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Abstract. Statistical Model Checking (SMC) is a powerful and widely
used approach that consists in estimating the probability for a system to
satisfy a temporal property. This is done by monitoring a �nite number
of executions of the system, and then extrapolating the result by using
statistics. The answer is correct up to some con�dence that can be pa-
rameterized by the user. It is known that SMC mitigates the state-space
explosion problem and allows to approximate undecidable queries. The
approach has been implemented in several toolsets such as Plasma Lab,
and successfully applied in a wide range of diverse areas such as systems
biology, robotic, or automotive. In this paper, we add two new modest
contributions to the cathedral of results on SMC. The �rst contribution
is an algorithm that can be used to monitor changes in the probability
distribution to satisfy a bounded-time property at runtime. Concretely,
the algorithm constantly monitors the execution of the deployed system,
and rise a ag when it observes that the probability has changed sig-
ni�cantly. This is done by extending the applicability of the CUSUM
algorithm used in signal processing into the formal validation setting.
Our second contribution is to show how the programming interface of
Plasma Lab can be exploited in order to make SMC technology directly
available in toolsets used by designers. This integration is done by ex-
ploiting simulation facilities of design tools. Our approach thus di�ers
from the one adopted by other SMC/formal veri�cation toolsets which
assume the existence of formal semantics for the design language, as well
as a compiling chain to the rather academic one used by validation tool.
The concept results in the integration of Plasma Lab as a library of the
Simulink toolset. The contributions are illustrated by using Plasma Lab
to verify two Simulink case studies, modeling a fuel control system and
a pig shed.

Keywords: Satistical Model Checking, CUSUM, Monitoring, Optimi-
sation, MATLAB/Simulink

1 Introduction and Motivations

Complex systems such as cyber-physical systems are large-scale distributed sys-
tems, often viewed as networked embedded systems, where a large number of



computational components are deployed in a physical environment. Each com-
ponent collects information and o�ers services to its environment (e.g., environ-
mental monitoring and control, health-care monitoring and tra�c control). This
information is processed either at the component, in the network or at a remote
location (e.g., the base station), or in any combination of these.

Characteristic of nowadays complex systems is that they have to meet a mul-
titude of quantitative constraints, e.g., timing constraints, power consumption,
memory usage, communication bandwidth, QoS, and often under uncertainty of
the behavior of the environment. There is thus the need for new mathematical
foundation and supporting tools allowing to handle the combination of quantita-
tive aspects concerning, for example, time, stochastic behavior, hybrid behavior
including energy consumption. The main di�culties being that the state space of
nowadays systems is too large to be analyzed with classical validation technique.
Another problem being that the interleaving of information eventually leads to
undecidability.

In a series of recent works, the formal methods community has studied Sta-
tistical Model Checking techniques (SMC) [15,25,28,20] as a way to reason on
quantitative (potentially undecidable) complex problems. SMC can be seen as a
trade-o� between testing and formal veri�cation. The core idea of the approach
is to conduct some simulations of the system and then use results from the
statistic area in order to estimate the probability to satisfy a given property.
Of course, in contrast with an exhaustive approach, a simulation-based solu-
tion does not guarantee a correct result. However, it is possible to bound the
probability of making an error. Simulation-based methods are known to be far
less memory and time intensive than exhaustive ones, and are sometimes the
only option. SMC gets widely accepted in various research areas such as systems
biology [8,18] or software engineering, in particular for industrial applications.
There are several reasons for this success. First, it is very simple to implement,
understand and use. Second, it does not require extra modeling or speci�cation
e�ort, but simply an operational model of the system, that can be simulated
and checked against state-based properties. Third, it allows to verify properties
that cannot be expressed in classical temporal logics, for instance the one pre-
sented in [7]. SMC algorithms have been implemented in a series of tools such as
Ymer [28], PRISM [19], or UPPAAL [11]. Recently, we have implemented a series
of SMC techniques in a exible and modular toolset called Plasma Lab [5].

In this paper, we propose two new contributions to SMC. As usual with
SMC techniques, we focus on requirements that can be represented by bounded
temporal properties, i.e., properties that can be decided on a �nite sequence
of states. Classical SMC algorithms are interested in estimating the probabil-
ity to satisfy such a property starting from an initial state, which is done by
monitoring a �nite set of executions from this state. In this paper, we also con-
sider the case where one can only observe the current execution of the system.
In this context, we are interested in observing the evolution of the probability
to satisfy the property at successive positions of the execution, and detecting
positions where it drastically changes from original expectation. In summary,



our �rst contribution is a methodology that can be used to monitor changes
in probability distributions to satisfy a bounded property at runtime. Given a
possibly in�nite sequence of states that represents the continuous execution of
the system, the algorithm monitors the property at each position and rises a ag
when the proportion of satisfaction has changed signi�cantly. The latter can be
used to monitor, e.g., emergent behaviors. To achieve this objective, we adapt
CUSUM [23,3], an algorithm that can be used to detect changes in signal moni-
toring. Our ambition is not to propose a new version of CUSUM, but rather to
show how the algorithm can be used in the monitoring context. This is to our
knowledge the �rst application of CUSUM with SMC.

Our second contribution is to show how the programming interface of Plasma
Lab can be exploited in order to make SMC technology directly available in
toolsets used by designers. Our approach di�ers from the one adopted by other
SMC/formal veri�cation toolsets which assume the existence of formal semantics
for the design language, as well as a compiling chain to the rather academic
languages used by validation tool. The concept is illustrated with an integration
of Plasma Lab as a library of the Simulink toolset of the MATLAB environment.
Concretely, we show that the recently developed Plasma Lab can directly be
integrated as a Simulink library, hence o�ering the �rst in house tool for the
veri�cation of stochastic Simulink models { this tool completes the panoply of
validation toolsets already distributed with Simulink. Another advantage of our
approach is that any advance on SMC that we will implement within Plasma
Lab in the future will directly be available to the Simulink users.

Structure of the paper. The paper is organized as follows. In Section 2, we discuss
related work about formal veri�cation of Simulink models. In Section 3, we
introduce our formal model of systems and de�ne the statistical model checking
problems we want to solve. Section 4 discusses solutions to those problems.
Section 5 discusses the integration of Plasma Lab within Simulink. Section 6
and 7 illustrate our approach on two case-studies, modeled with Simulink and
veri�ed with Plasma Lab. Finally Section 8 concludes the paper.

2 Related Work

Simulink includes the Simulink Design Veri�er to formally verify and validate
the models and the generated code. The framework is based on the analysis tools
Polyspace [21] and Prover plug-in [24].

All the modeling is done using Simulink : Formal speci�cations (require-
ments), operational and structural speci�cations, and it is possible to anno-
tate the code with assertions. The di�erent analyses exploit the results of the
integrated analyzers (Polyspace & Prover Plug-in). To summarize, Polyspace
analyses the C-Code of the atomic components and Prover Plug-in veri�es the
operational speci�cation against the requirements and generate some counter-
examples when possible. The Framework can also generate some test cases for
di�erent covering mode (Modi�ed Condition/Decision Coverage).



Polyspace is a static analyzer for C/C++ code based on abstract interpre-
tation. Unlike Plasma Lab the analyses are dedicated to some special classes of
properties to ensure the C-Code executions are safe for the data handled. But,
Polyspace is not able to verify other kind of properties, like liveness properties.
It also has apparently no support for models with probabilistic behavior.

Prover Plug-in [24] is a model checker for the veri�cation of embedded sys-
tems, integrated circuits, and more generally for systems designed in languages
like Verilog, C, Simulink, . . . , and also for the UML modelling. A priori, the
checker only handles deterministic and sequential systems; it implies neither
parallelism, nor probabilities. It is however able to generate counter-examples if
the veri�cation of the property fails. Unlike Polyspace, Prover Plug-in is a general
model checker like Plasma Lab: it can be used for any kind of properties.

Other formal veri�cation approaches imply translating the Simulink model in
the speci�c language of the model checker. Simulink models can be semantically
translated to hybrid automata [1]. However the model checking problem of these
models is in general undecidable and intractable for complex systems. More
e�cient translations can be achieved by restricting the type of blocks that can
be used in the Simulink models: in general by removing continuous behaviors
in order to obtain a �nite state machine. For instance Honeywell presents in
[22] a tool that translates certain Simulink models in the input language of the
model checker NuSMV [6]. [2] also presents a tool chain that translates Simulink
models in the input language of the LTL model checker DiViNE. This tool
chain uses the tool HiLiTe [12], also developed by Honeywell, that can perform
semantic analyses of Simulink models. Finally translations exists from Simulink
to synchronous languages, like Lustre in the tool SCADE. These translations
however are too restrictive to be applied to the avionics proposed by Honeywell
for instance [22]. Contrary to these model checking approach, SMC techniques
are not restricted by the model, and our Simulink plugin for Plasma Lab is able
to handle any type of Simulink and Stateow diagrams, with both continuous
and discrete behaviors.

A �rst experiment with SMC and Simulink was presented in [29]. Their ap-
proach consists in programming one SMC algorithm within the Simulink toolbox.
On the contrary, the exibility of our tool will allow us to incrementally add new
algorithms to the toolbox without new programming e�orts. The authors used
a Bayesian statistical analysis for verifying the Fault-Tolerant Fuel Control Sys-
tem, an example from the basic Simulink examples database. In the paper they
consider a version of the model where the failures are triggered following a Pois-
son distribution. We are able to use Plasma Lab to verify the same example in
Section 6 and we do not limit to veri�cation analyses since we also present in
Section 7 a case study on which we perform optimization and change detection.

Finally, our approach is also di�erent from the one in [9] that consists in
translating parts of Simulink models into the Uppaal language (which makes
it di�cult for analyzing counter examples). Therefore Plasma Lab for Simulink
o�ers the �rst integrated veri�cation tool for Simulink models with stochastic
information.



3 Systems and Problems

We denote R the set of real numbers andQ�0 the set of positive rational numbers.
Consider a set of states S and a set of state's variables SV . Assume that each
state variable x 2 SV is assigned to domain Dx, and de�ne the valuation function
V , such that V (s; x) 2 Dx is the value of x in state s. Consider also a time domain
T � R. We propose the following de�nition to capture the behavior of a large
class of stochastic systems.

De�nition 1 (Stochastic Process). A stochastic process (S; T ) is a family
of random variables X = fXt j t 2 Tg, each Xt having range S.

An execution for a stochastic process (S; T ) is any sequence of observations
fxt 2 S j t 2 Tg of the random variables Xt 2 X . It can be represented as a
sequence � = (s0; t0); (s1; t1); : : : ; (sn; tn), such that si 2 S and ti 2 T , with
time stamps monotonically increasing, e.g. ti < ti+1. Let 0 � i � n, we denote
�i = (si; ti); : : : ; (sn; tn) the su�x of � starting at position i. Let s 2 S, we
denote Path(s) the set of executions of X that starts in state (s; 0) (also called
initial state) and Pathn(s) the set of executions of length n.

In [28], Youness showed that the executions set of a stochastic process is a
measurable space, which de�nes a probability measure � over Path(s). The pre-
cise de�nition of � depends on the speci�c probability structure of the stochastic
process being studied. We now de�ne the general structure for stochastic discrete
event systems.

De�nition 2. A stochastic discrete event system (SDES) is a stochastic process
extended with initial state and variable assignments, i.e., Sys = hS; I; T; SV; V i,
where (S; T ) is a stochastic process, I � S is the set of initial states, SV is a
set of state variables and V is the valuation function.

We denote Path(Sys) the set of executions of Sys that starts from an initial
state in I. Properties over the executions of Sys are de�ned via the so-called
Bounded Linear Temporal Logic (BLTL) [4]. BLTL restricts Linear Temporal
Logic by bounding the scope of the temporal operators. Syntactically, we have

';'0 := true j x � v j ' ^ '0 j :' j X�t j ' U�t '
0

where ';'0 are BLTL formulas, x 2 SV , v 2 Dx and t 2 Q�0 and �2 f<;�
;=;�; >g. As usual, we de�ne F�t' � true U�t' and G�t' � :F�t:'. The
semantics of BLTL is de�ned with respect to an execution � = (s0; t0); (s1; t1);
: : : ; (sn; tn) of a SDES using the following rules:

{ � j= X�t ' i� 9i; i = maxfj j t0 � tj � t0 + tg and �i j= '
{ � j= '1 U�t '2 i� 9i; t0 � ti � t0 + t and �i j= '2
and 8j; 0 � j < i; �j j= '1

{ � j= '1 ^ '2 i� � j= '1 and � j= '2
{ � j= :' i� � 6j= '
{ � j= x � v i� V (s0; x) � v



{ � j= true

In the rest of the paper, we consider two problems that are 1. the quantitative
(optimization) problem for BLTL, and 2. the detection of changes. The �rst
problem has largely be discussed in SMC papers, and the second problem is a
new comer in the SMC area. The motivation to reintroduce the quantitative
problem is that it can be used to calibrate the detection algorithm.

3.1 Quantitative and Optimization Problems

Given a SDES Sys and a BLTL property ', the existence of a probability mea-
sure � over Path(Sys) allows to de�ne the probability measure Pr[Sys j= '] =
�f� 2 Path(Sys) j � j= 'g. The quantitative problem consists in computing the
value of Pr[Sys j= '].

We will also study the optimization problem, that is the one of �nding an
initial state that maximizes/minimizes the value of a given observation. Consider
a set O of observations over Sys. Each observation o 2 O is a function o :
Pathn(s)! Do that associates to each run of length n and starting at s a value
in a domain Do. We denote (~o)sn the average value of o(�) over all the executions
� 2 Pathn(s). The optimization problem for Sys is to determine an initial state
s 2 I that minimizes or maximizes the value (~o)sn, for all o 2 O.

As an example, an observation can simply be the maximal value of a given
parameter, like a cost or reward, along an execution. The average observation
then becomes the sum of those observations divided by the number of runs. In
this context, the optimization could be to �nd the initial state that minimizes
the value of the parameters.

3.2 Change Detection Problem

In this section, we monitor the system in order to detect an expected event by
looking at the variation of a probability measure over a set of samples of an
execution. Therefore, contrary to the previous SMC problems, we consider a
single execution on which we checked a BLTL property at regular intervals. On
this execution we want to determine the time at which the probability measure
of the BLTL property changes su�ciently to characterize an expected event on
the system.

More precisely, we consider a (potentially in�nite) execution � = (s0; t0); (s1; t1);
: : : ; (sn; tn); : : : of a system Sys. We monitor a BLTL property ' from each po-
sition (si; ti) of this execution (the monitoring involves a �nite sequence of states
as BLTL formulas are time bounded) and we compute an ingenious proportion
on the numbers of satisfaction and non satisfaction of the property. This propor-
tion is used to detect changes in the probability to satisfy the property at a given
point of the execution. Concretely, assuming that this probability is originally
p<k, we detect a change index in the execution when the probability becomes
p�k.



Example 1. Consider the �re�ghting services in city like London. Assume that
under normal tra�c conditions, the �remen can extinguish a �re within three
hours with a probability greater than 0:7. It is expected that this probability
decreases when the tra�c increases. The challenge is to detect the time t when
this change happens.

Formally, we consider a sequence of Bernoulli variables Xi such that Xi = 1
i� �i j= '. We de�ne that an execution � satis�es a change � = Pr[� j= '] � k,
i� Pr[Xi = 1]<k for ti < t and Pr[Xi = 1]�k for ti � t. Given an execution �,
we use � ! to denote the index i = (si; ti) in � at which the execution is subject
to the change. We assume an implicit change detection maximal time set by the
user. If no change is detected after this time has passed, then we set up the
evaluation of � to1. In case the execution is subject to several changes, we take
the �rst time. Using those notations, one can de�ne Boolean propositions over
changes and their respective time. One can also combine changes propositions
with BLTL formulas, providing that those propositions are not in the scope of
temporal operators. We now introduce extended BLTL change-based relations,
an extension of BLTL that incorporates a change detection operator.

De�nition 3. Given an execution � of Sys, an extended BLTL change relation
is de�ned as:

prop := let �1 = change and : : : and �n = change in �
change := Pr[� j= '] ? k

�; �0 := �i! � �j ! + t j �i! � t j '0 j � ^ �0 j :�

where k 2]0; 1[, t 2 Q�0, ? 2 f�;�g, �2 f<;�;=;�; >g, ' and '0 are BLTL
formulae, �i and �j are change identi�ers de�ned in the prop rule.

This extension allows us, e.g., to express conditions such as \if a change occurs
at time t, then the system shall reach a state x in less than 10 units of time".
The semantics of extended BLTL change relation easily follows from the one of
BLTL and the description of the change operator.

4 A Statistical Model Checking Approach

In this section, we detail our statistical model checking algorithmic solutions to
the problems described in Section 3. SMC solutions to the quantitative veri�ca-
tion and optimization problems are well-known and will only briey be surveyed.
SMC solution for extended BLTL change relations is new.

4.1 Quantitative Veri�cation

We �rst focus on the problem of computing the probability Pr[Sys j= '] for a
SDES Sys to satisfy a BLTL property '. With SMC we estimate this probability
using a number of statistically independent simulation traces of an executable



model. The idea is to monitor the property on each simulation, and to represent
the outcome of the ith monitoring with a Bernoulli variable Xi that takes the
value 1 if the execution satis�es the property and 0 otherwise. We then use an
algorithm from the statistic area to compute the probability of the Bernoulli vari-
able (which corresponds to the probability for the system to satisfy the property).
Those algorithms include Monte Carlo, or importance sampling/splitting [16].
Algorithms for monitoring BLTL properties on a given execution can be found
in [14]. In this paper, the quantitative problem will mainly be solved in the con-
text of calibrating a change algorithm as well as to validate BLTL properties
without change.

Optimization We now show that a simulation approach can also be used to
perform an optimization of the model by varying the model parameters and
evaluating the observable quantities to optimize. We consider a SEDS Sys, with
a set of initial states I, and a set of observations O and a bound n 2 N.

For each initial state s 2 I we perform N random simulations �i from
Pathn(s) and we compute the average value of the observed quantities at the
end of the simulations. Therefore, for each observation o 2 O we compute an
estimation 1

N

PN

i=1 o(�i) of the average value (~o)
s
n.

To solve the optimization problem, we must determine the con�gurations in
I that optimize (minimize or maximize) these quantities. When the problem is
de�ned with several observable quantities, we are faced with a multi-objective
problem, and the best con�gurations are then selected by computing the Pareto
frontier of the set of observations [10].

4.2 Change Detection with CUSUM

In this section, we consider SMC solutions for verifying extended BLTL proper-
ties with changes. We �rst present an SMC algorithm for change detection, and
then briey discuss the monitoring of extended BLTL. For change detection, we
resort to the CUSUM algorithm [23,3], whose principles have already been for-
malized in other contexts[26]. This algorithm, originally developed in the signal
theory world, is used to detect the probability changes during the execution of a
stochastic system. The main purpose of the change detection is to detect when
some changes in some parameters, not easily observable or measurable, will per-
turb the measures and the observations done over the system. The principle is
to compare the probability p when the system is working normally against the
probability p0 resulting of the change.

Let Sys be a SDES and � = (s0; t0); (s1; t1); : : : be an execution of Sys. We
consider the change � = Pr[� j= '] � k with ' a BLTL property and k 2]0; 1[.
Let X1, . . .XN be a �nite set of Bernoulli variables such that Xi takes the value
1 i� �i j= '. We note pn = Pr[Xi = 1ji <= n] the probability of satisfying '
from (s0; t0) to the state (sn; tn). We will use the CUSUM algorithm to decide
between the two following hypothesis:

{ H0 : 8 n; 0 � n � N; pn < k, i.e., no change occurs



{ H1 : 9 m; 0 � m � N such that the change occurs at time tm: 8n; 0 � n �
N , we have tn < tm ) pn < k and tn � tm ) pn � k.

We assume that we know the initial probability pinit < k of Pr[� j= '] before the
change occurs. One solution is to estimate this probability with the Monte Carlo
algorithm using an ideal version of the system in which not change occurs. The
CUSUM algorithm will use the two probabilities pinit and k to decide between
the two hypothesis and determine the time of the change, if it occurs.

Like the Sequential Probability Ratio Test (SPRT) [27,20], the CUSUM com-
parison is based on a likelihood-ratio test: it consists in computing the cumulative
sum Sn of the logarithm of the likelihood-ratios si over the sequence of samples
X1, . . .Xn and detecting the change decision as soon as Sn satis�es the stopping
rule.

Sn =

nX
i=1

si si =

8><
>:
ln k

pinit
; if Xi = 1

ln 1�k
1�pinit

; otherwise

The typical behavior of the cumulative sum Sn is a global decreasing before
the change, and a sharp increase after the change. Then the stopping rule's
purpose is to detect when the positive drift is su�ciently relevant to detect the
change. It consists in saving mn = min1�i�n Si, the minimal value of CUSUM,
and comparing it with the current value. If the distance is su�ciently great,
the stopping decision is taken, i.e., an alarm is raised at time ta = minftn :
Sn �mn � �g, where � is a sensitivity threshold.

The CUSUM proportion can only be computed during a �nite amount of
time, which is set by the user. In case there is no detection, we set ta = +1.
Note that we presented CUSUM monitoring for the case p � k, but it could be
set up for p � k by de�ning the stopping rule for the maximum value of CUSUM
instead.

CUSUM Calibration It is important to note that the likelihood-ratio test
assumes that the considered samples are independent. This assumption may
be di�cult to ensure over a single execution of a system, but several heuristic
solutions exist to guarantee independence. One of them consists in �nding a
location frequently visited during the execution of the system. Collecting exactly
one sample each time such a state is visited, ensures independence between
samples. In our context, such a state can be the initial location from which the
execution is constantly restarted. However this solution cannot be applied to
continuous-time systems. Another solution is to introduce delays between the
samples. In that case Monte Carlo SMC analyses can evaluate the correlation
between the samples, and help to select appropriate delays.

The CUSUM sensitivity depends on the choice of the threshold �. A smaller
value increases the sensitivity, i.e., the false alarms rate. A false alarm is a
change detection at a time when no relevant event actually occurs in the system.



Conversely, big values may delay the detection of the changes. The false alarms
rate of CUSUM is de�ned as E[ta], the expected time of an alarm raised by
CUSUM while the system is still running before the change occurs. Ideally, this
value must be the biggest as possible E[ta]! +1. The detection delay is de�ned
as the expected time between the actual change of time t and the alarm time
ta raised by CUSUM: E[ta � t j t < ta]. Ideally, this value has to be small as
possible. In Section 7, we will propose a heuristic that uses the quantitative
model checking problem in order to calibrate the algorithm.

The empirical way to choose the stopping rule One of the main di�culties
in applying CUSUM is to compute the minimal duration needed to trigger an
alarm. Indeed, the algorithm may be subjected to brief local changes that should
not impact the �nal result. Theoretically, the properties of the CUSUM are
based on the computation of the Average Run Length function (ARL) [3]. In
a very few cases, this function may be computed or approximated using some
approximating techniques (Wald or Siegmund) but most of the time, it is too
complex to be used and to deduce �. In this paper we propose a variant of the
methodology proposed in [26]. Our approach consists in exploiting Sys0, that
is a version of the system for which the change does not occur. We �rst compute
the probability pinit for this system to satisfy the property. We then compute
several CUSUM on Sys0 in order to compute the average frequency of a false
alarm. The latter is obtained by observing the mean time between positive drift
in the CUSUM as well as its duration in term of samples (observations of the
CUSUM ratio). We then compute the minimal sample duration to exceed the
change probability k. This value is multiplied by the logarithm of k divided by
pinit (i.e, the minimal value of a drift).

Monitoring executions for Change Relation Satis�ability We now briey
discuss the monitoring of extended BLTL with changes. Let us consider the
change relation  based on �1, . . . , �n changes. Using the syntax introduced
in Section 3.2, it is expressed as let �1 and : : : and �n in , where  contains
Boolean operations over changes and BLTL formulas. We use the following mon-
itoring procedure for each atom:

1. For each change �i, we set a CUSUM monitor that splits the monitoring
into sub-monitors, one for each random variable, i.e., one to monitor the
BLTL formula involved in the change from a given position of the execution.
Note that classical tableau-based heuristics allows us to reuse information
between monitoring actions.

2. The proposition �i! holds i� ti 6= +1. The proposition �i! � t holds i�
ti � t. Similarly, the proposition �i! � �j ! + t holds only if ti � tj + t but it
is unde�ned if ti = tj = +1.

3. BLTL formulas can be monitored with classical techniques.

In practice, the tool generates monitors on demand for the given atoms and
combines their answers in a Boolean manner.



5 Plasma Lab and Simulink Integration

The results presented in Section 4 have been implemented in the Plasma Lab
SMC toolbox1. In this section, we �rst recap the main features of the tool,
and then show how the architecture of the implementation can be exploited in
order to integrate Plasma Lab within Simulink, hence providing an in shell new
veri�cation theory for this widely used language. The main contribution in this
section with respect to [5] is to show how the architecture can be exploited to
perform the integration.

5.1 On Plasma Lab

Plasma Lab is a compact, e�cient and exible platform for statistical model
checking of stochastic models. The tool o�ers a series of SMC algorithms which
includes rare events simulation, distributed SMC, non-determinism, or optimiza-
tion. The main di�erence between Plasma Lab and other SMC tools is that
Plasma Lab proposes an API abstraction of the concepts of stochastic model
simulator, property checker (monitoring) and SMC algorithm. In other words,
the tool has been designed to be capable of using external simulators, input lan-
guages, or SMC algorithms. This not only reduces the e�ort of integrating new
algorithms, but also allows us to create direct plug-in interfaces with industry
used speci�cation tools. The latter being done without using extra compilers.

Fig. 1 presents Plasma Lab architecture. More speci�cally, the relations be-
tween model simulators, property checkers, and SMC algorithms components.
The simulators features include starting a new trace and simulating a model
step by step. The checkers decide a property on a trace by accessing to state
values. They also control the simulations, with a state on demand approach that
generates new states only if more states are needed to decide the property. A
SMC algorithm component, such as the CUSUM algorithm, is a runnable ob-
ject. It collect samples obtained from a checker component. Depending on the
property language, their checker either returns Boolean or numerical values. The
algorithm then noti�es progress and sends its results through the Controller API.

In coordination with this architecture, we use a plugin system to load models
and properties components. It is then possible to support new model or prop-
erty languages. Adding a simulator, a checker or an algorithm component is
pretty straightforward as they share a similar plugin architecture. Thus, it re-
quires only a few classes and methods to get a new component running. Each
plugin contains a factory class used by Plasma Lab to instantiate component
objects. These components implement the corresponding interface de�ning their
behavior. Some companion objects are also required (results, states, identi�ers)
to allow communication between components and the Controller API.

One of the goal of Plasma Lab is also to bene�t from a massive distribution of
the simulations, which is one of the advantage of the SMC approach. Therefore
Plasma Lab API provides generic methods to de�ne distributed algorithms. We

1 Available at https://project.inria.fr/plasma-lab/

https://project.inria.fr/plasma-lab/


Fig. 1: Plasma Lab architecture

Fig. 2: Interface between Plasma
Lab and Simulink

have used these functionalities to distribute large number of simulations over a
computer grid 2.

5.2 On Integrating Plasma Lab within Simulink

We now show how to integrate Plasma Lab within Simulink, hence lifting the
power of our simulation approaches directly within the tool. We will focus on
those Simulink models with stochastic information, as presented in [29]. But our
approach is more exible because the user will directly use Plasma Lab within
the Simulink interface, without third party.

Simulink is a block diagram environment for multi-domain simulation and
Model-Based Design approach. It supports the design and simulation at the
system level, automatic code generation, and the testing and veri�cation of em-
bedded systems. Simulink provides a graphical editor, a customizable set of
block libraries and solvers for modeling and simulation of dynamic systems. It
is integrated within MATLAB. The Simulink models we considered have spe-
cial extensions to randomly behave like failures. By default the Simulink library
provides some random generators that are not compatible with statistical model
checking: they always generate the same random sequence of values at each ex-
ecution. To overcome this limitation we use some C-function block calls that
generate independent sequences of random draws.

Our objective was to integrate Plasma Lab as a new Simulink library. For
doing so, we developed a new simulator plugin whose architecture is showed in
Fig. 2. One of the key points of our integration has been to exploit MATLAB
Control3, a library that allows to interact with MATLAB from Java. This library
uses a proxy object connected to a MATLAB session. MATLAB invokes, e.g.
functions eval, feval . . . as well as variables access, that are transmitted and

2 https://project.inria.fr/plasma-lab/documentation/tutorial/

igrida-experimentation/
3 https://code.google.com/p/matlabcontrol/

https://project.inria.fr/plasma-lab/documentation/tutorial/igrida-experimentation/
https://project.inria.fr/plasma-lab/documentation/tutorial/igrida-experimentation/
https://code.google.com/p/matlabcontrol/


executed on the MATLAB session through the proxy. This allowed us to imple-
ment the features of a model component, controlling a Simulink simulation, in
MATLAB language. Calls to this implementation are then done in Java from
the Plasma Lab plugin.

Regarding the monitoring of properties, we exploit the simulation output of
Simulink. More precisely, BLTL properties are checked over the executions of a
SDES, i.e., sequences of states and time stamps based on the set of state variables
SV . This set must be de�ned by declaring in Simulink signals as log output.
During the simulation these signals are logged in a data structure containing
time stamps and are then retrieved as states in Plasma Lab. One important
point is that Simulink discretizes the signals trace, its sample frequency being
parameterized by each block. In terms of monitoring this means that the sample
frequency must be con�gured to observe any relevant change in the model. In
practice, the frequency can be set as a constant value, or, if the model mixes
both continuous data ow and state ow, the frequency can be aligned on the
transitions, i.e., when a state is newly visited.

6 Fault-Tolerant Fuel Control System

This model is taken from the Simulink/Stateow examples library. It describes
the fuel control system of a gasoline engine. The system is made robust by detect-
ing failures in sensors and dynamically re-con�guring its behavior to maintain
a continuous operation. This is a typical example of hybrid system. It is mod-
elled in Simulink by using Sateow diagrams to to handle the discrete changes
of the control system, and linear di�erential equations to model the continuous
behaviors.

The system contains four separate sensors: a throttle sensor, a speed sensor,
an oxygen sensor, and a pressure sensor. Each of these sensors is represented
by a parallel state in Stateow, that is say �nite state machines concurrently
active. In total the entire logic of the systems is implemented by six parallel
states. Each parallel state of a sensor contains two sub-states, a normal state
and a fail state (the exception being the oxygen sensor, which also contains a
warm-up state). If any of the sensor readings is outside an acceptable range,
then a fault is registered, and the state of the sensor transitions to the failed
sub-state. If the sensor recovers, it can transition back to the normal state.

In the original model, sensors faults are decided by the user using manual
switch block for each sensor. The interest of the SMC approach comes from the
possibility to observe a large set of execution traces produced by a probabilistic
procedure. Therefor we replaced the Speed, EGO and MAP manual switches
by custom probabilistic switches. These switches use a Poisson distribution and
are parameterized by a rate to decide when a fault happen. A sensor will repair
itself after a duration of 1 second. This modi�ed model is similar to the one use
in [29].

The Poisson distribution block that we use draws a random time T in seconds,
that is the time before the next fault happens, and we use a Stateow diagram



as a timer. The signal from the Poisson block is then used by the sensor's switch.
A Stateow repair timer is used to maintain the fault signal for a duration of 1
second.

SMC analysis The system uses its sensors to maintain the air-fuel ratio at
a constant value. When one sensor fails, a higher ratio is targeted to allow a
smoother running. If another sensors fails the engine is shutdown for safety
reasons, which is detected by a zero fuel rate.

We estimate the probability of a long engine shutdown. We use the following
BLTL property to monitors executions over a period of 100 t.u., and to check if
the fuel remains at zero for 1 t.u. :

� = :F�100(G�0:999Fuel = 0)

We try to reproduce with this property the results of [29]. In this paper they
use a Bayesian SMC technique to estimate the probability of this property with
the bound 1 for G operator. We can almost reproduce their results using the
Monte Carlo algorithm on our own implementation of the Simulink model with
stochastic distributions, but only if we use the approximated bound 0:999. Indeed
the property is false, mainly when the three sensors are faulty at the same time.
In that case the second sensor to fail remains in fault condition for exactly one
second, with at least one other sensor. When this second sensor is repaired,
there remains only one faulty sensor and the engine is restarted. Whether the
Fuel variable in the sample after exactly one second is monitored at 0 or 1 by
the SMC checker, changes the evaluation of the property. By using the value
0:999 we avoid these approximation issues. Table 1 recaps our results and the
one of [29] for di�erent values of the sensors fault rates (expressed in seconds).
Our results are obtained with Plasma Lab Monte Carlo (MC) algorithm after
1000 simulations. It takes approximately 2500 seconds to complete on a 2.7GHz
Intel Core i7 with 8GB RAM and running MATLAB R2014b on Linux.

Fault rates Plasma Lab MC Bayesian SMC [29]

(3 7 8) 0.396 0.356
(10 8 9) 0.748 0.853
(20 10 20) 0.93 0.984
(30 30 30) 0.985 0.996

Table 1: Probability estimation of � with Plasma Lab and the results from [29].
The fault rates in seconds correspond to the Speed, EGO and MAP sensors,
respectively.



7 A Pig Shed Case study

We now illustrate the change detection contribution of this paper on the model
of a temperature controller in a pig shed. This model is inspired by similar
studies [17,13,10]. The system under control is a pig shed equipped with a fan
and a heater to regulate the air temperature. Air temperature in the shed is
subjected to random variations due to the variation of external temperature
and the variation of the number of pigs that produce heat. The objective of
the controller is to counter these variations such that the temperature remains
within a given comfort zone. To do so, the controller can activate the heater to
increase the temperature, and the fan to bring external air and therefore cool the
shed. Then the temperature T of the shed is given by the following di�erential
equation:

T 0 = Text �Q� T �Q+Wheater +Wpigs

where Text is the external temperature, Q = Qmin+Qfan is the air ow created
by a minimal ow Qmin, and an additional ow Qfan when the fan is activated,
Wheater is the heat produced by the heater, when activated, and Wpigs is the
heat produced by the pigs. This equation is modeled by the Simulink subsystem
of Fig. 3.

Fig. 3: Simulink model of the di�erential equation controlling the temperature

The controller that we study applies a bang-bang (also called on-o� ) strategy
that is speci�ed by four temperature thresholds, that is (1) when the temperature
goes above TFanOn, the fan is turned on, (2) when the temperature returns below
TFanO�, the fan is turned o�, (3) when the temperature goes below THeaterOn,
the heater is turned on, (4) when the temperature returns above THeaterO�,
the heater is turned o�. This controller is implemented by Stateow automata
given in Fig. 4.

The fan and the heater are subjected to random failures when they are in
use. Exponential distributions control the occurrence time of a failure. After a
failure a reparation process allows to restart the fan or the heater, but it also
takes a random time, exponentially distributed. These failures are modeled by



Fig. 4: Temperature controller

two Stateow automata, as shown in Fig. 5. In this automaton, rnd is a random
number between 0 and 1, and tuse is the duration of use of the fan or heater.
The timings tfail and trepair corresponds respectively to the time of next failure,
and the repair time, each chosen according to an exponential distribution with
parameter lambdaFail and lambdaRepair, respectively. Additionally, the failure
rate increases with usage due to wear and tear. This continues until a replacement
is performed, which resets the rate.

Fig. 5: Failure generator



Fig. 6: Pig shed Simulink model



An overview of the complete Simulink model is shown in Fig. 6.

7.1 Quantitative Veri�cation and Optimization

The controller goal is to maintain the temperature within a comfort zone spec-
i�ed by a minimum and a maximum temperature (resp. Tmin = 15 �C and
Tmax = 25 �C). The system contains a predicate Discomfort that is true when the
temperature of the system is outside this comfort zone. We �rst consider the fol-
lowing values for the controller thresholds: TFanOn = 22 �C, TFanO� = 20 �C,
THeaterOn = 18 �C and THeaterO� = 20 �C.

We apply statistical model checking to evaluate the e�ciency of the controller
both in the presence and absence of failures. The �rst BLTL property that we
monitor checks that the system is never in discomfort for an excessive period of
time. This is expressed by the following property:

�1 = G�t1F�t2:Discomfort

where t1 is the simulation time, t2 is the accepted discomfort time. Another
safety speci�cation is to check if there exists long periods without discomfort.
This is possible with:

�2 = F�t1G�t2:Discomfort

Finally, a third BLTL property checks that each period of discomfort is followed
by a period without discomfort:

�3 = G�t1

�
G�t2Discomfort) F�t3(G�t4:Discomfort)

�

Here t1 and t2 are as previously, while t3 � t2 is the expected time at which the
system returns to normal situation, and t4 is the duration of the period without
discomfort.

We use Plasma Lab to estimate the probability to satisfy these properties
for di�erent values of the timing constraints, on both models with and with-
out failures. Each property is evaluated over a period of time t1 = 12000 time
units (t.u.) with precision � = 0:01 and con�dence � = 0:01. �1 and �2 are
evaluated for several values of t2. Note that for t2 = 0, �1 resumes to checking
G�t1:Discomfort. �3 is evaluated with t2 = 25 t:u: and several values of t3 and
t4.

The results for properties �1 and �2 are presented in Figs. 7 and 8, re-
spectively. While the probabilities of satisfying �1 show a signi�cant di�erence
between the models with and without failures, the results for �2 are almost
identical. This means that discomfort is as frequent in the two models, but it
tends to last longer in the presence of failures. The results for �3 are presented
in Figs. 9 and 10. It shows again that the model without failures recovers quicker
from a discomfort period.

Instead of estimating a probability using SMC techniques, we can compute
the average value of two quantities in the model, namely the discomfort time,
that is the cumulative time when the model is in a discomfort state, and the
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Fig. 9: Probability estimation with
SMC of satisfying �3 without failures
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Fig. 10: Probability estimation with
SMC of satisfying �3 with failures

energy cost, computed with the duration of use of the heater and the fan. The
cost is 1 per t.u. for the fan and 2 per t.u. for the heater. We aim at minimizing
these two values by choosing adequate values of the model parameters.

Using Plasma Lab we can automatically instantiate the model with a range
of values for the four temperature thresholds. We specify the ranges [15; 20]
for THeaterOn and THeaterO�, and [20; 25] for TFanOn and TFanO�, with an
increment of 1. We additionally specify the following constraints to select a
subset of the possible values of the parameters:

TFanO� < TFanOn

THeaterOn < THeaterO�

THeaterOn < TFanOn

Using these constraints Plasma Lab generates a set of 225 possible con�gu-
rations, for each variant of the models, with and without failures. Each con�gu-
ration is automatically analyzed with 100 simulations. We then plot the average
values of the cost and the discomfort in Fig. 11 and Fig. 12. These graphs helps



to select the best values of the parameters by looking at the points that lie on
the Pareto frontier of the data.
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7.2 Change Detection: Detection and Calibration

In our pig shed, the equipment may sometimes fail (heater or fan may break).
In such situation, the shed may be too frequently in the discomfort zone, which
may lead to the death of several pigs.

As we have seen, the probability of being in the discomfort zone is nominally
very low. However, to avoid problems, one should be able to rise a ag as soon
as the probability to be in the discomfort zones crosses a given threshold. Our
objective is to detect that when such a change happens, there is a maintenance
procedure that moves the shed out of the discomfort zone. In our example, this
maintenance feature is modeled as a procedure that is regularly applied to the
pig shed. Initially, the time between each maintenance is set to a very large
value (500000 t:u:). The �nal objective is to set this time value in order to have
an acceptable maintenance delay when the death risk is too heavy for the pigs
(emergent behavior). This will be done by detecting changes.

We modeled the property using the change property language we proposed
and we used the CUSUM algorithm to check it. We �rst de�ne � to be the
following change: \ the probability to be in the discomfort zone more than t1 =
100 t:u: is greater than 0:35". We are now ready to propose a property that
expresses that when the change occurs, then the maintenance must be done in
less than t2 = 1000 t:u: Formally,

�4 =

����
let � = Pr

�
� j= G�t1Discomfort

�
� 0:35

in � !) F�� !+t2Reparation



In order to perform the analysis, the CUSUM algorithm needs a calibration
step. We �rst require an estimate of pinit, the initial probability of being in the
discomfort zone before the change occurs, and we determine a minimum delay
between the samples that ensures independence between the analyses. We disable
failures of the temperature regulation system (fans + heaters) in the shed model
and we simulate a 200000 t:u: long trace. We sample the trace with a �xed delay
between each sample. For each sample we perform a Monte Carlo analysis of the
property G�t1Discomfort by restarting 600 simulations from the initial state of
the sample. For sample delays lower than 100 t:u:, the probabilities computed for
each sample di�er, but they converge to 0 (with a precision 0:05 and a con�dence
0:9) for the delays 150 t:u: and 200 t:u: Therefore we will select a sample delay
of 200 t:u: and an initial probability of pinit = 0:05 for the CUSUM analysis.

Next step is to set the stopping sensitivity � on which depends the false
alarm probability and the detection delay. This is done again by observing the
model without failures: we simulate 100 executions of the CUSUM and observe
1000 samples during each execution. We compute for each samples the CUSUM
cumulative ratio. Since there is no failure, the curve of the cumulative ratio
should always decrease. Indeed, it should only increase when failures happen,
i.e., when the change happens. In practice, even without failure, the curve may
locally increase for a short amount of time, which is due to the uncertainty
introduced in the model. The objective is to characterize those local drifts to
avoid false alarms.

To do so we analyze the CUSUM simulations and we observed that the mean
time between positive drifts is 127:88 t:u: and the mean duration of positive drift
is 1:2 t:u:. The frequency of positive drifts is thus 1:2=(127:88+ 1:2), which is in
the interval [0; 0:05] as predicted by Monte Carlo algorithm. In order to observe
a real alarm one needs to push this quotient to 0:35, which is the probability one
wants to observe. This amounts to varying the duration of a positive sample, i.e.,
to replace 1:2 by a higher value in the above quotient. Doing so, we conclude
that the probability will become greater than 0:35 when the positive drift is
longer that 52 samples. From the de�nition of CUSUM, we compute that the
drift is ln 0:35

0:05
for each positive sample. We �nally set the stopping rule to � =

52 � ln 0:35
0:05

� 101.

We then launched the CUSUM on the model with failures over an execu-
tion of 200000 t:u: that is checked against the property G�t1Discomfort every
200 t:u: Figure 13 displays the values obtained with Plasma Lab for the CUSUM
cumulative ratio and the minimum value reached. From these values Plasma Lab
detected that the stopping rule was satis�ed after the sample 580, that corre-
sponds to the simulation time 105837 t:u: We reproduced the same experiment
several times (20): we determined that the change occurred at 115104 t:u: in
average and in earlier at 101847 t:u: We conclude that to satisfy Property �4
the maintenance operation must be scheduled at 100000 t:u:



Fig. 13: CUSUM monitoring of G�t1Discomfort. CUSUM cumulative ratio (in
blue) and minimum value reached (in red). The horizontal axis is the simulation
time in samples number and the vertical axis is the value of the CUSUM ratio.
The black arrows denote the time of the change when the cumulative ratio
exceeds the minimum value by �.

8 Conclusion

The paper presents two modest contributions to SMC. The �rst contribution
takes the form of an algorithm used to detect changes on the probability to satisfy
a bounded property at runtime. The second contribution illustrates the power
of Plasma Lab via a Simulink library integration. This integration constitutes
one of the �rst proof of concept that SMC can indeed be integrated as feature
library in a tool largely used in industry.

Future work include an integration of Plasma Lab with the FMI standard
in order to verify complex heterogeneous systems. Another future work is to
extend the power of distributed computing to Plasma Lab/Simulink. The latter
is technically challenging as it would require to duplicate compiled code to avoid
license duplication and costs.
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