma 3. Set L0 = (1 + log 2)L1 where L1 is given in Lemma 1. For all ξ > 0, the following
holds with probability larger than 1− e−nξ: if L ≥ L0, for all f ∈ S,

(1− ε)h2(s, f)−R1(ξ) ≤ γ(f) + L
∆̄(f)

n
≤ (1 + ε)h2(s, f) + 2L

∆̄(f)

n
+R2(ξ)(16)

where

R1(ξ) = inf
f ′∈S

{

(1 + ε)h2(s, f ′) + L
∆̄(f ′)

n

}

+ c1ξ

R2(ξ) = −(1− ε)h2(s, S) + c2ξ

and where ε is given in Lemma 1, and c1 and c2 are universal positive constants (c1 = 2L1 and
c2 = L1).

Proof. Let g ∈ S be such that

(1 + ε)h2 (s, g) + L
∆̄(g)

n
≤ inf

f ′∈S

{

(1 + ε)h2
(

s, f ′
)

+ L
∆̄(f ′)

n

}

+ L1ξ.

We shall show that (16) holds on the event Ω
ξ+ log 2

n

(g) ∩ Ω
ξ+ log 2

n

. We derive from (15) that for

all f, f ′ ∈ S,

(1− ε) h2
(

s, f ′
)

+

(

T
(

f, f ′
)

− L
∆̄(f ′)

n

)

≤ (1 + ε) h2 (s, f) + L1
∆̄(f)

n
+ L1

log 2

n
+ L1ξ

≤ (1 + ε) h2 (s, f) + L
∆̄(f)

n
+ L1ξ,

which in particular implies

γ(f) ≤ (1 + ε) h2 (s, f) + L
∆̄(f)

n
− (1− ε)h2(s, S) + L1ξ

≤ (1 + ε) h2 (s, f) + L
∆̄(f)

n
+R2(ξ).

This proves the right inequality of (16). We now turn to the left one. We use (14) to get for all
f ∈ S,

(1− ε) h2 (s, f) ≤ (1 + ε) h2 (s, g) + T (f, g) + L1
∆̄(f)

n
+ L1

log 2

n
+ L1ξ

≤ (1 + ε) h2 (s, g) + L
∆̄(g)

n
+

(

T (f, g)− L
∆̄(g)

n

)

+ L
∆̄(f)

n
+ L1ξ

≤ (1 + ε) h2 (s, g) + L
∆̄(g)

n
+ γ(f) + L

∆̄(f)

n
+ L1ξ

≤ inf
f ′∈S

{

(1 + ε)h2
(

s, f ′
)

+ L
∆̄(f ′)

n

}

+ γ(f) + L
∆̄(f)

n
+ 2L1ξ.

This ends the proof. �

The computations preceding Theorem 1 finally complete its proof. �
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Proof of Claim 1. Define the function g = (f + f ′)/2 and the measure ζ by

dζ(x, y) = fX(x) dν(x) dµ(y).

We have,

E
[

T
(

f, f ′
)]

=
1√
2

∫

A

√
f ′ −

√
f√

g
s dζ +

1√
2

∫

A

√
g
(

√

f ′ −
√

f
)

dζ +
1√
2

∫

A

(

f − f ′
)

dζ

=
1√
2

(

∫

A

√

f ′

g
s dζ +

∫

A

√

gf ′ dζ −
∫

A
f ′ dζ

)

− 1√
2

(

∫

A

√

f

g
s dζ +

∫

A

√

gf dζ −
∫

A
f dζ

)

.

Now,

h2(s, f ′)− h2(s, f) =

(
∫

A

√

sf dζ − 1

2

∫

A
f dζ

)

−
(
∫

A

√

sf ′ dζ − 1

2

∫

A
f ′ dζ

)

= − 1√
2
E
[

T (f, f ′)
]

+
1

2

(

∫

A

√

f ′

g
s dζ +

∫

A

√

gf ′ dζ − 2

∫

A

√

sf ′ dζ

)

−1

2

(

∫

A

√

f

g
s dζ +

∫

A

√

gf dζ − 2

∫

A

√

sf dζ

)

= − 1√
2
E
[

T (f, f ′)
]

+
1

2

∫

A

√

f ′

g

(√
s−√

g
)2

dζ − 1

2

∫

A

√

f

g

(√
s−√

g
)2

dζ

≤ − 1√
2
E
[

T (f, f ′)
]

+
1

2

∫

A

√

f ′

g

(√
s−√

g
)2

dζ.

By using
√

f ′/g ≤
√
2, and a concavity argument,

1

2

∫

A

√

f ′

g

(√
s−√

g
)2

dζ ≤
√
2h2(s, g)

≤ 1√
2

(

h2(s, f) + h2(s, f ′)
)

.

We now derive from −E [T (f, f ′)] = −T (f, f ′) + Z(f, f ′) that,

h2(s, f ′)− h2(s, f) ≤ −T (f, f ′) + Z(f, f ′)√
2

+
1√
2

(

h2(s, f) + h2(s, f ′)
)

.

This proves (11).
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We now turn to the proof of (12):

E
[

T 2
1,i

(

f, f ′
)]

=
1

2

∫

A

(√
f ′ −

√
f
)2

g
s dζ

=
1

2

∫

A

(

√

f ′ −
√

f
)2
(√

s−√
g

√
g

+ 1

)2

dζ

≤
∫

A

(√
f ′ −

√
f
)2

g

(√
s−√

g
)2

dζ +

∫

A

(

√

f ′ −
√

f
)2

dζ.

Now, (
√
f ′ −

√
f)2/g ≤ 2 and hence,

E
[

T 2
1,i

(

f, f ′
)]

≤ 2

∫

A

(√
s−√

g
)2

dζ +

∫

A

(

√

f ′ −
√

f
)2

dζ

≤ 4h2(s, g) + 2h2(f, f ′)

≤ 4h2(s, g) + 4h2(s, f) + 4h2(s, f ′).

By using a concavity argument, h2(s, g) ≤ 1/2(h2(s, f) + h2(s, f ′)). Finally,

E
[

T 2
1,i

(

f, f ′
)]

≤ 6
[

h2(s, f) + h2(s, f ′)
]

,

which proves (12). �

4.2. Proof of Proposition 2. As f belongs to L
1
+(A, ν⊗µ), Fubini’s theorem says that there

exists A′
1 ⊂ A1 such that ν(A1 \ A′

1) = 0 and such that

∀x ∈ A′
1,

∫

A2

f(x, y) dµ(y) <∞.

Let (L2(A2, µ), ‖ · ‖) be the linear space of square integrable functions on A2 with respect to µ.

For all x ∈ A′
1,
√

f(x, ·) belongs to L
2(A2, µ) and

√

π(f)(x, y) =

√

f(x, y)

max
(

‖
√

f(x, ·)‖, 1
) for all (x, y) ∈ A′

1 ×A2.

Note that
√

π(f)(x, ·) is the projection of
√

f(x, ·) onto the unit ball {g ∈ L
2(A2, µ), ‖g‖ ≤ 1}.

As the projection is Lipschitz continuous,
∥

∥

∥

√

π(s)(x, ·) −
√

π(f)(x, ·)
∥

∥

∥

2
≤
∥

∥

∥

√

s(x, ·)−
√

f(x, ·)
∥

∥

∥

2
for all x ∈ A′

1.

As ‖
√

s(x, ·)‖ ≤ 1,
√

π(s)(x, ·) =
√

s(x, ·) and hence
∥

∥

∥

√

s(x, ·)−
√

π(f)(x, ·)
∥

∥

∥

2
≤
∥

∥

∥

√

s(x, ·)−
√

f(x, ·)
∥

∥

∥

2
for all x ∈ A′

1.

By integrating both inequalities with respect to x,
∫

A′

1

∫

A2

(

√

s(x, ·)−
√

π(f)(x, y)
)2

dν(x) dµ(y) ≤
∫

A′

1

∫

A2

(

√

s(x, ·)−
√

f(x, y)
)2

dν(x) dµ(y)

≤ 2h2(s, f).

Since ν(A1 \ A′
1) = 0, the left-hand side of the above inequality is merely 2h2(s, π(f)), which

proves the proposition. �



ESTIMATING THE CONDITIONAL DENSITY BY HISTOGRAMS AND MODEL SELECTION 19

4.3. Proof of Proposition 3. Let for each K ∈ m, IK ⊂ A1 and JK ⊂ A2 be such that
K = IK × JK . Let I = {IK , K ∈ m}, and for each I ∈ I, let JI = {J, I × J ∈ m}. The
partition m can be rewritten as

m =
⋃

I∈I

{I × J, J ∈ JI} .

Remark that

|m| =
∑

I∈I

|JI |.

We now introduce for all I ∈ I and J ∈ JI ,

N(I × J) =

n
∑

i=1

1I (Xi)1J (Yi) and M(I) =

n
∑

i=1

1I (Xi).

With these notations, the estimator ŝm becomes

ŝm =
∑

I∈I
J∈JI

N(I × J)

M(I)µ(J)
1I×J .

We define

s̄m =
∑

I∈I
J∈JI

E[N(I × J)]

E[M(I)]µ(J)
1I×J ,

s⋆m =
∑

I∈I
J∈JI

N(I × J)

E[M(I)]µ(J)
1I×J .

We use the triangular inequality to get

E
[

h2(s, ŝm)
]

≤ 2h2(s, s̄m) + 4E
[

h2(s̄m, s
⋆
m)
]

+ 4E
[

h2(s⋆m, ŝm)
]

.(17)

It remains to control both of the three terms appearing in the right-hand side of the above
inequality. The first term can be upper bounded thanks to Lemma 2 of Baraud and Birgé
(2009):

h2(s, s̄m) ≤ 2h2(s, Vm).(18)

Now,

h2(s̄m, s
⋆
m) =

1

2n

∑

I∈I
J∈JI

(
√

E[N(I × J)]

E[M(I)]µ(J)
−
√

N(I × J)

E[M(I)]µ(J)

)2

E[M(I)]µ(J)

=
1

2n

∑

I∈I
J∈JI

(

√

E[N(I × J)]−
√

N(I × J)
)2

≤ 1

2n

∑

I∈I
J∈JI

(E[N(I × J)]−N(I × J))2

E[N(I × J)]
.
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By taking the expectation of both sides,

E
[

h2(s̄m, s
⋆
m)
]

≤ 1

2n

∑

I∈I
J∈JI

var [N(I × J)]

E[N(I × J)]
≤ 1

2n

∑

I∈I
J∈JI

1 ≤ |m|
2n

.(19)

As to the third term,

h2(ŝm, s
⋆
m) =

1

2n

∑

I∈I
J∈JI

(
√

N(I × J)

M(I)µ(J)
−
√

N(I × J)

E[M(I)]µ(J)

)2

E[M(I)]µ(J)

=
1

2n

∑

I∈I
J∈JI

(

√

E[M(I)]−
√

M(I)
)2 N(I × J)

M(I)

=
1

2n

∑

I∈I

(

√

E[M(I)]−
√

M(I)
)2 ∑

J∈JI

N(I × J)

M(I)

≤ 1

2n

∑

I∈I

|JI |
(

√

E[M(I)]−
√

M(I)
)2
.

Therefore,

E
[

h2(ŝm, s
⋆
m)
]

≤ 1

2n

∑

I∈I

|JI |E
[

(M(I)− E[M(I)])2

E[M(I)]

]

≤ 1

2n

∑

I∈I

|JI |
var[M(I)]

E[M(I)]

≤ 1

2n

∑

I∈I

|JI |

≤ |m|
2n

.(20)

Gathering (17), (18), (19) and (20) leads to the result. �

4.4. Proof of Proposition 4. We use in this proof the notations introduced in the proof of
Proposition 3. We derive from the triangular inequality and (18),

h2(s, ŝm) ≤ 4h2(s, Vm) + 4h2(s̄m, s
⋆
m) + 4h2(s⋆m, ŝm),(21)

and it remains to bound the two last terms from above. Yet,

h2(s̄m, s
⋆
m) =

1

2n

∑

I∈I
J∈JI

(

√

E[N(I × J)]−
√

N(I × J)
)2
.

Theorem 8 of Baraud and Birgé (2009) (applied with A = 1 and κ = 1) shows that, for all x > 0,
with probability larger than 1− e−x,

∑

I∈I
J∈JI

(

√

E[N(I × J)]−
√

N(I × J)
)2

≤ 8|m|+ 202x.
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Now,

h2(ŝm, s
⋆
m) =

1

2n

∑

I∈I
J∈JI

(
√

N(I × J)

M(I)µ(J)
−
√

N(I × J)

E[M(I)µ(J)]

)2

E[M(I)]µ(J)

=
1

2n

∑

I∈I
J∈JI

(

√

E[M(I)]−
√

M(I)
)2 N(I × J)

M(I)

=
1

2n

∑

I∈I

(

√

E[M(I)]−
√

M(I)
)2 ∑

J∈JI

N(I × J)

M(I)

≤ 1

2n

∑

I∈I

(

√

E[M(I)]−
√

M(I)
)2
.

A new application of Theorem 8 of Baraud and Birgé (2009) shows that for all x > 0, with
probability larger than 1− e−x,

∑

I∈I

(

√

E[M(I)] −
√

M(I)
)2

≤ 8|I|+ 202x.

We then deduce from (21) that for all x > 0, with probability larger than 1− 2e−x,

h2(s, ŝm) ≤ 4h2(s, Vm) + 16
|m| + |I|

n
+ 808

x

n

The result follows with x = nξ + log 2. �

4.5. Proof of Theorem 5. Let, for each model V ∈ V, TV be a subset of V satisfying the two
following conditions:

- for all g ∈ V , there exists f ∈ TV such that d2(f, g) ≤ 1/n
-

|{f ∈ TV , d2(f, 0) ≤ 2}| ≤ (4n+ 1)dimV .

For instance, we can define TV as a maximal 1/n-separated subset of V in the metric space
(L2(A, ν ⊗ µ), d2) in the sense of Definition 5 of Birgé (2006). The bound on the cardinality is
then given by Lemma 4 of Birgé (2006). Let

SV =
{

f2+, f ∈ TV , d2(f, 0) ≤ 2
}

∪ {0} and S =
⋃

V ∈V

SV .

We now define the map ∆̄ on S by

∆̄(f) = inf
V ∈V
SV ∋f

{∆(V ) + log |SV |} .

Without loss of generality, we can assume that S ⊂ L(A,µ) (thanks to Proposition 2). Theorem 1
shows that there exists an estimator ŝ satisfying for all ξ > 0 and probability larger than 1−e−nξ,

h2(s, ŝ) ≤ c1 inf
f∈S

{

h2(s, f) + L
∆̄(f)

n

}

+ c2ξ.
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Hence,

h2(s, ŝ) ≤ c1 inf
V ∈V

{

h2(s, SV ) + L
∆(V ) + log |SV |

n

}

+ c2ξ

≤ c1 inf
V ∈V







κ inf
f∈TV

d2(f,0)≤2

d22(
√
s, f) + L

∆(V ) + log |SV |
n







+ c2ξ.

As d2(
√
s, 0) ≤ 1 and 0 ∈ SV ,

inf
f∈TV

d2(f,0)≤2

d2(
√
s, f) = inf

f∈TV

d2(
√
s, f)

≤ inf
f∈V

d2(
√
s, f) + 1/n.

Therefore,

h2(s, ŝ) ≤ c1 inf
V ∈V

{

2κd22(
√
s, V ) + 2

κ

n2
+ L

∆(V ) + log
(

1 + (4n+ 1)dimV
)

n

}

+ c2ξ

≤ C

(

inf
V ∈V

{

κd22(
√
s, V ) +

∆(V ) + (dimV ) log n

n

}

+
κ

n2
+ ξ

)

for C large enough. �

4.6. Structural assumptions. Theorem 2 and Corollary 1 of Baraud and Birgé (2014) are
useful tools to deal with structural assumptions. They show how to build collections V of linear
spaces V with good approximation properties with respect to composite functions f of the form
f = g◦u. Using these results is the strategy of Sart (2014) to get bounds on εF (f) for classes F

corresponding to structural assumptions on s. Nevertheless, this direct application of the results
of Baraud and Birgé (2014) (with τ = log n/n) leads to an unnecessary additional logarithmic
term in the risk bounds. A careful look at the proof of Theorem 2 of Baraud and Birgé (2014)
shows that the following result holds.

Theorem 6. Suppose that Assumption 1 holds and that ν⊗µ(A) = 1. Let l ∈ N
⋆ and L∞([0, 1]l)

be the set of bounded functions on [0, 1]l endowed with the supremum distance

d∞(g1, g2) = sup
x∈[0,1]l

|g2(x)− g1(x)| for g1, g2 ∈ L∞([0, 1]l).

Let U be the set of functions u = (u1, . . . , ul) going from A to [0, 1]l and

F =







g ◦ u, g ∈
⋃

α∈(0,1]l

Hα([0, 1]l), u ∈ U







.

Let F be an at most countable collection of finite dimensional linear subspaces F of L∞([0, 1]l)
endowed with a map ∆F ≥ 1 satisfying

∑

F∈F

e−∆F(F ) ≤ 1.

Let, for all j ∈ {1, . . . , l}, Tj be an at most countable collection of subsets T of L2(A, ν⊗µ). We
assume that each T is either a unit set, or a finite dimensional linear space. If T is a singleton,
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we set dimT = 0. If T is a non trivial linear space, dimT stands for its usual linear dimension.
We endow Tj with a non-negative map ∆Tj

satisfying
∑

T∈Tj

e
−∆Tj

(T ) ≤ 1.

Then, there exist a collection V and a map ∆ such that for all function f ∈ F of the form
f = g ◦ u, with g ∈ Hα([0, 1]l) for some α = (α1, . . . , αl) ∈ (0, 1]l, and u = (u1, . . . , ul) ∈ U ,

CεF (f) ≤
l
∑

j=1

inf
T∈Tj

{

l|gj |2αj
d
2αj

2 (uj , T ) +
∆Tj

(T ) + (dimT )Lj,T

n

}

+ inf
F∈F

{

d2∞(g, F ) +
∆F(F ) + (dimF ) log n

n

}

.

In the above inequality, C is a positive universal constant, gj , |gj |αj
are defined as explained in

Section 2.5.1, and Lj,T is defined when dimT > 0 by

Lj,T =
[

α−1
j log

(

nl|gj|2αj
/dim T

)]

∨ 1

≤ C ′
[

log n ∨ log
(

|gj |2αj
/dimT

)

∨ 1
]

for C ′ depending only on l and αj . When dimT = 0, Lj,T = 1.

The proof of (9) is almost the same as the one of Corollary 4 of Sart (2014). The only
difference is that we apply the above theorem in place of Theorem 2 of Baraud and Birgé (2014)
with τ = log n/n.

We now turn to the proof of (10). Note that a function f of the form f(x, y) = g(< θ, x >, y)
can be rewritten as f(x, y) = g(u1(x, y), u2(x, y), . . . , u1+d2(x, y)) where u1(x, y) =< θ, x > and
uj(x, y) = y for j ∈ {2, . . . , 1+d2}. There exists a pair (F,∆F) such that for all α ∈ (0,+∞)1+d2 ,

g ∈ Hα([0, 1]1+d2),

inf
F∈F

{

d2∞(g, F ) +
∆F(F ) + (dimF ) log n

n

}

≤ C1

[

|g|
2(1+d2)
1+d2+2ᾱ
α,∞

(

log n

n

) 2ᾱ
2ᾱ+1+d2

+
log n

n

]

for a constant C1 depending only on d2, α (see, for instance, Baraud and Birgé (2014)). Let for
θ ∈ R

d1 , uθ be the function defined by uθ(x, y) =< θ, x > and T1 be the linear space defined
by T1 = {uθ, θ ∈ R

d1}. We use the above theorem with l = 1 + d2, T1 = {T}, ∆T1(T ) = 1,
Tj = {{uj}}, ∆Tj

({uj}) = 0 for j ∈ {2, . . . , 1 + d2} to derive that for all α ∈ (0,+∞)1+d2 ,

g ∈ Hα([0, 1]1+d2), θ ∈ B1(0, 1), and all function f ∈ F of the form f(x, y) = g(< θ, x >, y),

εF (f) ≤ C1

[

|g|
2(1+d2)
1+d2+2ᾱ
α

(

log n

n

)
2ᾱ

2ᾱ+1+d2

+
log n

n

]

+C2d1
log n ∨ log

(

|g|2α1∧1/d1
)

n

where C1 depends only on d2, α and C2 depends only on α1 ∧ 1, d2. �
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