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1- Two ingredients along this talk: 
The heat transfer coefficient
The thermal conductance

2-Plane-Plane experiments:
Is there a good temperature to work at?
Measuring 1/d2 law

3- Sphere-Plane experiments
A sensitive flux-meter
The experimental setup
Connecting the measurements to the theory 
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Ingredients: heat transfer coefficient
Two infinite planes separated by d

T1

T2
d

From Joulain et al., Surface Sciences Reports 57, 59 (2005)
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Ingredients: thermal conductance

Heat transfer between a sphere and a plane separated by d

T1

T2
d

In my talk: from the Derjaguin approximation

Now: from exact theory
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1- Two main ingredients: 
The heat transfer coefficient
The thermal conductance

2-Plane-Plane experiments:
Is there a good temperature to work at?
Measuring 1/d2 law

3- Sphere-Plane experiments
A sensitive flux-meter
The experimental setup
Connecting the measurements to the theory 
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Measurements at low temperature ~10 K

From Kralik et al. PRL 109, 224302 (2012)

Between metals

From E.G. Cravalho et al. , Progres in Aeronautics 
and Astronautics 22, 531 (1968)

Between metals
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Measurements at room temperature

From Ottens et al. PRL 107, 014301 (2011)From Hargreaves et al. Phys. Lett. A 30A 
491 (1969)

Between metals Between dielectrics
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Plane –plane experiments are:

- important: easily compared to the theory

- interesting from an experimental point of view:
 large area = large flux even if surfase fluxes are not so high

- difficult: because parallelism is a difficult task 

Interest for plane-plane experiments
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Misalignement consequences… 

T1

T2
d

= 2 mrad

° 

100 µm

°

α 200 nm

Surface modes gap-
dependence (1/d2) cannot 
be measured if angle are 
not extremely well control 

Crude  estimation with Proximity Approximation
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T1

T2

dmax

Characteristic lateral scale

dmin Minimum achived gap ~ 100-10 nm

T1

T2
dmin

At which temperature should I work?

dmax Maximum achived gap  ~ 10 µm

Maybe what I would like to measure will fix the temperature?
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What have not been shown yet? 

Metallic materials:
Induction zone

Surface modes 
coupling: 
Unavailable at 
reasonable 
temperature

Saturation: 
after skin depth
Not shown yet

Between two Gold plates at 300 K

From Chapuis et al. PRB 77 035431 (2008)
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What have not been shown yet?  For metals

Distance of saturation:

Material dependent

But 

Temperature independent

From Chapuis et al. PRB 77 035431 (2008)
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What have not been shown yet?  

For materials supporting surface 
modes in the IR:
(Dielectric polar materials or doped 
silicon)
 
Intermediate regime: contribution 
of frustrated reflexions

Surface modes contribution:
electrostatic approximation 1/d2

Not shown yet

What is the best temperature to 
work at?
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Some asymptotic results

From Rousseau et al. JAP 111 014311 
(2012)

It is possible to measure the 1/d2 
law 
when SPP contribution 
dominates
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Some analytical results

Starting from stochastic electrodynamics

TM polarisation evanescent contribution:
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Some analytical results

Electrostatic approximation: integration over wavevectors
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Some analytical results

Surface modes coupling 
contribution

This asymptotic expression capture the dispersion relation of the two-plates 
geometry

Two SiC slab separated by 10 nm
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Some analytical results

From Rousseau et al. JAP 111 014311 
(2012)

In the complex plane:
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Some analytical results

In the complex plane:
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Some analytical results

Can be found 
directly from 
experimental 
data

are zeros of

with
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Some analytical results

Two surface modes for silica
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Some analytical results

Different materials
 
Similar or not
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SPP contribution

Surface modes coupling 
Contribution OK

Frustrated Total Internal 
Reflections

In a Landauer point of view

From Rousseau et al. JAP 111 014311 
(2012)
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FTIR contribution

FTIR contribution
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FTIR contribution

From Rousseau et al. JAP 111 014311 
(2012)

The number of channel
 is finite

Changes come from the 
transmission factors
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FTIR contribution

γmax
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FTIR contribution

The trick Rousseau et al. JAP 111 014311 (2012)
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FTIR contribution

=

See also 

Rousseau et al. APL 95 231913 (2009)
Rousseau et al. Journal of Quantitative Spectroscopy and Radiative heat transfer 111 1005 (2010)
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Characteristic distance

Surface modes coupling 
Contribution OK

Frustrated Total Internal 
Reflections OK

Now I can estimate when 
SPP dominates the heat 
transfer

From Rousseau et al. JAP 111 014311 
(2012)
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Characteristic distance

T

100 K 29 µm 19 nm

300 K   10 µm 170 nm

500 K 6 µm 110 nm
For SiC-SiC

Better for Al2O3 @ 300 K
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Summary about plane-plane comments

Choosing temperature: 
Total displacement vs angle requirement

Not really temperature requirements for metals

To measure the 1/d2 law:

Room temperature is more suitable for materials 
supporting resonance near 10 µm

But in any cases nanometer gaps have to be reached 
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1- Two main ingredients: 
The heat transfer coefficient
The thermal conductance

2-Plane-Plane experiments:
Is there a good temperature to work at?
Measuring 1/d2 law

3- Sphere-Plane experiments
A sensitive flux-meter
The experimental setup
Connecting the measurements to the theory 
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Kittel et al. , PRL 95 p 224301 (2005)

Rc ~ 50nm

Pt

Au

T ~ 100 KAu

SEM
Thermocouple

Radiatif transfer vs distance

Previous non plane-plane geometries explored
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Silica plate

Silica sphere

From Narayanaswamy A, G. Chen PRB 78, 115303 
(2008)

The first sphere-plane experiments
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Silica plate

Silica sphere

From S. Shen et al. NanoLetters 9, 2909 (2009)

The first sphere-plane experiments
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The problem of the sphere-plane geometry

Sphere radius should not be too large

d
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Far-field

Flux in the order of ~100 nW

ΔT~10-20 K

Th

Tc

Flux estimate

Not a too small sphere
Materials supporting surface modes (glass ~ silica )
A very sensitive fluxmeter
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AuSi3N4

AFM 
cantilever

A very sensitive fluxmeter: 
a bimorph based on an AFM cantilever
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AuSi3N4

AFM 
cantilever

A very sensitive fluxmeter: 
a bimorph based on an AFM cantilever

320 µm
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AuSi3N4

AFM 
cantilever

320 µm

A very sensitive fluxmeter: 
a bimorph based on an AFM cantilever

Optimisation is difficult because of SiNx

Commercially available SiNx / Au

From Lai et al. Sensors and Actuators A 58 113 (1997) 
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Au Si3N4

Bilame 

320 µm

Cantilever bending is proportional to the thermal flux 
through the bimorph

     Flux measurement =>   bending measurement  
Sensitivity: 0.1 nm  T~10 µK     ~10 pW 

Bending

A very sensitive fluxmeter
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Experimental difficulties taken 
into account:
 

1- Glue a sphere at the end of 
the cantilever. Work in vacuum!

2- bring a hot plate closer and 
closer

3- measure the bending of the 
bimorph

Si3N4

Bimorph

Au

Thermal Flux

Sketch of the experiment
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Tsd   Tp 
Rr

Rr Rs Rg Rc

(Ta  Tp )

Rr=160 106 K/W       @ 10 µm
Rr=53 106 K/W         @ 50 nm

Rg= 0.6 106 K/W 
Rs=40 103 K/W
Rc= 0.4 106 K/W  

 

Thermal circuit
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Thermal drift- Time constant

Room temperature Ta should be 
highly stable 
during measuremement

Measurements are done fast: 
100ms between two data points

Diffusion time in sphere ~ 0.5 ms
Diffusion time in cantilever ~ 2 ms

Less than 2 min for one acquisition 
curve 
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Vacuum condition P~10-6 mbar

Vertical geometry to prevent 
bending from electrostatic forces

Plate heated by a Peltier element

Plate is risen to the sphere with 
nanometric precision (step 7 nm)

Sphere-plate distance change from 
5 µm to contact

The measurement chamber
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Optical Fiber

Heating element

Piezo 
actuator

5 Hz

V0

Stabilized
Laser source

photodiod

Beam 
splitter

I-V 
convertor
G=5.104 V/A
fc=100 kHz

Piezo 
supply

monitor

PI

P~ 10-6 mbar
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Optical Fiber

Heating element

P~ 10-6 mbar

This contribution  is a constant
but relative measurement

External heating

Laser power is low in order 
to reduce photon noise

Some precautions
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Experimental difficulties taken into 
account:
 

1- thermal drift: 1 nm/min

2- spurious flux to due to laser. Low 
laser power to reduce heating and 
photon noise

 closed-loop keeps the distance 
bimorph-fibre (i.e. spurious flux) 
constant: we move the fibre

 relative measurement 

Si3N4

Bimorph

Au

Thermal Flux

Spurious 
flux

Keep 
constant

Some precautions
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Bending vs sphere-plane 
distance. 

Comparison with theory. 

measurements
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Summation
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Derjaguin approximation
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Zero flux? 
No! 
Relative measurement!

Add far-field contribution

1- Y-axis: Far-field contribution.1- Y-axis: Far-field contribution.
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φ = Hδ(d) 

nW nm

2- Y-axis: calibration2- Y-axis: calibration
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2- Y-axis: can be calibrated in far-field2- Y-axis: can be calibrated in far-field

φ = Hδ(d) 

50 µm

H=2.30 +/- 0.05 nW/nmEmissivity from litterature
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b

Contact? No! 

No way to be measured. 

3- X-axis: distance mean-surface-plate3- X-axis: distance mean-surface-plate
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Sphere surfaceSphere surface

500 nm
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Another sphere surfaceAnother sphere surface

500 nm
Asperity size

Up to 150 nm
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Gff 2πR2 4σεT 3Gexp = Gff + Hδ(d+b)/ ΔT

Conversion factor
Asperity size

Measured with Thermocouple

Fitting 
parameters

Gtheo From the Derjaguin approximation

Compared with

Fitting the dataFitting the data
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b = 31.8  0.2 nm

H=2.162  0.005 nW/nm

Th
er

m
al
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du
ct
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ce

 (n
W

/K
)

b

H=2.30 +/- 0.05 nW/nm
From calibration

Comparison experiments-theory

From Rousseau et al. Nature Photonics 3 514 
(2009)
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Sphere with smaller radius

d

Unfortunately 

b ~ 150 nm
From Rousseau et al. 
Nature Photonics 3 514 (2009)
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~1/d

Increased by a factor 3
several order plane/plane

SPP distance dependance
1/d2 @ 200 nm

For a sphere, the 
asymptotic regime is 
reached below 10 nm

  See Joël Chevrier talk

Surface mode contribution ?
Th

er
m
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du

ct
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 (n

W
/K

)
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