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Robustness to Joint-Torque Tracking Errors in
Task-Space Inverse Dynamics

Andrea Del Prete, Member, IEEE, and Nicolas Mansard

Abstract—Task-Space Inverse Dynamics (TSID) is a well-
known optimization-based technique for the control of highly-
redundant mechanical systems, such as humanoid robots. One
of its main flaws is that it does not take into account any of
the uncertainties affecting these systems: poor torque tracking,
sensor noises, delays and model uncertainties. As a consequence,
the resulting control-state trajectories may be feasible for the
ideal system, but not for the real one. We propose to improve
the robustness of TSID by modeling uncertainties in the joint
torques, either as Gaussian random variables or as bounded
deterministic variables. Then we try to immunize the constraints
of the system to any—or at least most—of the realizations of
these uncertainties. When the resulting optimization problem
is too computationally expensive for online control, we propose
ways to approximate it that lead to resolution times below 1 ms.
Extensive simulations in a realistic environment show that the
proposed robust controllers greatly outperform the classic one,
even when other unmodeled uncertainties affect the system (e.g.
errors in the inertial parameters, delays in the velocity estimates).

Index Terms—Legged Robots, Dynamics, Robust Control,
Robust Optimization.

I. INTRODUCTION

TASK-SPACE inverse dynamics (TSID) has become an
increasingly popular way to control humanoid and

quadruped robots [1]–[5]. This success is motivated by two
attractive features. First of all, it is theoretically sound [6]
because it is based on an exact inversion of the dynamics
of the system, resulting (in theory) in a perfect tracking of
the desired trajectories—as long as they are feasible. Second,
TSID is able to explicitly take into account bounds on the
state and the actuation of the system, namely joint torques,
accelerations and contact forces [7]. Thanks to these features
TSID works extremely well in simulation [8], [9], which is
why it has been used also in the graphics community to
synthesize motion online [10], [11]. Another key factor is its
computational efficiency [12], which allows its application for
online control of real robots.

However, as usual, the gap between simulation and real
world is large and can be explained through countless un-
modeled uncertainties affecting these systems, such as poor
torque control, model uncertainties, sensor noises and delays.
This results in control trajectories that are feasible for the
ideal system, but not for the real one. The recent results of
the Darpa Robotics Challenge Finals [13] have clearly shown
the lack of robustness of these control frameworks [14]–[16].
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Univ de Toulouse, LAAS, F-31400 Toulouse, France. e-mail: adelpret@laas.fr,
nmansard@laas.fr.
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Fig. 1. Simulation of 30 HRP-2 robots walking in the presence of uncer-
tainties, the goal being to compare the classic TSID controller (left line, gray
heads) to the proposed robust TSID controllers: stochastic (central line, green
heads) and worst-case (right line, red heads). Some of the simulation results
can be seen in the accompanying video.

Despite the outstanding quality of the participant teams, the
aforementioned uncertainties have often made the robots fall.

To improve the robustness of TSID-based control, we pro-
pose to account for such uncertainties, modeled as additive
noises. Modeling uncertainties as random variables provides
a generic framework that we can apply to the parameters of
the robot model (e.g. inertias can be modeled as Gaussian
distributions), the sensor measurements (e.g. additive noise
on the measured velocity) or control inputs. Additionally, the
noise distributions can be identified by statistical analysis. In
particular, we focus on the case where uncertainties only affect
the decision variables, i.e. the joint torques. The accuracy of
the torque tracking is known to be an important issue [17],
[18], in particular for robots that do not have access to a direct
measurement of the joint-torques—such as most nowadays
humanoid robots: HRP-2, Hubo, Atlas, Valkyrie, Asimo, iCub.
Additionally, robustness to the noise in the joint torques
ensures also some level of robustness to several other un-
certainties, like measurement delays and model inaccuracies,
as shown by our simulations. Focusing on this problem is
also interesting because it results in a particular form of the
resolution, as we will show in the paper. Other types of noise
that may be equally significant, such as measurement noise
(especially velocity) or modeling errors, may be addressed by
slight variations of the proposed methodology.

First, Section II introduces the issues arising from solving
an optimization problem without accounting for uncertainties.
Then Section II-A and II-B discuss the two main methods to
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account for uncertainties in optimization problems: stochastic
[19] and deterministic [20]. In particular, we focus on the
case in which uncertainties only affect the problem variables
(i.e. the joint torques). If the uncertainties are stochastic, that
is they are random variable following a known probability
distribution, this results in a stochastic optimization problem.
This problem is too computationally expensive to be used for
online control. In Sections II-C and II-D, we discuss two ways
to approximate a general stochastic optimization problem with
linear inequality constraints. These approximations greatly
reduce the computation time, while maintaining a sufficiently-
good accuracy. Section III shows how these ideas relate to
the TSID control problem. We then discuss in more details
the ideas presented in Section II to get different formulations
of robust TSID (Sections IV and V). In Section VI we vali-
date the proposed methods on a simulated HRP-2 humanoid
robot performing walking (see Fig. 1) and manipulation tasks.
Through extensive simulations under realistic conditions (i.e.
uncertainties in the joint torques, joint velocities and inertial
parameters) we empirically show that taking robustness into
account greatly increases the chances of the robot not to
fall. Moreover, we verify that we can solve the proposed
optimization problems in less than 1 ms on a standard CPU, so
that these formulations are suitable for online control. Finally,
Section VII presents the related works and Section VIII
summarizes the paper before discussing the future work.

With respect to our previous work [21] this paper presents
several new contributions.
• In Section IV we discuss the possibility of modeling noise

as a bounded variable rather than as a random variable,
resulting in a worst-case optimization.

• In Section V-A1 we show an interesting connection
between the proposed stochastic optimization and the log-
barrier methods ( [22], ch. 17) used to solve inequality-
constrained problems.

• In Section VI-B we present data collected on a real
torque-controlled robot that validate our modeling as-
sumption for the joint-torque tracking errors.

• In Section VI-F and VI-G we present new extensive sim-
ulation results to compare the proposed robust controllers
to the classic one in a realistic simulation environment.
We selected a walking task and a drilling task, for which
we present statistics based on several batches of 100 tests
each; in each batch we simulated different uncertainties,
in terms of type (torque bandwidth, torque noise, velocity
delays, inertial parameter errors) and magnitude.

II. INTRODUCING UNCERTAINTIES

Before going into the details of our approach, this section
overviews the key ideas that we propose to use to make
TSID robust. The problem of controlling a robot with TSID
can be cast as the following abstract constrained least-square
optimization with n variables and m inequality constraints:

minimize
x

||Ax− a||2

subject to Bx+ b ≥ 0
(1)

In Section III we will present the exact formulation of TSID
that we use, in which x represents the joint torques. In robotics

Minimum-norm
solution

Active-set
solution

Inequality constraints

Set of solutions of
Ax = a

Bx + b � 0

Fig. 2. 2D example of an inequality-constrained least-square problem, such
as (1), solved by an active-set method.

typically (1) has infinitely many solutions (because A has more
columns than rows) so the determined solution depends on the
technique we use to solve it. The most common approach to
solve problem (1) in robotics is through active-set methods
[12], mainly because they are easy to warm-start 1 (contrary
to interior-point methods [23]). Because of their working
principle, active-set algorithms tend to find solutions that
satisfy some inequality constraints with zero margin, which
are poor in terms of robustness.

Let us quickly look at how an active-set method works by
using the 2D example depicted in Fig. 2. Different variants
of the active-set algorithm exist; in this example we look at
the most classical dual method [24], which starts its search
at the unconstrained minimum of the objective function (i.e.
red dot). Since this point violates an inequality constraint, it
adds this constraint to the so-called active set, which is the set
of constraints that are satisfied as equalities at the optimum.
The new solution is represented by the blue dot. Clearly this
solution has little robustness because infinitely-small changes
in x,B or b could lead to violations of the active inequality
constraint. Intuition suggests that we could instead choose a
solution that has a higher chance to satisfy the inequalities by
moving towards the internal part of the feasible solution space.

However, we do not want the reader to think that active-set
algorithms are the only cause of low robustness in TSID. Using
an interior-point method would surely improve the robustness
of the solution, but not enough in most cases. The real issue
is the lack of a robustness measurement in the cost function,
which would make the solution robust regardless of the used
optimization algorithm.

To come up with a measurement of robustness we first need
to model the uncertainties in the TSID optimization problem.
We then could resort to robust optimization techniques to find
control inputs that are robust to these uncertainties. We can
model uncertainties as deterministic variables belonging to a
known set, and try to find a solution that is feasible for any re-
alization of the uncertainty in the given set [25]. Alternatively,
we can model uncertainties as random variables following
known probability distributions, and try to find a solution that
satisfies the constraints with a large-enough probability. People
refer to the first case as robust or worst-case optimization,

1Warm-starting the resolution of an optimization problem consists in
exploiting the solution of a similar problem (which was already computed,
typically at the previous control cycle) to speed-up the computation.
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while the second case is known as stochastic optimization
or chance-constrained programming. In the following we are
going to explore both directions.

A. Deterministic Uncertainties

The tractability of a robust optimization problem is strictly
connected to the geometric shape of its uncertainty set U .
Since it is reasonable to assume that the torque tracking errors
at different joints are independent from each other, using an
hyper-rectangle as uncertainty set seems a good choice:

e ∈ U, U = {z ∈ Rn : |z| ≤ emax},
where e ∈ Rn is the torque tracking error, emax ∈ Rn is its
maximum value and |z| is a vector containing the absolute
value of the elements of z. The robust optimization problem
is then:

minimize
x

||Ax− a||2 (2a)

subject to B(x+ e) + b ≥ 0 ∀e ∈ U (2b)

We did not model the uncertainties in the cost function to
avoid having a too conservative behavior of the system, which
is a well-known issue in worst-case optimization [26]. The
problem is not tractable in this form because the constraint
(2b) actually hides an infinite number of constraints. Another
issue that we need to address is the potential unfeasibility of
this robust problem: there may not exist a value of x that
satisfies the constraints for any realization of e. In this case
we need to relax the robust constraints so as to find a solution
that satisfies (at least) the standard constraints. In Section IV
we reformulate (2) as a standard QP that ensures the feasibility
of the TSID problem.

B. Stochastic Uncertainties

Alternatively, we can model uncertainties as Gaussian
noise e ∼ N (0,Σ) with a decoupled covariance matrix
Σ = diag(

[
σ2
1 . . . σ2

n

]
) affecting the decision variable x:

minimize
x

||A(x+ e)− a||2

subject to B(x+ e) + b ≥ 0
(3)

Since e is a random variable, both cost and constraints are now
random variables, so (3) does not make sense. Rather than
minimizing the cost function we can minimize its expected
value, but since e has zero mean, this actually does not change
the problem:

IE||A(x+ e)− a||2 = ||Ax− a||2

The inequalities are less trivial and consequently less
frequently considered. The classic approach in chance-
constrained programming is to replace them with their proba-
bility to be satisfied [19]:

p(x) = P(B(x+ e) + b ≥ 0) (4)

In general p(.) is not convex, so it is not wise to use it directly
in our optimization problem. A better approach is to define
a convex function R(.) that is monotonically decreasing with
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(a) Joint inequalities probability
p(x) = P(B(x+ e) + b > 0).

−5 0 5 10

−5

0

5

10

0

20

40

60

80

100

(b) Individual inequalities probabil-
ity pind(x).
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(c) Difference between Fig. 3a and
3b: p(x)− pind(x); mean error
1.8%.
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(d) Probability of a single inequality
constraint P(B0(x+ e) + b0 ≥ 0).

Fig. 3. 2D example comparing p(x), namely the probability of satisfying a
set of affine stochastic inequalities, with its approximation pind(x) (6).

respect to p(.)2, and then insert it in the cost function to find a
trade-off between performance (i.e. small cost) and robustness:

minimize
x

||Ax− a||2 + wR(x)

subject to Bx+ b ≥ 0,
(5)

where w ∈ R weighs the importance of robustness with
respect to cost. Here, we kept the deterministic inequalities
to prevent the solution from violating them in favor of mini-
mizing the cost (which may happen if w is not large enough).

Alternatively, rather than looking for a trade off, we could
apply a strict prioritization approach [6], [27]–[29]. In other
words, we could either maximize robustness in the null space
of the cost, or minimize the cost subject to the constraint
of R(x) being greater than a certain value. Even if these
prioritization approaches are interesting, they would require
the resolution of two optimization problems in cascade, unless
a dedicated lexicographic solver is available [12]. This would
increase the total computation time, so we decided not to use
them in this work.

To solve (5) we need to evaluate the cumulative density
function (CDF) of the multivariate random variable eB = Be,
that is P(eB > −b−Bx). In general there is no analyti-
cal expression to compute this CDF, so we must resort to
computationally-expensive numerical techniques [30]. This
makes the resolution too slow for applications in control. Aside
from introducing robustness in TSID, the main contribution
of this paper is to propose two approximations of (4) that are
much faster to compute and that provide satisfying precision
and robustness in practice.

2For instance, rather than maximizing a probability we minimize its
negative logarithm.
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(a) Hyper-rectangle approximation.
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(b) Hyper-rectangle probability
pbox.
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(c) Hyper-rectangle probability er-
ror: p(x)− pbox(x); mean error
4.7%.

Fig. 4. 2D example comparing p(x) with its approximation pbox(x) (8).

C. Approximation 1—Individual Constraints pind

The first way to simplify (4) is by considering the proba-
bilities of the single inequalities rather than the probability of
all of them:

pind(x) =

m∏
i=1

P(Bi(x+ e) + bi ≥ 0), (6)

where Bi is the i-th row of B. When e is Gaussian, this is
equivalent to neglecting the off-diagonal terms of the covari-
ance matrix of eB . This approximation fastens the resolution
of (4) because we only need m univariate CDFs—rather than
one multivariate CDF.

To get an intuition of why pind(x) is a good approximation
of p(x) let us look at a simple 2D example. Fig. 3a depicts
the probability p(x) to satisfy a set of 5 linear stochastic in-
equalities, with e having a standard deviation σ1 = σ2 = 1.44.
Fig. 3b shows the approximated probability pind(x) obtained
with (6), while Fig. 3d shows the probability of a single
inequality. The overall shapes of the approximated and the
real probability are quite similar and it is hard to spot the
differences. To highlight the errors Fig. 3c shows the difference
between p(x) and pind(x). The errors are concentrated at
the intersections of the inequalities: when the angle between
the inequalities is less than 90◦ the error is negative, when
the angle is greater than 90◦ the error is positive, whereas
when the angle is exactly 90◦ the error is void. The fact
that the differences are concentrated at the intersections of
multiple inequalities is actually advantageous: those regions
have little robustness, so we do not want to be there in any
case. Moreover we can expect this approximation to work well
as long as there are few constraints that are active at the same
time, which is typically the case in TSID.

D. Approximation 2—Largest-Enclosed Hyper-Rectangle pbox

In the first approximation we exploited the fact that it is easy
to compute the probability of a single inequality. Another case
in which we can easily compute the probability is when all
the inequalities are simple bounds (i.e. they define a hyper-
rectangle aligned with the main axes). In this case, the joint
probability is the product of n probabilities of univariate
random variables, i.e. there is no more coupling. Our idea is
then to approximate the real polyhedra with a hyper-rectangle
U(s) (where s is a parametrization of the hyper-rectangle) that
is enclosed in it:

p(x) ≈ P((x+ e) ∈ U(s)) (7)

Of course for any U(s) enclosed in the feasible set, the
probability to be in U(s) is lower than the probability to be in
the feasible set p(x). It follows that, among all the enclosed
hyper-rectangles, the one resulting in the best approximation
of p(x) is the one that maximizes P((x+ e) ∈ U(s)):

pbox(x) = maximize
s

P((x+ e) ∈ U(s))

subject to Bz + b ≥ 0 ∀z ∈ U(s),
(8)

where the (infinitely many) constraints ensure that U(s) is
enclosed in the feasible set. Fig. 4a shows the hyper-rectangle
maximizing the probability. Fig. 4b shows the value of pbox
over the solution space, whereas Fig. 4c shows the approx-
imation error (p(x) − pbox(x)). While this approximation
may seem much coarser than the first one, in Section VI
we will show empirically that it performs well in practice.
Moreover, in Section V-B we will prove that the adopted
single-variable parametrization of the hyper-rectangle results
in a linear optimization problem, which is easier to solve than
the nonlinear problem resulting from our first approximation.

III. ROBUST TASK-SPACE INVERSE DYNAMICS

Various formulations of the TSID optimization problem
exist and are often equivalent or similar [6]. We use here the
formulation of [31], written as an optimization problem of
x = (v̇, f, τ):

minimize
x

||Ax− a||2

subject to Bx+ b ≥ 0[
Jc 0 0
M −J>c −S>

]v̇f
τ

 =

[
−J̇cv
−h

]
,

(9)

where v̇ ∈ Rn+6 are the base and joint accelerations,
f ∈ Rk are the contact forces, τ ∈ Rn are the joint torques,
Jc ∈ Rk×(n+6) is the constraint Jacobian, M ∈ R(n+6)×(n+6)

is the mass matrix, h ∈ Rn+6 contains the bias forces
and S ∈ Rn×(n+6) is the selection matrix. The inequality
constraints (defined by B and b) can represent the torque
limits, the (linearized) force friction cones, the ZMP bounds
and the joint-acceleration limits. The bounds of the joint
positions and velocities are typically converted into joint-
acceleration bounds [32]. The cost function represents the error
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of the task, which is typically an affine function of v̇ (i.e. a
task-space acceleration):[

Jtask 0 0
]︸ ︷︷ ︸

A

x− (ẍdestask − J̇taskv)︸ ︷︷ ︸
a

= ẍtask − ẍdestask

The task may be to track a predefined trajectory of the center
of mass of the robot, of a link, or to regulate the robot’s angular
momentum.

This problem is rather similar to the one that we considered
in the previous section, apart from the fact that it has equality
constraints. Without knowing the value taken by the uncer-
tainty e ∈ Rn in the joint torques we can not select a value
of x that satisfies the equality constraints. For this reason, we
need to reformulate (9) with respect to τ alone by expressing
v̇ and f as functions of τ 3:v̇f
τ

 =

M−1N>c S>ΛcJcM
−1S>

I


︸ ︷︷ ︸

C

τ +

−M−1(N>c h+ J>c ΛcJ̇cv)

Λc(JcM
−1h− J̇cv)
0


︸ ︷︷ ︸

c

,

where Λc = (JcM
−1Jc)

−1 and Nc = I−M−1J>c ΛcJc. Then
the problem takes on the following form:

minimize
τ

||Dτ − d||2

subject to Gτ + g ≥ 0,
(10)

where D = AC, d = a − Ac, G = BC, g = Bc + b. Now
that we cast TSID as a least-squares optimization (1) we can
use the ideas presented in the previous section to introduce
robustness in this problem.

IV. DETERMINISTIC UNCERTAINTIES

Following the idea of Section II-A the robust TSID opti-
mization problem is:

minimize
τ

||Dτ − d||2

subject to G(τ + e) + g ≥ 0 ∀e ∈ U
(11)

Now we will show how to get rid of the infinite constraints of
this problem to reformulate it in standard form; then we will
explain how to deal with the cases in which the problem is
unfeasible.

1) Reduction of the Infinite Number of Constraints: We can
represent the infinite constraints of (11) as a finite number of
constraints:

li(τ) ≥ 0 i = 1 . . .m,

where li is the solution of an optimization problem:

li(τ) = minimize
e

Gi(τ + e) + gi

subject to |e| ≤ emax,
with Gi being the i-th row of G. In simple terms, we are
saying that if (and only if) an inequality is satisfied for the
minimum value of its left-hand side (over all of the possible

3In this paper we assume that Jc is full row rank, but these results can be
extended to the case of Jc being rank deficient [33].

uncertainties), then it is satisfied for all of the possible uncer-
tainties. Thanks to the simple shape of U that we selected,
this is a Linear Program with solution:

li(τ) = Giτ − |Gi|emax + gi

The rationale behind this (apparently magic) simplification is
that we do not check that an inequality is satisfied for all
the values of U : we only verify that it is satisfied for its worst
corner. The worst corner is the one that will eventually collide
with the hyper-plane defined by the inequality if you enlarge
the hyper-rectangle. This allows us to reformulate (11) as a
standard QP:

minimize
τ

||Dτ − d||2

subject to Gτ − |G|emax + g ≥ 0,

where |G| is a matrix containing the absolute values of the
elements of G.

2) Unfeasibility: As we already mentioned, this problem
may be unfeasible. In this case we would like to have a solu-
tion that at least satisfies the standard inequality constraints,
and if possible guarantees some level of robustness. We can
achieve this by introducing a slack variable s ∈ R that allows
the solver to continuously pass from the robust constraints to
the classic ones:

minimize
τ,s

||Dτ − d||2 − ws

subject to Gτ − |G|emaxs+ g ≥ 0

0 ≤ s ≤ 1,

(12)

where w ∈ R is a large-enough value (e.g. 106). Whenever
possible the solver will try to set s = 1, which results in
the satisfaction of the robust constraints. When the robust
constraints are not feasible, the solver will decrease s of the
minimum amount necessary to make the constraints feasible.
Only when necessary, the solver will set s = 0, which results
in the satisfaction of the standard constraints only. In case
we are not sure whether the standard constraints are feasible
we can even allow s to take negative values, to ensure the
feasibility of the problem.

V. STOCHASTIC UNCERTAINTIES

In case of stochastic uncertainties we measure the robust-
ness of a solution of (10) by some approximations of:

R(τ) = − log p(τ) = − log P(G(τ + e) + g ≥ 0)

The robust optimization problem is then:

minimize
τ

||Dτ − d||2 + wR(τ)

subject to Gτ + g ≥ 0,
(13)

where w ∈ R weighs the importance of robustness with
respect to performances.
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A. Approximation 1—Individual Constraints pind
Our first idea to approximate p(x) is to consider the

constraints individually:

p(τ) ≈ pind(τ) =

m∏
i=1

P(Gi(τ + e) + gi ≥ 0)

While most distributions have an analytical expression to
compute the CDF in the univariate case, the Gaussian dis-
tribution does not. However, expressions exist to approxi-
mate it with high accuracy and low computational cost [34]
(e.g. polynomials). To compute pind we need to evaluate
P(Gi(τ + e) + gi ≥ 0). Since e is Gaussian, we have
eGi

= Gie ∼ N (0, σGi
), where σGi

= σ2
iGiG

>
i . Hence:

P(Gi(τ + e) + gi ≥ 0) = P(eGi ≥ −Giτ − gi) =

= P(eGi ≤ Giτ + gi) = FGi(Giτ + gi),

where FGi(.) is the CDF of eGi . We then define the robustness
function as:

Rind(τ) = − log pind(τ) = −
m∑
i=1

logFGi
(Giτ + gi)

This function is convex and twice differentiable, so we can
easily minimize it using any variant of Newton’s method [35]
(see the Appendix for the expressions of the gradient and the
Hessian of Rind). The final robust TSID problem is then a
convex optimization:

minimize
τ

||Dτ − d||2 − w
m∑
i=1

logFGi(Giτ + gi)

subject to Gτ + g ≥ 0

(14)

1) Relationship with Log-Barrier Method: Looking at (14)
one may notice a certain similarity to the log-barrier method (
[22], ch. 17). This interior-point method is a technique to solve
inequality-constrained optimization problems by removing the
inequality constraints and injecting their logarithm in the cost
function. For instance, the standard TSID problem (10) can
be solved through a sequence of unconstrained problems with
decreasing values of the parameter α:

minimize
τ

||Dτ − d||2 − α
m∑
i=1

log(Giτ + gi) (15)

As α approaches zero, the solution of (15) approaches the
solution of (10). The main difference between (14) and (15)
is that the logarithmic barrier in (15) tends to infinity as one
of the inequalities tends to zero, whereas this is not the case
for (14) (see Fig. 5). This is the reason why we need to have
inequality constraints in (14) to avoid violating them.

In the special case where FGi
(Giτ + gi) ∝ Giτ + gi then

the two optimization problems are equivalent. This happens if
the uncertainty affects g (rather than τ ) and if the probability
distribution of the uncertainty is uniform (rather than Gaus-
sian) and bounded above by zero (i.e. can only be nonpositive).
We can then interpret log-barrier methods as stochastic opti-
mization techniques that take into account additive nonpositive
uniformly-distributed random uncertainties on the inequality
constraints.

Fig. 5. Comparison of the logarithmic barrier used in (15) with the barrier
used in (14). For the plot we considered a standard deviation of 2.0 for the
CDF.

B. Approximation 2—Largest-Enclosed Hyper-Rectangle pbox
Our second idea is to approximate the polytope defined by

the inequalities with a hyper-rectangle. We can compute this
approximation by solving this optimization problem:

pbox(τ) = maximize
s

P(e ∈ U(s))

subject to G(τ + z) + g ≥ 0, ∀z ∈ U(s)
(16)

We parametrize U(s) with a single variable s ∈ R. 4 Let us
define U(s) as:

U(s) = {z ∈ Rn : |zi| ≤ kis i = 1 . . . n},

where k ∈ Rn encodes the fixed ratio between the n sides
of the hyper-rectangle. Contrary to s, k is fixed and given by
the user, so it is not a variable of the optimization. In our
tests we have always set k> =

[
σ1 . . . σn

]
. Thanks to the

fact that P(e ∈ U(s)) is a monotonically increasing function
of s, maximizing the probability over the hyper-rectangle is
equivalent to maximizing s. Rather than solving (16) we can
then solve:

Rbox(τ) = maximize
s≥0

s

subject to G(τ + z) + g ≥ 0, ∀z ∈ U(s)
(17)

Note that in general Rbox(τ) 6= pbox(τ), but (16) and (17)
result in the same value of s. Despite this simplification, using
Rbox(τ) in place of R(τ) may seem rather complex. First, we
need to optimize a function (Rbox) that is itself the solution of
an optimization problem and second, (17) cannot be solved in
this form since it has an infinite number of constraints. Despite
appearances, we now show that this boils down to a simple
QP.

Using the same method discussed in Section IV we can
reformulate (17) as a linear problem whose solution is our
robustness measure:

Rbox(τ) = minimize
s≥0

− s

subject to Gτ − |G|ks+ g ≥ 0
(18)

4In our previous work [21] we also investigated the case of U(s) being a
general hyper-rectangle (aligned with the main axes), parametrizing it with
2n variables. However, the resulting optimization problem is harder to solve
(it is nonlinear, sparse, and it has 3n variables) and the performances were
worse than those of the pind approximation, so we decided to stop using it.
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Now that we got rid of the infinite number of constraints,
we need to understand how we can minimize Rbox(τ) with
respect to τ , Rbox(τ) being the solution of an optimization
problem. The answer is surprisingly simple: we perform both
optimizations at the same time, which gives us:

minimize
τ,s≥0

1

2
||Dτ − d||2 − ws

subject to Gτ − |G|ks+ g ≥ 0
(19)

This means that we look at the same time for the solution
of the original problem τ and for the “best” enclosed hyper-
rectangle. To solve this problem we can use a standard QP
solver, as is usually the case for the classic TSID.

It is interesting to note that for k = emax (19) is almost
identical to (12), that is the problem we got starting from
a deterministic uncertainty set. The only difference is that
in (12) the variable s cannot be larger than 1, whereas in
(19) it has no upper bound. This is because the deterministic
uncertainty is bounded, so it makes no sense to immunize
the solution to uncertainties bigger than emax. The stochastic
uncertainty is instead unbounded, so the bigger s, the higher
the robustness. Despite their resemblance, the parameter w
has a different meaning in the two problems: in (12) it is
just a large number that is supposed to approximate a strict
priority of the robustness with respect to the performance,
whereas in (19) it specifies the trade-off between robustness
and performances. It is not advisable to set w to a too-large
value in (19) because it would result in extremely poor tracking
performances.

VI. SIMULATIONS

In this section, we present a series of simulation results that
try to answer to the following questions:

• What improvement can we get in terms of probability to
satisfy the inequalities by using robust TSID?

• Which of the proposed formulations performs better?
• Can we solve these optimization problems in under 1 ms?
• What would be the practical benefits of using a robust

controller in a realistic scenario with unmodeled uncer-
tainties, such as errors in the inertial parameters and in
the estimated velocities?

We tested the proposed controllers on three typical humanoid
tasks (whole-body reaching, whole-body manipulation, and
walking) with the 30-degree-of-freedom humanoid robot HRP-
2. Table I lists all the simulation parameters. Since the deter-
ministic robust controller turned out to be almost equivalent
to the stochastic robust controller with pbox approximation,
we tested only the latter in our simulations. The formulation
of the control problem changes slightly from test to test,
depending on which tasks are implemented. However, most
of the inequality constraints are the same across the different
tests. If not stated otherwise, they are: linearized friction cones
for each contact force, torque limits (upper and lower bounds),
and joint acceleration limits (representing the joint-velocity
limits).

TABLE I
SIMULATION PARAMETERS.

Symbol Meaning Value
∆t Simulation/control time step 2 ms
µ Force friction coefficient 0.3
vmaxj Max joint velocity 9.8 rad s−1

εaccuracy Nonlinear solver accuracy 10−6

tmax Max computation time 0.8 ms

A. Simulation Environment

To assess the proposed controllers we developed a dedicated
simulation environment based on a state-of-the-art algorithm
for frictional contacts in multibody systems [36]. We inte-
grated the equations of motion of the system with a first-
order Euler scheme with fixed time step ∆t. Our choice of not
using an off-the-shelf simulator is motivated by our desire to
completely understand and control the simulation environment.
This allowed us to introduce several uncertainties/noises and
to regulate their magnitude:
• We added Gaussian noise to the joint torques. We as-

sumed that the noise had standard deviation σ propor-
tional to the relative maximum torque τmax. To make
this noise more realistic (white noise can not exist in the
real world) we filtered it using a first-order low-pass filter
with a cut frequency of 20 Hz—with a compensation for
the amplitude reduction caused by the filter.

• We limited the bandwidth of the torque controller by low-
pass filtering the desired joint torques before given them
to the simulator. Torque-tracking bandwidths between 40
Hz and 60 Hz have been reported for high-performance
actuators (e.g. 40 Hz for hydraulic actuators [17], 46 Hz
for electric motors with harmonic drives [37], 60 Hz for
series elastic actuators [38]). We assumed a pessimistic
torque bandwidth of 20 Hz for all our simulations.

• We estimated joint and base velocities with a Savitsky-
Golay filter [39] (fitting a polynomial of order 2 to a
sliding window of 20 samples): this introduced a realistic
delay of 20 ms in the velocity signal used by the
controller.

• The inertial parameters (masses, centers of mass and
inertias) of the model used by the controller did not match
those of the model used by the simulator. The random
inertial-parameter errors were generated using uniform
distribution. For masses and inertias the maximum error
was expressed in terms of percentage of the real values.
For the centers of mass (CoM) the maximum error was
instead expressed in cm.

In each test we specify which uncertainties were simulated.

B. Joint-Torque Tracking Errors

This work is based on the assumption that torque tracking
errors are an important uncertainty to take into account in
robot controllers. The recent literature on the subject [17],
[37], [38] seems to agree with us. To back our assumption we
present here some data collected on a real torque-controlled
robot. Fig. 6 shows the distribution of the torque tracking
errors on three joints of the Hydraulic Quadruped HyQ [40],
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(a) Hip pitch joint, left front leg,
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(b) Hip roll joint, left hind leg,
mean error -0.04 Nm, standard
deviation 0.57 Nm.
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(c) Knee joint, right hind leg,
mean error 0.16 Nm, standard de-
viation 2.44 Nm.

Fig. 6. Distribution of the joint-torque tracking errors of three joints of the
HyQ robot [40], [41].
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Fig. 7. Test 1. Probability of the inequalities of the TSID control problem
computed by the three approximations proposed in this paper.

[41] during a locomotion task. We can clearly see that these
errors have approximately zero mean and their distribution can
be reasonably approximated by a Gaussian. For this dataset,
the standard deviations of the torque tracking errors were
between 0.5% and 2% of the maximum joint torque. Given
the high performances of the torque controller of HyQ due to
the hydraulic actuators and the fast torque feedback we can
not hope to achieve the same performances on HRP-2. This
is why in our tests we assumed higher values for the standard
deviation of the torque errors, between 5% and 10% of the
maximum joint torque.

C. Test 1 — Comparing Probability Approximations

This test aims to compare the different approximations of
the probability to satisfy a set of linear inequalities subject
to additive noise on the decision variables. We performed
this comparison on the TSID inequality constraints, since we

TABLE II
RESULTS OF TEST 2. FOR EACH FORMULATION WE REPORT THE AVERAGE

VALUES OVER 700 TESTS.

Formulation Classic
TSID
wf = 0

Classic
TSID
wf > 0

Robust
TSID
pind

Robust
TSID
pbox

Probability p(τ) 25.1 27.4 75.7 66.5
Force prob. 28.2 31.0 86.0 72.2
Joint-accelerat. prob. 85.2 85.2 85.2 85.3
Joint-torque prob. 100 100 100 100
Active inequalities 3.37 2.83 0.6 0.95
Iterations 1.06 1.05 2.06 1.11
Comput. time [ms] 0.23 0.19 0.31 0.2

are actually interested in how the proposed approximations
perform on this particular problem. We generated a state
trajectory (i.e. configuration and velocity) by controlling the
motion of the CoM of the robot with classic TSID (10). For
each state, we computed the probability p(τ) of the joint
torques to satisfy the inequality constraints. We purposely
asked for a demanding motion of the CoM (20 cm in 1.6
seconds), which caused several constraints to be saturated, so
that p(τ) covered the whole range 0 − 100 (see Fig. 7). We
then compared p(τ) with the two approximations pind, and
pbox. While pind is always quite close to p, pbox is often far
below p. The average error |p−p...| is 2.6% for pind, and 68%
for pbox. Despite the poor quality of the pbox approximation,
the next tests will show that maximizing pbox can lead to great
improvements in robustness.

D. Test 2 — Comparing Robustness

The goal of this second test is to compare the different
TSID formulations in terms of robustness of the inequality
constraints. We used the same state trajectory generated for
Test 1. For each state we solved the associated control prob-
lems using several TSID controllers and we measured the
resulting p(τ) for each. In this test we did not introduce any
uncertainty/noise in the simulation, but we just measured the
probability to satisfy the inequality constraints. The control
problem was composed by the following tasks:
• track the desired CoM trajectory (weight 1)
• maintain initial joint posture (weight 10−3)
• maximize robustness (weight 10−5, only for robust con-

trollers)
• minimize contact moments and tangential forces [29]

(weight wf , only for classic controller)
The four controllers used in this test are:
• Classic TSID with wf = 0, formulation (10)
• Classic TSID with wf = 10−4, formulation (10)
• Robust TSID with pind approximation, formulation (14)
• Robust TSID with pbox approximation, formulation (19)

Table II reports the results. In terms of probability to satisfy
the inequalities, the robust formulations greatly outperform the
classic formulations. The force regularization (i.e. wf > 0)
slightly improves the overall probability. The optimization of
pbox leads to a probability slightly lower than pind, which
we expected because of its simplicity. Robust and classic
formulations differ the most in the probability of the force
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TABLE III
RESULTS OF TEST 3. WE REPORT MEAN AND STANDARD DEVIATION OF

THE COMPUTATION TIME FOR EACH TESTED TSID FORMULATION.

Formulation Classic
TSID

Robust
TSID
pind

Robust
TSID
pbox

Probability p(τ) 26.04 99.23 82.96
Mean comput. time [ms] 0.18 0.33 0.24
Std. dev. comput. time [ms] 0.34 0.42 0.36
Mean comput. time (no warm start) [ms] 10.06 9.36 11.55
Std. dev. comput. time (no warm start) [ms] 0.64 0.95 0.88

(a) 0 s (b) 1 s (c) 2 s (d) 7 s

Fig. 8. Test 3. Snapshots of a reaching task.

inequalities. All the formulations lead to small errors for the
CoM task (< 10−3).

E. Test 3 — Comparing Computation Times

This test focuses on the computation time of the proposed
controllers in a whole-body reaching task. In this test we
did not introduce any uncertainty/noise in the simulation. The
robot had to reach a point far in front with the right hand
(see Fig. 8). To avoid falling we constrained the capture point
of the robot to lie inside the support polygon [28]. We ran a
simulation for each solver, in which we used its solution (i.e.
τ ) to simulate the system and get its new state.

To speed-up the resolution we exploited the warm-start
capabilities of qpOases [42], the active-set QP solver that we
used. To solve the nonlinear problem (14) we implemented a
Sequential Quadratic Programming (SQP) algorithm [22]. We
initialized the SQP search with the last solution, which most
of the times led to convergence in a single Newton’s iteration.
We used a line-search algorithm that enforces strong Wolfe
conditions [22]. The algorithm stopped as soon as the squared
Newton decrement [35] was less than the desired accuracy
(∆x>newtonH∆xnewton < 2εaccuracy) or the computation time
exceeded an arbitrary limit tmax. The computation time only
included the time taken by qpOases, which means that it
neglects the line search and the computation of Hessian and
gradient of the cost function. This choice was motivated by two
facts. First, the time to solve the QP typically dominates the
time taken by the other operations. Second, these operations
were implemented in Python, so their computation time is
much longer than it would be with a C++ implementation
(which will be mandatory for its application on a real robot).
Table III shows the results: thanks to the warm start we got an
average speed-up of ∼ 30×. Apart from a few outliers (maybe
due to the Python interface of qpOases), the computation time
was always below tmax = 0.8 ms.

F. Test 4 — Walking

To measure robustness in a more concrete way we tested the
proposed controllers in a realistic simulation environment. The
target motion consisted in walking on flat ground (see Fig. 9),
composed by a forward-walk phase of about 27 seconds,
followed by a lateral-walk phase of about 20 seconds. The
desired trajectories for the CoM and the feet of the robot were
computed using a state-of-the-art walking pattern generator
[43]. The control problem was composed by the following
tasks:
• track the desired CoM and stepping foot trajectories

(weight 1)
• maintain initial joint posture (weight 10−3)
• maximize robustness (weight 10−4, only for robust con-

trollers)
• maintain previous joint torques (weight 10−5, only for

robust controllers)
• minimize contact moments and tangential forces (weight

10−5, only for classic controller)
We used a small weight for the robustness to ensure a
good tracking of the CoM and the feet, which is critical
for the stability of the robot during walking. The task of
maintaining the previous joint torques helps having smooth
torque trajectories with lower bandwidth than our simulated
torque controller (i.e. 20 Hz).

We carried out several batches of tests, each batch differing
for the simulated uncertainties. In particular we experimented
with the delay in the velocity estimation, the level of noise
on the joint torques and the magnitude of the errors in the
inertial parameters. We do not report results with different
cut frequencies of the torque low-pass filters because they did
not seem critical for this test. Each batch was composed by
100 tests. Each test consisted in trying to perform the whole
walking motion with three controllers (classic, robust pind,
robust pbox) until the robot either fell or reached the end
of the motion. We consider that the robot has fallen if the
tracking error of its CoM is larger than 50 cm. The random
torque noises and the inertial parameter errors changed at each
test, but they were the same for the three controllers (i.e. in
each test the noise value at every time sample is the same
for the three controllers: eclassic(t) = eind(t) = ebox(t)).
We then measured the number of times each controller drove
the robot to a fall and the average time before falling (given
by the total walking time divided by the number of falls).
Table VI-E summarizes the results. When the level of uncer-
tainties is negligible the three controllers perform great, but in
the presence of significant uncertainties we see a remarkable
difference between the robust controllers and the classic one.
It is especially the robust pind controller that performs much
better than the others, reporting always much less falls than
the others (except for one case).

G. Test 5 — Drilling

This last test is a variation of the previous test, dedicated
to a whole-body manipulation task, namely drilling a hole of
5 cm in a wall. Fig. 10 shows some snapshots of the task.
While being similar to the whole-body reaching task used in
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(a) 11.6 s (b) 12.0 s (c) 12.4 s (d) 12.8 s (e) 13.2 s

Fig. 9. Test 4. Snapshots of the walking task.

TABLE IV
RESULTS OF TEST 4, WALKING. EACH LINE REFERS TO A BATCH OF 100 TESTS UNDER DIFFERENT UNCERTAINTY CONDITIONS. STARTING FROM THE
LEFT COLUMN, WE REPORT I) WHETHER THE CONTROLLER USED THE REAL OR THE ESTIMATED VELOCITIES, II) THE STANDARD DEVIATION OF THE

GAUSSIAN NOISE ON THE JOINT TORQUES, III) THE TORQUE BANDWIDTH OF THE TORQUE CONTROL, IV) THE MAXIMUM ERROR ON THE MASSES,
CENTERS OF MASS AND INERTIAS OF THE LINKS OF THE ROBOT. THE “MEAN TIME BEFORE FALLING” IS THE TOTAL TEST TIME DIVIDED BY THE

NUMBER OF FALLS. NOTE THAT THE FIRST FOUR LINES REFER TO SINGLE TESTS BECAUSE THE SIMULATED UNCERTAINTIES ARE DETERMINISTIC.

Uncertainties Mean time before falling [s] Number of falls
v σ

τmax [%] Torque bandwidth
[Hz]

mass
[%]

com
[cm]

inertia
[%]

Classic Robust
pind

Robust
pbox

Classic Robust
pind

Robust
pbox

Real 0 ∞ 0 0 0 ∞ ∞ ∞ 0 0 0
Estimated 0 ∞ 0 0 0 ∞ ∞ ∞ 0 0 0
Real 0 20 0 0 0 ∞ ∞ ∞ 0 0 0
Estimated 0 20 0 0 0 16.8 ∞ 20.5 100 0 100
Real 6 ∞ 0 0 0 203.2 ∞ ∞ 20 0 0
Estimated 6 ∞ 0 0 0 109.4 912.1 202.5 39 4 20
Estimated 8 ∞ 0 0 0 69.0 408.3 105.3 58 10 38
Real 6 20 0 0 0 172.6 908.4 ∞ 23 5 0
Estimated 6 20 0 0 0 24.7 147.3 35.8 98 28 80
Real 0 ∞ 10 1 20 282.1 ∞ ∞ 15 0 0
Estimated 6 ∞ 0 0 20 106.1 921.2 240.4 40 4 17
Estimated 6 ∞ 0 0 100 109.1 761.4 187.2 39 5 22
Estimated 6 ∞ 10 1 20 94.0 765.7 100.3 44 5 38
Estimated 8 ∞ 10 1 20 59.0 316.1 102.1 65 14 40
Estimated 5 20 10 1 20 30.8 148.2 33.7 90 28 79

(a) 0.0 s (b) 0.6 s (c) 2.6 s

Fig. 10. Test 5. Snapshots of the drilling task. The red dot on the wall represents the desired hole position.
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TABLE V
RESULTS OF TEST 5, DRILLING. EACH LINE REFERS TO A BATCH OF 100 TESTS UNDER DIFFERENT UNCERTAINTY CONDITIONS. STARTING FROM THE
LEFT COLUMN, WE REPORT I) WHETHER THE CONTROLLER USED THE REAL OR THE ESTIMATED VELOCITIES, II) THE STANDARD DEVIATION OF THE

GAUSSIAN NOISE ON THE JOINT TORQUES, III) THE TORQUE BANDWIDTH OF THE TORQUE CONTROL. THE “MEAN TIME BEFORE FALLING” IS THE TOTAL
TEST TIME DIVIDED BY THE NUMBER OF FALLS. NOTE THAT THE FIRST TWO LINES REFER TO SINGLE TESTS BECAUSE THE SIMULATED UNCERTAINTIES

ARE DETERMINISTIC.

Uncertainties Mean time before falling [s] Number of falls
v σ

τmax [%] Torque bandwidth
[Hz]

mass
[%]

com
[cm]

inertia
[%]

Classic Robust
pind

Robust
pbox

Classic Robust
pind

Robust
pbox

Real 0 ∞ 0 0 0 ∞ ∞ ∞ 0 0 0
Estimated 0 ∞ 0 0 0 ∞ ∞ ∞ 0 0 0
Real 5 ∞ 0 0 0 235.5 1198.9 599.3 5 1 2
Estimated 5 ∞ 0 0 0 235.4 ∞ ∞ 5 0 0
Estimated 5 20 0 0 0 143.0 590.9 393.8 8 2 3
Estimated 5 20 10 1 20 129.3 297.7 297.8 9 4 4
Real 10 ∞ 0 0 0 15.7 56.3 36.2 63 20 30
Estimated 10 ∞ 0 0 0 14.8 56.7 36.6 64 20 30

Test 3, this task adds the challenge of physically interacting
with the wall. The reaction force exerted by the wall on
the drill’s tip was simulated with a viscous model, i.e. the
force is proportional to the velocity. The control problem was
composed of the following tasks:

• maintain the capture point within the support polygon
(constraint)

• track the desired 6d trajectory with the drill’s tip (weight
1, only when not in contact with the wall)

• track the desired 6d force with the drill’s tip (weight 1,
only when in contact with the wall)

• maintain initial joint posture (weight 10−2)
• maximize robustness (weight 10−4, only for robust con-

trollers)
• maintain previous joint torques (weight 10−5, only for

robust controllers)
• minimize contact moments and tangential forces (weight

10−6, only for classic controller)

Once the drill touched the wall we controlled the force in
the normal direction (applying a constant force of 50 N
that smoothly increases/decreases at the beginning/end), while
controlling the drill in impedance in the other 5 directions
(i.e. the 3 angular and the 2 tangential linear directions) to
avoid drifting. Note that even if in general the capture point is
not valid in multi-contact scenarios, given the relatively low
values of the contact force exerted on the wall (below 50 N),
the capture point remains a reasonable criterion of dynamic
equilibrium in this test.

Similarly to the previous test, we carried out several batches
of 100 tests each, each batch simulating different uncertainties.
Our main objective was to see how often the robot fell during
the execution of the task, depending on the controller. Fig. 10
shows that we positioned the robot at a large distance from
the wall, so that it had to move its CoM close to the borders
of its support polygon to reach the wall with the drill. As
expected, the three controllers behaved perfectly as long as
the level of the uncertainties was negligible (see first two
lines of Table VI-F). However, as soon as we introduced
significant noise levels in the simulation the robust controllers
outperformed the classic one. Once again, the robust pind
controller performed the best.

H. Discussion
Analyzing the presented results we can claim that:
• optimizing the proposed probability approximations re-

sults in a large increase in the real probability to satisfy
the inequality constraints;

• the proposed controllers are suitable for online control
because the associated optimization problem could be
solved in less than 1 ms by exploiting standard warm-
start techniques;

• in the presence of Gaussian noise on the joint torques,
the robust controllers greatly outperformed the classic
controller in walking and whole-body manipulation tasks;

• even in the presence of unmodeled noises and uncer-
tainties (inertial parameters, velocity estimation, limited
torque bandwidth), the robust controllers greatly outper-
formed the classic controller;

• under all uncertainty conditions (except one) the robust
pind controller outperformed the robust pbox controller.

It is worth noting that the robust controllers did not outperform
the classic controller in every single test, but they always did
it (on average) in every batch of 100 tests. This result is rea-
sonable because TSID is a class of instantaneous controllers,
meaning that they do not foresee the future behavior of the
system. The robust controllers are not able to foresee whether
the choice of being robust now will lead the system to a state
in which it is no longer possible to be robust. Our tests showed
that, on average, choosing to be robust in the present pays off
in the future, but we can not guarantee that this is always the
case. For instance, during walking, we saw that using a large
weight w for the robustness maximization would lead to poor
tracking of the center of mass of the robot, which eventually
would lead to a fall.

Another interesting result is the superiority of the stochastic
robust controller (pind) with respect to the worst-case robust
controller (pbox). The stochastic controller knows the prob-
ability distribution of the torque noise, which gives him a
great advantage with respect to the worst-case controller—
which knows only its bounds. For instance, in case the robot
reaches a state in which one inequality has to be satisfied
with zero margin, the worst-case controller must set s = 0
and so all solutions would have the same robustness (i.e.
zero) for it. This is not the case for the stochastic controller:
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even if one inequality has zero margin (i.e. it has probability
50%) the stochastic controller would still try to increase
the margin of the other inequalities to increase the overall
inequality probability. Apparently, this capability to maximize
the margin of all the inequalities, rather than to maximize
only the smallest margin, results in better performances even
in the presence of unmodeled uncertainties. However, the
price paid by the stochastic controller is the resolution of a
nonlinear optimization problem, which is more complex than
the quadratic problem solved by the worst-case solver.

VII. RELATED WORKS

Considering the robustness of the control scheme is a long-
standing and well-identified problem, but it remains largely
unanswered. In the literature we can mainly identify three
types of approaches:

1) ensuring stability despite the presence of undefined
uncertainties (typically leveraging control-theory tools);

2) improving robustness to undefined uncertainties through
intuitive hand-tunable heuristics;

3) guaranteeing either stability or feasibility despite the
presence of well-identified and modeled uncertainties
(typically leveraging robust optimization techniques).

The first approach focuses exclusively on the stability of
the system rather than on the feasibility of the state tra-
jectories. For instance, adaptive control [44] and time-delay
estimation [45] try to estimate and compensate online for
the major errors between nominal and real dynamic model.
Other approaches, such as virtual model control [46], do not
rely at all on the dynamic model of the robot, which ensures
robustness to misestimations of the inertial parameters [47].
Alternatively, robustness can be expressed by considering the
stability of the computed trajectories inside a locomotion
cycle [48], [49]. The main issue of these schemes is that they
do not consider inequality constraints, that is they neglect the
problem of feasibility. This makes them hard to implement on
real legged robots, given the large number of bounds to which
these systems are subject. The sole approach in this category
that can handle inequality constraints is the recent work based
on sum-of-squares optimization and Lyapunov functions [50].
However, nowadays this approach seems to be applicable only
to systems with a few degrees of freedom, much smaller than
humanoid robots.

The second class of works propose hand-tunable heuristics
that often are not even emphasized in the papers, but turn
out to be fundamental in real implementations. For instance,
a common heuristic in TSID—which we adopt as well—is
to impose a secondary objective to keep the robot posture
close to a reference one [6]. This tends to keep the move-
ment away from the joint limits and therefore it increases
robustness. Similarly, to increase the robustness of the contact
forces/moments to avoid slipping/tipping, it was proposed
to minimize the contact moments and the tangential contact
forces in the null space of the main motion task [51]. Yet
another common trick in the generation of walking motion is
to try to maintain the center of pressure as close as possible
to the center of the foot [52]. The robotics literature is filled

with this kind of heuristics, which often are the main reason
behind the successful implementations of control algorithms
on real platforms. However, these heuristics can not ensure
feasibility in the presence of any significant uncertainty and
needs ad-hoc tuning depending on the situation.

Finally, the third class of works—which includes this
paper—makes use of robust optimization techniques to for-
mulate control and planning problems. Mordatch et al. [53]
considered several perturbed models of a humanoid robot to
plan offline a trajectory that is robust to uncertainties, reporting
success rate between 80% and 95% on a real platform.
Another recent work [54] has combined robust and time-
scaling optimization to plan trajectories that are robust to
bounded errors in friction coefficients and joint accelerations,
whose magnitude can be estimated online through iterative
learning. Finally, Nguyen and Sreenath [55] have recently
exploited control Lyapunov functions and QPs to ensure
stability despite bounded uncertainties in the linearized system
dynamics. This work [55] is the closest to ours because it
deals with online control under bounded uncertainties, and
it accounts for inequality constraints (only torque bounds).
However, several differences can be noted. First, we focus on
the robustness of the inequality constraints, while they focused
on stability, which they formulate as a relaxed inequality
constraint. Second, we proposed to model the uncertainties
either as bounded variables or as random variables, while they
considered only the former approach. Third, we considered ad-
ditive errors in the joint-torque tracking, for which identifying
a model (either in terms of bounds or probability distribution)
seems straightforward. Instead they considered additive errors
in the linearized system dynamics, but they gave no details [55]
regarding how to find reasonable bounds for this error on a
physical system, which does not seem trivial.

VIII. CONCLUSIONS

This paper presented an extension of the Task-Space Inverse
Dynamics control framework that takes the robustness of the
inequality constraints into account. This work is motivated
by the low level of robustness that this control framework
exhibits in the presence of uncertainties. The proposed solution
consists in accounting for additive uncertainties on the joint
torques of the robot. Our choice to focus on the joint-torque
errors is motivated by the challenge of having good joint-
torque tracking [18] on real robots and by the tractability
of the resulting mathematical problem. We showed that these
uncertainties can be either modeled as random variables with
known probability distribution—giving rise to a stochastic op-
timization problem— or as deterministic bounded variables—
resulting in a worst-case optimization problem. Since the re-
sulting stochastic optimization problem is too complex to solve
in few milliseconds we proposed two ways to approximate
this problem, one of which turned out to be almost identical
to the case of deterministic uncertainties. Through extensive
simulations in a realistic environment we tested the proposed
robust controllers against the classic (nonrobust) controller.
Regardless of the nature and the magnitude of the simulated
uncertainties the robust controllers greatly outperformed the
classic controller in terms of number of falls of the robot.



JOURNAL OF LATEX CLASS FILES, VOL. 13, NO. 9, SEPTEMBER 2014 13

Of course real robots are affected by many more uncer-
tainties than those that we introduced in our environment,
such as errors and delays in the estimation of the floating-
base position-orientation, static friction at the joints, com-
munication delays, errors in the geometric parameters, link
flexibility. While we did not account for all these uncertainties,
the uncertainties that we introduced in our simulations were
sufficient to show the potential benefits of our approach.
Moreover, it is reasonable to assume that the robust controllers
would always outperform (on average) the classic controller,
regardless of the source of the uncertainties.

A. Future work

It would be easy to generalize the presented results to the
case of nonzero-mean and nondiagonal covariance matrix; we
did not deal with these cases because we found these two
assumptions very reasonable in practice. We could also use a
different probability distribution as long as we can compute the
probability density function and cumulative density function
of a weighted sum of random variables following such a
distribution. Unfortunately, this operation is trivial only for
the Gaussian and a few other simple distributions [19], [56],
[57].

Another straightforward extension of this work would be
to immunize to uncertainties the stability of the system—
besides the feasibility of the state-control trajectories. Using
control Lyapunov function [55] we could represent tasks
as inequalities—rather than equalities—and apply the same
methodology discussed in this paper.

A more challenging extension would be to consider other
types of uncertainties. The proposed controllers immunize
the inequality constraints only to joint-torque tracking errors.
Even if they also exhibited an increased level of robustness
to other unmodeled uncertainties, taking into account all of
the uncertainties affecting the system would result in better
performances. Some other uncertainties that appear linearly
in the constraints exist, for instance additive uncertainties
in the joint velocities appear linearly in the capture-point
constraints. However, many uncertainties appear nonlinearly
in the dynamics of the system (e.g. in the forward dynamics
joint velocities appear quadratically, and inertial parameters
multiply joint accelerations), which prevents us from dealing
with them using the same optimization techniques discussed
in this paper. However, we can hope to do that leveraging
nonlinear robust optimization techniques [58], [59].

We believe that accounting for uncertainties could lead to
major improvements in robotics if applied at all levels (i.e.
planning, control, estimation and identification). For instance,
the same approaches presented here could be applied to Model
Predictive Control (MPC), a control technique that has become
ubiquitous in robotics for the generation of walking motion
[43], [52]. While robust MPC is already an active research
field [60]–[62], applications of robust optimization in robotics
are seldom [54], [55], [63], [64].

While this work focused on the theoretical results and
their validation, its motivations lie in the desire to control
real robots. We plan to test the presented control algorithms

on HRP-2 (on which we recently implemented torque con-
trol [18]) and empirically measure the robustness improve-
ments. We are also interested in testing robust TSID with
strict priorities, which will require the implementation of a
hierarchical nonlinear convex solver [27].
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