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We discuss how the thermalization of an elementary quantum system is modified when the system is placed
in an environment out of thermal equilibrium. To this aim we provide a detailed investigation of the dynamics
of an atomic system placed close to a body of arbitrary geometry and dielectric permittivity, whose temperature
TM is different from that of the surrounding walls TW. A suitable master equation for the general case of an
N -level atom is first derived and then specialized to the cases of a two- and three-level atom. Transition rates
and steady states are explicitly expressed as a function of the scattering matrices of the body and become both
qualitatively and quantitatively different from the case of radiation at thermal equilibrium. Out of equilibrium,
the system steady state depends on the system-body distance, on the geometry of the body, and on the interplay
of all such parameters with the body optical resonances. While a two-level atom tends toward a thermal state,
this is not the case already in the presence of three atomic levels. This peculiar behavior can be exploited, for
example, to invert the populations ordering and to provide an efficient cooling mechanism for the internal state
of the quantum system. We finally provide numerical studies and asymptotic expressions when the body is a slab
of finite thickness. Our predictions can be relevant for a wide class of experimental configurations out of thermal
equilibrium involving different physical realizations of two- or three-level systems.
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I. INTRODUCTION

The absence of thermal equilibrium is a condition naturally
verified in several biological systems as well as experimental
configurations [1–3]. Out of thermal equilibrium (OTE)
systems have been recently subject to intensive investigations
concerning heat transfer [4–12] and Casimir-Lifshitz inter-
action [11–20]. It has been theoretically and experimentally
demonstrated that systems driven out of thermal equilibrium
may show forces with new qualitative and quantitative be-
haviors: repulsion, amplification of the force, and stronger
tunability [13,14]. Typical OTE configurations consist of an
ensemble of bodies kept at fixed and different temperatures and
embedded in a blackbody radiation emitted by the surrounding
walls at a temperature different from those of the bodies, the
whole system being in a stationary configuration.

Recently, promising results have been also obtained re-
garding the potentiality of OTE environments to control and
manipulate the dynamics of atomic systems placed in this
kind of environment [21]. This study may have experimental
relevance for systems which are naturally out of thermal
equilibrium, such as in recent studies concerning cold atoms
close to superconducting surfaces [22,23], involving the tip
of an atomic-force microscope (AFM) close to cold samples
[24,25], in the case of atom-chip configurations [26,27], and
in all the setups aiming at investigating near-field properties
[13,14,28–30].

The lifetime 1/� of the atomic dynamics depends on the
state of the local electromagnetic (EM) field with which the
atom is coupled, i.e., on the fact that it is stationary or not,
isotropic or not, that it is a vacuum state, a thermal state, a laser
field, or other. Given an atom in a certain position, the local
EM field is in general modified by the radiation emitted and/or
scattered by surrounding bodies. This mechanism results in
lifetimes depending on the relative distance between the atom

and the bodies, on their geometrical and optical properties,
as well as on their temperatures. Lifetime has been typically
studied at thermal equilibrium, when the radiation emitted
by the surrounding walls impinging the body is at thermal
equilibrium with the body itself. Under this assumption several
configurations have been investigated, among which are zero
and nonzero temperatures, and infinitely thick planar and
corrugated slabs [31–33].

The atomic lifetime 1/� is strongly connected with the
time evolution of atomic coherences, which may be naturally
investigated by studying the reduced density matrix, also
useful to evaluate the average values of physical observables.
Remarkably, it gives information on the atomic steady state
and hence on the thermalization process. For instance, for
configurations where the body is at thermal equilibrium
with the environment at temperature T , the atomic density
matrix evolves on a time scale 1/� to a diagonal matrix
corresponding to a thermal steady state at temperature T .
Contrary to lifetime, and due to peculiar cancellations, at
thermal equilibrium the atomic steady state depends only on
the ratios h̄ωnm/kBT (where h̄ωnm are the energies of the
internal transitions) being independent of the presence of
the body. The richness of this system can be exalted if the
atom is embedded in a stationary configuration out of thermal
equilibrium, made by a body whose temperature is kept fixed
and different from that of the walls surrounding the body-atom
system. The electromagnetic structure holding in OTE systems
has a complex nature, poorly investigated because of the
impossibility of exploiting directly the fluctuation-dissipation
theorem. Recently, using multiple-scattering theory and an
appropriate use of the fluctuation-dissipation theorem at each
different temperature present in the system, the radiation field
in complex OTE configurations has been characterized in terms
of its correlators [11,12]. The knowledge of the correlators of
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the local EM field is the main ingredient needed to compute
the transition rates regulating the atomic dynamics, as, e.g.,
in the case of Kossakowski-Lindblad master equations in the
Markovian regime [21,34].

In this paper we provide a systematic derivation for the
internal dynamics of an atom placed in front of an arbitrary
body embedded in a thermal radiation whose temperature
is different from that of the body. The paper is organized
as follows. In Sec. II we describe the physical model under
investigation and we derive a master equation for the general
case of an N -level atom. In Sec. III we derive closed-form
expressions for the transition rates holding out of thermal
equilibrium in terms of the scattering matrices of the body,
valid for arbitrary geometrical and material properties. In
Secs. IV and V we specialize our analysis to the case of a two-
and a three-level atom, discussing how the atomic dynamics
occurring at thermal equilibrium is modified by the absence of
equilibrium. In Sec. VI we derive explicit expressions for the
transition rates for the case in which the body is a slab of finite
thickness. This configuration is numerically investigated in
Sec. VII where the cases in which slab is made of a dielectrics
(GaAs) or a metal (gold) are considered and compared. The
dynamics of both two- and three-level atoms are discussed,
showing the occurrence of peculiar phenomena emerging out
of thermal equilibrium, already pointed out in the general
analysis. In Sec. VIII we draw our conclusions.

II. MODEL

We consider an N -level atom A placed close to a body of
arbitrary geometry and dielectric permittivity and embedded in
an environmental radiation generated by the walls surrounding
the system (see Fig. 1). The body and the surrounding walls
have in general different temperatures, TM and TW, which are
kept fixed in time realizing a stationary configuration out of
thermal equilibrium. By assumption, the walls are far from
both the body and the atom, their shape is irregular, and
they are at local thermal equilibrium at temperature TW. As
a result of these hypotheses, the radiation associated to the
wall has no evanescent contribution reaching the body and the
atom, and is a universal isotropic blackbody radiation. This
blackbody radiation is by definition independent of the actual
material constituting the walls. The atom interacts with the
electromagnetic field (playing the role of bath B) generated by

FIG. 1. (Color online) Atom is kept fixed close to an arbitrary
body whose temperature TM is different from that of the surrounding
walls, TW. TM and TW are kept fixed in time, realizing a stationary
environment for the atom.

the walls and the body. The total Hamiltonian has the form

H = HA + HB + HI , (1)

where HA in the free Hamiltonian of the atom and HB the free
Hamiltonian of the bath. We describe the interaction between
the atom and the field using the multipolar coupling in dipole
approximation [35] HI = −D · E(R), where D is the atomic
electric-dipole operator and E(R) is the electric field at the
atomic position R in the Schrödinger picture. In the interaction
picture HI becomes

HI (t) = −D(t) · E(R,t), (2)

where the time-dependent electric-dipole operator
and electric field are defined by the transformations
D(t) = exp( i

h̄
HAt)D exp(− i

h̄
HAt) and E(R,t) = exp( i

h̄
HBt)

E(R) exp(− i
h̄
HBt). We describe the electric field in the

interaction picture using a decomposition in which a mode
of the field is identified by the frequency ω, the transverse
wave vector k = (kx,ky), the polarization index p (taking the
values p = 1,2 corresponding to TE and TM polarizations,
respectively), and the direction or propagation φ = ±1
(shorthand notation φ = ±) along the z axis. In this approach,
the total wave vector takes the form Kφ = (k,φkz), where the z

component of the wave vector kz is a dependent variable given

by kz =
√

ω2

c2 − k2, with k = |k|. The explicit expression of
the field is

E(R,t) = 2 Re

[∫ +∞

0

dω

2π
e−iωtE(R,ω)

]
, (3)

where a single-frequency component reads

E(R,ω) =
∑
φ,p

∫
d2k

(2π )2
eiKφ ·Rε̂φ

p(k,ω)Eφ
p (k,ω), (4)

E
φ
p (k,ω) being the field amplitude operator associated to the

mode (ω,k,p,φ). For the polarization vectors appearing in
Eq. (4) we adopt the following standard definitions:

ε̂
φ

TE(k,ω) = ẑ × k̂ = 1

k
(−ky x̂ + kx ŷ),

(5)
ε̂

φ

TM(k,ω) = c

ω
ε̂

φ

TE(k,ω) × Kφ = c

ω
(−kẑ + φkzk̂),

where x̂, ŷ, and ẑ are the unit vectors along the three axes and
k̂ = k/k.

A. Derivation of the master equation

Following [34], we now derive a master equation for the
reduced density matrix ρ(t) = TrB[ρtot(t)], where TrB denotes
the trace over the degrees of freedom associated to the bath. In
the following, we denote the eigenvalues of HA by ε and the
projection onto the eigenspace belonging to the eigenvalue ε by
�(ε). The starting point of our derivation is, in the interaction
picture, the von Neumann equation for the total density matrix
ρtot(t):

d

dt
ρtot(t) = − i

h̄
[HI (t),ρtot(t)], (6)

where HI (t) of Eq. (2) is rewritten as [34]

HI (t) = −
∑
i,ω

e−iωtAi(ω)Ei(R,t), (7)
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where i ∈ {x,y,z} and Ai(ω) =∑ε′−ε=ω �(ε)Di�(ε′). Ai(ω)
are eigenoperators of HA belonging to the frequencies ±ω,
being [HA,Ai(ω)] = −ωAi(ω) and [HA,A

†
i (ω)] = ωA

†
i (ω),

and it holds Di =∑ω Ai(ω) and Ai(−ω) = A
†
i (ω). The sum

over ω appearing in Eq. (7) is extended over all the energy
eigenvalues ε′ and ε of HA such that ε′ − ε = ω.

Using standard approximations, namely the Born, Marko-
vian, and rotating-wave approximations (see discussion in Ap-
pendix A), one obtains (using also the condition 〈Ei(R,t)〉= 0)

d

dt
ρ(t) = − i

h̄
[HLS,ρ(t)] + D(ρ(t)), (8)

where the Hermitian operator (Lamb-shift Hamiltonian)

HLS = h̄
∑

ω

∑
i,j

sij (ω)A†
i (ω)Aj (ω) (9)

purely produces a shift of the atomic energy levels (we note that
[HA,HLS] = 0) and the dissipator term D(ρ(t)) has the form

D(ρ(t)) =
∑

ω

∑
i,j

γij (ω)

[
Aj (ω)ρ(t)A†

i (ω)

− 1

2
{A†

i (ω)Aj (ω),ρ(t)}
]
, (10)

where in Eqs. (9) and (10) the frequencies ω assume both
positive and negative values. In the two previous equations,
γij (ω) and sij (ω) are defined by


ij (ω) = 1

h̄2

∫ ∞

0
ds eiωs〈Ei(R,t)Ej (R,t − s)〉,

γij (ω) = 
ij + 
∗
ji , sij (ω) = 
ij − 
∗

ji

2i
. (11)

From the previous equation it follows that 
ij (ω) =
1
2γij (ω) + isij (ω) and

γij (ω) = 1

h̄2

∫ ∞

−∞
ds eiωs〈Ei(R,t)Ej (R,t − s)〉. (12)

The quantities γij (ω) are expressed in terms of the reservoir
correlation functions and in the case ρB is a stationary state
of the bath (as it is in our physical configuration), that is
[HB,ρB] = 0, they are homogenous in time. This means that
〈Ei(R,t)Ej (R,t − s)〉 = 〈Ei(R,s)Ej (R,0)〉 and γij (ω) do not
depend on time.

Field correlators have been computed out of thermal
equilibrium in a more general configuration, in the presence of

a further object at a third different temperature [11,12]. These
depend on the three temperatures involved as well as on the
material and geometrical properties of the two bodies, taken
into account by means of their classical scattering operators.
We will show that by exploiting these results, the expressions
of the transition rates can be explicitly given as a function of the
reflection and transmission operators R and T of the body M.

B. N-level atom

Now we explicitly apply the previous derivation to an
atomic system. We first consider the general case of an atom
having N states (ordered by increasing energy) |1〉,|2〉, . . .
and |N〉, with corresponding frequencies ω1,ω2, . . . ,ωN . All
the transitions between the N states are in principle allowed
and the frequency difference between two arbitrary levels
n and m is indicated by ωnm = ωn − ωm. We will assume
from now on that n is always taken larger than m so that ωnm

always represents a positive frequency. The free Hamiltonian
of the N -level atom is

HA =
N∑

n=1

h̄ωn|n〉〈n|, (13)

and the atomic dipole operator D(t) takes the form

D(t) =
∑
m,n

(dmn|m〉〈n|e−iωnmt + d∗
mn|n〉〈m|eiωnmt ), (14)

where dmn = 〈m|D|n〉 is the transition matrix element of the
dipole operator between |m〉 and |n〉. In accordance with the
previous remark, the sum runs over values m,n ∈ {1,2, . . . ,N}
such that n > m. Under these assumptions, the sum over ω in
Eqs. (7), (9), and (10) runs over the values ωnm and −ωnm. By
comparing Eqs. (2), (7), and (14), one sees that (we remark
that from now on ω > 0)

A(ω) =
∑

{m,n}:ωnm=ω

dmn|m〉〈n| = A†(−ω), (15)

meaning that the sum is over n and m such that ωnm = ω.
In general, several transitions can be associated to the same
atomic frequency ω, both because of degeneracy and/or the
occurrence of equidistant levels. By inserting Eq. (15) in
Eq. (8) and coming back to the Schrödinger representation,
one obtains the master equation in its most general form,

d

dt
ρ(t) = −i

⎡
⎣∑

n

ωn|n〉〈n| +
∑

ω

∑
{m,n},{m′,n′}

∑
i,j

(sij (−ω)[dm′n′]i[dmn]∗j δnn′ |m′〉〈m| + sij (ω)[dmn]∗i [dm′n′ ]j δmm′ |n〉〈n′|),ρ(t)

⎤
⎦

+
∑

ω

∑
{m,n},{m′,n′}

∑
i,j

[
γij (−ω)[dm′n′ ]i[dmn]∗j

(
ρmm′ |n〉〈n′| − 1

2
δnn′ {|m′〉〈m|,ρ(t)}

)

+ γij (ω)[dmn]∗i [dm′n′]j

(
ρn′n|m′〉〈m| − 1

2
δmm′ {|n〉〈n′|,ρ(t)}

)]
, (16)

where the sum
∑

{m,n},{m′,n′} is meant over all couples (m,n) and
(m′,n′) such that ωnm = ωn′m′ = ω (being always n > m and
n′ > m′). The previous equation contains both terms coupling

each transition with itself [(m,n) = (m′,n′)] and terms cou-
pling different transitions having the same frequency [(m,n) �=
(m′,n′)]. In the case of nonequidistant and nondegenerate
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levels, we have that to each transition corresponds a dif-
ferent value ωnm and we can write A(ωnm) = dmn|m〉〈n| =
A†(−ωnm). In this case, the previous master equation reduces to

d

dt
ρ(t) = −i

[∑
n

ωn|n〉〈n| +
∑
m,n

S(−ωnm)|m〉〈m|

+
∑
m,n

S(ωnm)|n〉〈n|,ρ(t)

]

+
∑
m,n

�(−ωnm)

(
ρmm|n〉〈n| − 1

2
{|m〉〈m|,ρ(t)}

)

+
∑
m,n

�(ωnm)

(
ρnn|m〉〈m| − 1

2
{|n〉〈n|,ρ(t)}

)
,

(17)

where we have defined

S(−ωnm) =
∑
i,j

sij (−ωnm)[dmn]i[dmn]∗j ,

S(ωnm) =
∑
i,j

sij (ωnm)[dmn]∗i [dmn]j ,

(18)
�(−ωnm) =

∑
i,j

γij (−ωnm)[dmn]i[dmn]∗j ,

�(ωnm) =
∑
i,j

γij (ωnm)[dmn]∗i [dmn]j .

We now turn to the calculation of the functions γij (ω)
appearing in Eq. (18) and defined in Eq. (12). They are, using
homogeneity in time,

γij (ω) = 1

h̄2

∫ ∞

−∞
ds

∫ +∞

0

dω′

2π

∫ +∞

0

dω′′

2π

× [e−i(ω′′−ω)s〈Ei(R,ω′′)E†
j (R,ω′)〉

+ ei(ω+ω′′)s〈E†
i (R,ω′′)Ej (R,ω′)〉]

= 1

h̄2

∫ +∞

0

dω′

2π

{
〈Ei(R,ω)E†

j (R,ω′)〉, ω > 0,

〈E†
i (R,−ω)Ej (R,ω′)〉, ω < 0,

(19)

where we have used 〈Ei(R,ω)Ej (R,ω′)〉 =
〈E†

i (R,ω)E†
j (R,ω′)〉 = 0 and

∫∞
−∞ ds exp(−iεs) = 2πδ(ε).

By using the decomposition of Eq. (4), we obtain for positive
arguments of γij (ω)

γij (ω) = 1

h̄2

∫ +∞

0

dω′

2π

∑
φ,φ′,p,p′

∫
d2k

(2π )2

∫
d2k′

(2π )2

× ei(Kφ−K′φ′∗)·R[ε̂φ
p(k,ω)

]
i

[
ε̂

φ′
p′ (k′,ω′)

]∗
j

× 〈Eφ
p (k,ω)Eφ′†

p′ (k′,ω′)
〉
, (20)

whereas for negative arguments we have

γij (−ω) = 1

h̄2

∫ +∞

0

dω′

2π

∑
φ,φ′,p,p′

∫
d2k

(2π )2

∫
d2k′

(2π )2

× e−i(Kφ∗−K′φ′
)·R[ε̂φ

p(k,ω)
]∗
i

[
ε̂

φ′
p′(k′,ω′)

]
j

× 〈Eφ†
p (k,ω)Eφ′

p′ (k′,ω′)
〉
, (21)

where we always assume ω > 0. We observe that the last
equation can be obtained by taking the complex conjugate of
Eq. (20) after having interchanged the operators E

φ
p (k,ω) and

E
φ′†
p′ (k′,ω′).

III. ATOM CLOSE TO AN ARBITRARY BODY

At this point of the calculation, it is necessary to link
the field correlation functions 〈Eφ

p (k,ω)Eφ′†
p′ (k′,ω′)〉 and

〈Eφ†
p (k,ω)Eφ′

p′ (k′,ω′)〉 to the two temperatures TM and TW and
to the material and geometrical properties of the body as well.
This can be done by following the derivation discussed in
Ref. [12] in the more general case of two bodies and three
temperatures. We are interested in the correlation functions of
the field defined on the side of the body on which the atom is
located (the right side, in our case). For a given set (ω,k,p), the
expression of the the modes of the field propagating in the two
directions is straightforward. We have, making the dependence
on ω, k, and p implicit,

E+ = E(M)+ + T E(W)+ + RE(W)−, E− = E(W)−. (22)

The field E− propagating toward the body (i.e., toward the left)
is only the environmental one, while the field E+ propagating
toward the right (see Fig. 1) results from the field E(M)+ directly
produced by the body, the transmission through M of the
environmental field coming from the left, and the reflection by
M of the one coming from the right. The operatorsR and T are
the standard reflection and transmission scattering operators,
explicitly defined for example in Ref. [12], associated in this
case to the right side of the body. They connect any outgoing
(reflected or transmitted) mode of the field to the entire set of
incoming modes.

Total field correlators are obtained by the knowledge of
correlators of the fields emitted by each source together with
Eq. (22). The source fields have been characterized in Ref. [12]
by treating each source independently as if it was at thermal
equilibrium at its own temperature and thus applying the
fluctuation-dissipation theorem. The following symmetrized
correlation functions [〈AB〉sym = (〈AB〉 + 〈BA〉)/2] have
been obtained:〈

E(M)+
p (k,ω)E(M)+†

p′ (k′,ω′)
〉
sym

= ω

2ε0c2
N (ω,TM)2πδ(ω − ω′)〈p,k|(P (pw)

−1 − RP (pw)
−1 R†

+RP (ew)
−1 − P (ew)

−1 R† − T P (pw)
−1 T †)|p′,k′〉,〈

E(W)φ
p (k,ω)E(W)φ′†

p′ (k′,ω′)
〉
sym

= ω

2ε0c2
N (ω,TW)2πδ(ω − ω′)δφ,φ′ 〈p,k|P (pw)

−1 |p′,k′〉,
(23)

where

N (ω,T ) = h̄ω

2
coth

(
h̄ω

2kBT

)
= h̄ω

[
1

2
+ n(ω,T )

]
, (24)

with

n(ω,T ) = (e
h̄ω

kB T − 1)−1 (25)

012101-4



QUANTUM SYSTEMS IN A STATIONARY ENVIRONMENT . . . PHYSICAL REVIEW A 87, 012101 (2013)

and

〈p,k|P (pw/ew)
n |p′,k′〉 = kn

z 〈p,k|�(pw/ew)|p′,k′〉, (26)

with �(pw) and �(ew) being the projectors on the propagative
(ck < ω, corresponding to a real kz) and evanescent (ck > ω,
corresponding to a purely imaginary kz) sectors, respectively.
By combining Eqs. (22) and (23) we finally obtain the
symmetrized correlation functions of the total field in the
region of interest:

〈E+
p (k,ω)E+†

p′ (k′,ω′)〉sym

= 2πδ(ω − ω′)
ω

2ε0c2
〈p,k|[N (ω,TM)

(
P (pw)

−1 − RP (pw)
−1 R†

+RP (ew)
−1 − P (ew)

−1 R† − T P (pw)
−1 T †)

+N (ω,TW)
(
T P (pw)

−1 T † + RP (pw)
−1 R†)]|p′,k′〉,

〈E+
p (k,ω)E−†

p′ (k′,ω′)〉sym

= 2πδ(ω − ω′)
ω

2ε0c2
N (ω,TW)〈p,k|RP (pw)

−1 |p′,k′〉,

〈E−
p (k,ω)E+†

p′ (k′,ω′)〉sym

= 2πδ(ω − ω′)
ω

2ε0c2
N (ω,TW)〈p,k|P (pw)

−1 R†|p′,k′〉,

〈E−
p (k,ω)E−†

p′ (k′,ω′)〉sym

= 2πδ(ω − ω′)
ω

2ε0c2
N (ω,TW)〈p,k|P (pw)

−1 |p′,k′〉. (27)

To obtain the nonsymmetrized versions of these correlation
functions, appearing in Eqs. (20) and (21), we first remark
that the source correlation functions (23) have been derived
using thermal-equilibrium techniques at the temperature of
each source individually (see [12] for a detailed discussion).
As a consequence, we are allowed to use Kubo’s prescription
[36], according to which in order to obtain 〈AB〉 from
〈AB〉sym the replacement N (ω,Ti) → h̄ω

[
1 + n(ω,Ti)

]
must

be performed, whilst 〈BA〉 results from the replacement
N (ω,Ti) → h̄ω n(ω,Ti). By exploiting the former replace-
ment rule, we obtain the modified version of Eq. (20) for
ω > 0:

γij (ω) = ω2

2ε0h̄c2

∑
p,p′

∫
d2k

(2π )2

∫
d2k′

(2π )2
ei(k−k′)·r〈p,k|{ei(kz−k

′∗
z )z[ε̂+

p (k,ω)]i[ε̂
+
p′ (k′,ω)]∗j

[
[1 + n(ω,TM)]

(
P (pw)

−1 − RP (pw)
−1 R†

+RP (ew)
−1 − P (ew)

−1 R† − T P (pw)
−1 T †)+ [1 + n(ω,TW)]

(
T P (pw)

−1 T † + RP (pw)
−1 R†)]

+ [1 + n(ω,TW)]
[
ei(kz+k

′∗
z )z[ε̂+

p (k,ω)]i[ε̂
−
p′ (k′,ω)]∗jRP (pw)

−1 + e−i(kz+k
′∗
z )z[ε̂−

p (k,ω)]i[ε̂
+
p′ (k′,ω)]∗jP

(pw)
−1 R†

+ e−i(kz−k
′∗
z )z[ε̂−

p (k,ω)]i[ε̂
−
p′ (k′,ω)]∗jP

(pw)
−1

]}|p′,k′〉. (28)

We observe that γij (−ω) of Eq. (21) is obtained from the previous equation by replacing [1 + n(ω,Ti)] with n(ω,Ti) and by
taking the complex conjugate.

Using Eq. (28) one can finally cast the transition rates �(ωnm) and �(−ωnm) of Eq. (18) under the form(
�(ωnm)

�(−ωnm)

)
= �0(ωnm)[αW(ωnm) + αM(ωnm)]

(
1 + n

(nm)
eff

n
(nm)
eff

)
, (29)

where �0(ωnm) = ω3
nm|dmn|2

3πε0h̄c3 is the vacuum spontaneous-emission rate relative to the transition |m〉 � |n〉. Here we have introduced,
for an arbitrary transition frequency ω = ωnm

αW(ω) = 3πc

2ω

∑
p,p′

∑
i,j

[dmn]∗i [dmn]j
|dmn|2

∫
d2k

(2π )2

∫
d2k′

(2π )2
ei(k−k′)·r〈p,k|[e−i(kz−k

′∗
z )z[ε̂−

p (k,ω)]i[ε̂
−
p′(k′,ω)]∗jP

(pw)
−1

+ ei(kz+k
′∗
z )z[ε̂+

p (k,ω)]i[ε̂
−
p′ (k′,ω)]∗jRP (pw)

−1 + e−i(kz+k
′∗
z )z[ε̂−

p (k,ω)]i[ε̂
+
p′(k′,ω)]∗jP

(pw)
−1 R†

+ ei(kz−k
′∗
z )z[ε̂+

p (k,ω)]i[ε̂
+
p′ (k′,ω)]∗j

(
T P (pw)

−1 T † + RP (pw)
−1 R†)]|p′,k′〉,

αM(ω) = 3πc

2ω

∑
p,p′

∑
i,j

[dmn]∗i [dmn]j
|dmn|2

∫
d2k

(2π )2

∫
d2k′

(2π )2
ei(k−k′)·r〈p,k|ei(kz−k

′∗
z )z[ε̂+

p (k,ω)]i[ε̂
+
p′ (k′,ω)]∗j

(
P (pw)

−1

−RP (pw)
−1 R† + RP (ew)

−1 − P (ew)
−1 R† − T P (pw)

−1 T †)|p′,k′〉, (30)

and

n
(nm)
eff = n(ωnm,TW)αW(ωnm) + n(ωnm,TM)αM(ωnm)

αW(ωnm) + αM(ωnm)
. (31)

The transition rates �(±ωnm) of Eq. (29) are proportional
to the term αW(ωnm) + αM(ωnm) which depends on material

properties but not on temperatures, while n
(nm)
eff depends,

in general, both on temperatures and the properties of the
body. From the last equation it follows that n(ωnm,Tmin) <

n
(nm)
eff < n(ωnm,Tmax), where Tmin = min(TM,TW) and Tmax =

max(TM,TW). As a consequence, the values of the transition
rates �(±ωnm) of Eq. (29) are always confined between their
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equilibrium values at temperatures TM and TW. The transition
rates relative to each frequency ωnm are equal to the ones at
thermal equilibrium at an effective temperature T

(nm)
eff , associa-

ble to each transition. This is defined by n(ωnm,T
(nm)

eff ) = n
(nm)
eff

and is given by

T
(nm)

eff = h̄ωnm

kB

[
ln
(
1 + n

(nm)
eff

−1)]−1
, (32)

being in general T (nm)
eff �= T

(pq)
eff . No thermodynamical meaning

different from the one above is associated to the notion of
effective temperatures here introduced. The global dynamics
can be then readily interpreted in terms of well-known
thermal-equilibrium physics by means of the various T

(nm)
eff .

However, out of thermal equilibrium, the various transitions
feel in general different effective temperatures whose values
depend on many factors such as the geometry of the body, the
system-body distance, and their interplay with the body optical
resonances. By varying the various parameters one can tune
the various effective temperatures far or close between them.

In the case TW = TM = T , in Eqs. (29) and (31),
n

(nm)
eff = n(ωnm,T ) for any (nm). It follows that the transition

rates �(±ωnm) are factorized as a product of �0(ωnm), of a
term [1 + n(ωnm,T ) or n(ωnm,T )], depending on temperature,
times the factor αW(ωnm) + αM(ωnm), depending on the
properties of the body. Indeed, at thermal equilibrium the
atomic decay rates depend on the presence of a material body
because of the modification of the local field due to the field
emitted by the body itself and to the way it scatters the one
coming from the environment.

Equations (17) and (29)–(31) allow one to investigate the
time evolution of the atomic density matrix in the presence
of an arbitrary body and for any couple of temperatures TM

and TW. Remarkably, the explicit quantized form of HB of
Eq. (1) has not been needed here. Indeed, all quantities we
are interested in are related to the fluctuations of the fields,
which under the local equilibrium assumption are provided,
as explained in this section, by the fluctuation-dissipation
theorem derived only by using general properties of the fields.
In order to get an insight on the atomic dynamics we consider
in the next two sections two specific examples in which the
atom has a simple level structure.

IV. TWO-LEVEL SYSTEM

In this section we assume that the atom has only two
levels, ω0 = ω2 − ω1 being the transition frequency between
the excited state |e〉 ≡ |2〉 and the ground state |g〉 ≡ |1〉
[see Fig. 2(a)].

FIG. 2. (Color online) Scheme of levels and definition of transi-
tion frequencies for a two- (a) and three-level (b) atom.

The free Hamiltonian of the two-level atom is

HA =
2∑

n=1

h̄ωn|n〉〈n|, (33)

and the atomic dipole operator D(t) assumes the simple form

D(t) = d|1〉〈2|e−iω0t + d∗|2〉〈1|eiω0t , (34)

where d = 〈g|D|e〉 (we assume that its diagonal matrix
elements vanish). In Eqs. (9) and (10) the sum over i and
j runs on i,j = x,y,z and the sum over ω on the only two
values ω0 and −ω0. By comparing Eqs. (2), (7), and (34), one
sees that A(ω0) = d|1〉〈2| = A†(−ω0). By performing the sum
over ω, Eq. (17) becomes

d

dt
ρ(t)

= −i

[∑
n

ωn|n〉〈n| + S(−ω0)|1〉〈1| + S(ω0)|2〉〈2|,ρ(t)

]

+�(−ω0)

(
ρ11|2〉〈2| − 1

2
{|1〉〈1|,ρ(t)}

)

+�(ω0)

(
ρ22|1〉〈1| − 1

2
{|2〉〈2|,ρ(t)}

)
, (35)

where S(−ω0), S(ω0), �(−ω0), and �(ω0) are defined as in
Eq. (18). The Lamb-shift Hamiltonian HLS = S(−ω0)|1〉〈1| +
S(ω0)|2〉〈2| induces a shift in the eigenvalues of the free atom
Hamiltonian HA, which now become ω1 + S(−ω0) and ω2 +
S(ω0) with a difference given by ω = ω0 + S(ω0) − S(−ω0).
�(ω0) and �(−ω0) are the transition rates associated to the
down- and upward transitions, respectively. From Eq. (35) the
differential equations for ρij = 〈i|ρ(t)|j 〉 follow:

d

dt
ρ11(t) = −�(−ω0)ρ11(t) + �(ω0)ρ22(t),

d

dt
ρ22(t) = �(−ω0)ρ11(t) − �(ω0)ρ22(t), (36)

d

dt
ρ12(t) =

[
iω − �(ω0) + �(−ω0)

2

]
ρ12(t).

The solution of this equation reads(
ρ11(t)

ρ22(t)

)
=
(

ρ11(0)

ρ22(0)

)
e−γ (ω0)t + 1 − e−γ (ω0)t

γ (ω0)

(
�(ω0)

�(−ω0)

)
,

ρ12(t) = ρ12(0)eiωt e− γ (ω0)
2 t , ρ21(t) = ρ12(t)∗. (37)

The decay rate γ (ω0) = �(ω0) + �(−ω0) is not influenced
by the Lamb shift, which does not play any role also in the
steady state of the system. At times t � 1/γ (ω0) the system
thermalizes to the steady state

ρ(t → ∞) = 1

�(−ω0) + �(ω0)

(
�(ω0) 0

0 �(−ω0)

)
. (38)

The decoherence process is linked to the behavior of nondiag-
onal elements ρ12 and ρ21 and is essentially regulated by the
decay rate γ (ω0)/2. As we will see, the behavior of the atomic
evolution is qualitatively different between the equilibrium and
nonequilibrium case.
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A. Case of thermal equilibrium

When TM = TW = T , one has from Eq. (31) that n
(21)
eff =

n(ω0,T ) so that the effective number of photons becomes
independent of the material properties. Moreover, the above
stationary state (38) reduces to

ρ(t → ∞) = 1

1 + 2n(ω0,T )

(
1 + n(ω0,T ) 0

0 n(ω0,T )

)
.

(39)

As a consequence of the factorization of thermal and material
dependence in �(±ω0), there is a simplification of the factor
αW(ω0) + αM(ω0) in the steady state. It follows that the
asymptotic state is a thermal state of a two-level system at
temperature T , independently of the presence and properties of
body M. Out of thermal equilibrium, this peculiar cancellation
does not hold anymore, with the steady atomic state depending
on the various parameters influencing the behavior of the
� rates. We will show that the interplay between the body
properties and the atomic position allows one to realize a rich
variety of asymptotic atomic configurations.

B. Case out of thermal equilibrium

When TM �= TW, both the decay rates and the steady state of
the system depend on the two temperatures and the properties
of the body. In particular, these dependences are entangled
in the term n

(21)
eff of Eq. (31) (we pose in the two-level case

n
(21)
eff = neff). Using Eq. (29) in Eq. (38) we obtain

ρ(t → ∞) = 1

1 + 2neff

(
1 + neff 0

0 neff

)
. (40)

We remark that the dependence on the material properties
has not disappeared, being indeed contained in the effective
number of photons neff . Nevertheless, the steady state of
Eq. (40) has the form of a thermal state so that the two-level
system always thermalizes toward a thermal state even out
of thermal equilibrium. The temperature Teff of this steady
state is defined as in Eq. (32) by n(ω0,Teff) = neff , it results
equal to kBTeff = h̄ω/ ln(1 + 1/neff) and is an intermediate
temperature between TM and TW.

We observe that the steady state (40) is defined by only
one parameter (i.e., one of the two diagonal elements) being
Tr ρ = 1. As a consequence, any diagonal state satisfying the
condition ρ11 > ρ22 [always true in Eq. (40)] coincides indeed
with a thermal state. In the case of a system characterized by
more than two levels, a diagonal state is defined by more than
one parameter and thus can no longer be always identified with
a thermal state, as we will see in the next section.

V. THREE-LEVEL SYSTEM

We now focus our attention on the case of a three-level atom
in a � configuration, previously considered in Ref. [21]. We
label the three states with |1〉, |2〉, and |3〉, with frequencies ω1,
ω2, and ω3 [again in increasing order; see Fig. 2(b)]. We assume
that the interaction Hamiltonian couples the states |1〉 and |3〉
as well as |2〉 and |3〉 (ω32 �= ω31), whereas the matrix element
of D between |1〉 and |2〉 vanishes. The free Hamiltonian of

the three-level atom is

HA =
3∑

n=1

h̄ωn|n〉〈n|, (41)

while the atomic dipole operator D(t) is given by

D(t) = d13|1〉〈3|e−iω31t + d∗
13|3〉〈1|eiω31t

+ d23|2〉〈3|e−iω32t + d∗
23|3〉〈2|eiω32t . (42)

In Eqs. (9) and (10) the sum over ω runs now over the values
ω31, −ω31, ω32, and −ω32. By performing the sum over ωnm

corresponding to the allowed transitions, Eq. (17) reduces to

d

dt
ρ = −i

[
3∑

n=1

ωn|n〉〈n| + S(−ω31)|1〉〈1|

+ (S(ω31) + S(ω32))|3〉〈3| + S(−ω32)|2〉〈2|,ρ
]

+�(−ω31)

(
ρ11|3〉〈3| − 1

2
{|1〉〈1|,ρ}

)

+�(ω31)

(
ρ33|1〉〈1| − 1

2
{|3〉〈3|,ρ}

)

+�(−ω32)

(
ρ22|3〉〈3| − 1

2
{|2〉〈2|,ρ}

)

+�(ω32)

(
ρ33|2〉〈2| − 1

2
{|3〉〈3|,ρ}

)
. (43)

The energy differences associated to the free Hamil-
tonian modified by the Lamb-shift term read 31 =
ω31 + S(ω31) − S(−ω31) + S(ω32), 21 = ω21 + S(−ω32) −
S(−ω31), and 32 = ω32 + S(ω32) − S(−ω32) + S(ω31). The
differential equations for the six diagonal and upper-diagonal
matrix elements of the atomic density matrix are thus given by

d

dt
ρ11(t) = −�(−ω31)ρ11(t) + �(ω31)ρ33(t),

d

dt
ρ22(t) = −�(−ω32)ρ22(t) + �(ω32)ρ33(t),

d

dt
ρ33(t) = �(−ω31)ρ11(t) − �(ω31)ρ33(t)

+�(−ω32)ρ22(t) − �(ω32)ρ33(t), (44)
d

dt
ρ12(t) =

[
i21 − �(−ω31) + �(−ω32)

2

]
ρ12(t),

d

dt
ρ13(t) =

[
i31 − �(ω31) + �(−ω31) + �(ω32)

2

]
ρ13(t),

d

dt
ρ23(t) =

[
i32 − �(ω32) + �(−ω32) + �(ω31)

2

]
ρ23(t).

The density matrix elements evolve asymptotically to

ρ11(∞) = �(ω31)�(−ω32)

Z̃
, ρ22(∞) = �(−ω31)�(ω32)

Z̃
,

ρ33(∞) = �(−ω31)�(−ω32)

Z̃
, ρij (∞) = 0 for i �= j,

Z̃ = �(ω31)�(−ω32) + �(−ω31)�(ω32)

+�(−ω31)�(−ω32). (45)
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As far as the decoherence process is concerned, it is linked to
the behavior of nondiagonal elements ρ12, ρ13, and ρ23, and
then it is essentially regulated by the decay rates �(±ω31) and
�(±ω32).

A. Case of thermal equilibrium

In the case TW = TM = T , using Eqs. (29) and (31)
and noticing that n

(31)
eff = n(ω31,T ) and n

(32)
eff = n(ω32,T ), the

stationary state (45) reduces to

ρ11(∞) = n(ω32,T )[1 + n(ω31,T )]/Zeq,

ρ22(∞) = n(ω31,T )[1 + n(ω32,T )]/Zeq,
(46)

ρ33(∞) = n(ω31,T )n(ω32,T )/Zeq,

Zeq = 3n(ω31,T )n(ω32,T ) + n(ω31,T ) + n(ω32,T ).

This state coincides indeed with the thermal state at temper-
ature T of a three-level system, as expected independently of
the properties of body M.

B. Case out of thermal equilibrium

The fundamental difference between the two-level and
the three-level configuration is that in the latter we can
associate an effective temperature comprised between TW

and TM to each allowed transition, and that the two effective
temperatures do not in general coincide. Equivalently, to each
allowed transition one can associate an effective number of
photons given by Eq. (31) for (nm) ∈ {(32),(31)}. The steady
populations of Eq. (45) can be rewritten in terms of the effective
values of n associated to the two transitions as follows:⎛

⎜⎝
ρ11(∞)

ρ22(∞)

ρ33(∞)

⎞
⎟⎠ = 1

Z

⎛
⎜⎝

n
(32)
eff

(
1 + n

(31)
eff

)
n

(31)
eff

(
1 + n

(32)
eff

)
n

(31)
eff n

(32)
eff

⎞
⎟⎠,

(47)
Z = 3n

(31)
eff n

(32)
eff + n

(31)
eff + n

(32)
eff .

The decay rates �(±ωnm) have the form of Eq. (29) for
(nm) ∈ {(32),(31)}. Their values are always delimited by the
equilibrium decay rates in the case TW = TM = Tmin and in the
case TW = TM = Tmax.

A first remark is that the steady state (47) is not in general
a thermal state differently from the case of a two-level system.
However, a thermal state can be yet obtained if one succeeds
in finding values of the various parameters such to make equal
the two effective temperatures, T

(32)
eff = T

(31)
eff = T . This gives

n
(31)
eff = n(ω31,T ) and n

(32)
eff = n(ω32,T ), so that the stationary

state (47) reduces to Eq. (46).
A second relevant remark is that while the quantities

�(±ωnm), n
(nm)
eff , and T

(nm)
eff associated to a given transition

(nm) are confined between their thermal-equilibrium values
at Tmin and Tmax, this is not the case for the steady popula-
tions ρ11(∞) and ρ22(∞). It is possible to show that when
n

(32)
eff = n(ω32,Tmax) and n

(31)
eff = n(ω31,Tmin), ρ11(∞) reaches

its maximum value which results to be larger than its value
when TW = TM = Tmin (this is the maximum value for a
thermal equilibrium configuration at a temperature comprised
between Tmin and Tmax). For this same condition ρ22(∞)
reaches its minimum value which is smaller than its value

when TW = TM = Tmin. This peculiar behavior is connected
to the fact that the condition n

(32)
eff = n(ω32,Tmax) and n

(31)
eff =

n(ω31,Tmin) makes at the same time the transition |2〉 � |3〉
the most and |1〉 � |3〉 the less reactive. The opposite case is
also of interest, namely when T

(32)
eff = Tmin and T

(31)
eff = Tmax. In

this case the minimum of ρ11(∞) and the maximum of ρ22(∞)
are obtained. Once again this result is respectively smaller and
larger than their equilibrium values at TW = TM = Tmax. In this
last case n

(31)
eff = n(ω31,Tmax) and n

(32)
eff = n(ω32,Tmin), so that

if n(ω32,Tmin) < n(ω31,Tmax) there is population inversion.
In the following we consider a specific example for which

we give an explicit expression for αW(ωnm) and αM(ωnm)
providing then a numerical investigation of the peculiar effects
described above for an arbitrary body.

VI. ATOM IN FRONT OF A SLAB

As a body we consider a slab of finite thickness δ for
which explicit expressions for the transmission and reflection
operators can be exploited [11,12]. For this specific case, we
will derive explicit analytic results for αW(ω) and αM(ω). The
atom has position R = (0,0,z) (we have chosen x = 0 and
y = 0 in virtue of the cylindrical symmetry of the problem
with respect to the axis z = 0) with z > 0, whereas the slab is
defined by the two interfaces z = 0 and z = −δ. As a result of
the translational invariance of a planar slab with respect to the
xy plane, its reflection and transmission operators, R and T ,
are diagonal and given by

〈p,k|R|p′,k′〉 = (2π )2δ(k − k′)δpp′ρp(k,ω),
(48)

〈p,k|T |p′,k′〉 = (2π )2δ(k − k′)δpp′τp(k,ω).

They are defined in terms of the Fresnel reflection and
transmission coefficients modified by the finite thickness δ

[37]:

ρp(k,ω) = rp(k,ω)
1 − e2ikzmδ

1 − r2
p(k,ω)e2ikzmδ

,

(49)

τp(k,ω) = tp(k,ω)t̄p(k,ω)ei(kzm−kz)δ

1 − r2
p(k,ω)e2ikzmδ

.

In these definitions we have introduced the z component of the
K vector inside the medium,

kzm =
√

ε(ω)
ω2

c2
− k2, (50)

ε(ω) being the dielectric permittivity of the slab, the ordinary
vacuum-medium Fresnel reflection coefficients,

rTE = kz − kzm

kz + kzm

, rTM = ε(ω)kz − kzm

ε(ω)kz + kzm

, (51)

as well as both the vacuum-medium (noted with t) and
medium-vacuum (noted with t̄) transmission coefficients,

tTE = 2kz

kz + kzm

, tTM = 2
√

ε(ω)kz

ε(ω)kz + kzm

,

(52)

t̄TE = 2kzm

kz + kzm

, t̄TM = 2
√

ε(ω)kzm

ε(ω)kz + kzm

.

After replacing the matrix elements (48) of the reflection
and transmission operators in Eq. (30) we obtain, for an
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arbitrary transition frequency ω = ωnm,

αW(ω) = 3c

8πω

∑
i,j

[dmn]∗i [dmn]j
|dmn|2

∑
p

∫ 2π

0
dθ

{∫ ω
c

0

dk k

kz

× [[ε̂+
p (k,ω)]i[ε̂

+
p (k,ω)]j (|ρp(k,ω)|2 + |τp(k,ω)|2)

+ [ε̂+
p (k,ω)]i[ε̂

−
p (k,ω)]j e

2ikzzρp(k,ω)

+ [ε̂−
p (k,ω)]i[ε̂

+
p (k,ω)]j e

−2ikzzρp(k,ω)∗

+ [ε̂−
p (k,ω)]i[ε̂

−
p (k,ω)]j ]

}
,

αM(ω) = 3c

8πω

∑
i,j

[dmn]∗i [dmn]j
|dmn|2

∑
p

∫ 2π

0
dθ

{∫ ω
c

0

dk k

kz

× [ε̂+
p (k,ω)]i[ε̂

+
p (k,ω)]j (1 − |ρp(k,ω)|2

− |τp(k,ω)|2) − i

∫ ∞

ω
c

dk k

Im(kz)
[ε̂+

p (k,ω)]i[ε̂
+
p (k,ω)]∗j

× e−2 Im(kz)z(ρp(k,ω) − ρp(k,ω)∗)
}
, (53)

where we have used that fact that the polarization vectors
are real quantities in the propagative sector (ck < ω). After
performing explicitly the angular integrals, one obtains

αW(ω) = 3c

8ω

∑
i,j

[dmn]∗i [dmn]j
|dmn|2 δij

∑
p

{∫ ω
c

0

k dk

kz

× [[M+
p (k,ω)]i(1 + |ρp(k,ω)|2 + |τp(k,ω)|2)

+ 2[M−
p (k,ω)]iRe(ρp(k,ω)e2ikzz)

]}
,

αM(ω) = 3c

8ω

∑
i,j

[dmn]∗i [dmn]j
|dmn|2 δij

∑
p

{∫ ω
c

0

k dk

kz

[M+
p (k,ω)]i

× (1 − |ρp(k,ω)|2 − |τp(k,ω)|2) + 2
∫ +∞

ω
c

k dk

Im(kz)

× e−2 Im(kz)z[M+
p (k,ω)]i Im(ρp(k,ω))

}
, (54)

where

Mφ

1 (k,ω) = (1,1,0),
(55)

Mφ

2 (k,ω) = c2

ω2
(φ|kz|2,φ|kz|2,2k2).

In αW(ωnm) and αM(ωnm) only diagonal terms survive. They
can be rewritten as

αW(ωnm) = 11 + B(ωnm) + 2C(ωnm)

2
· d̃nm,

(56)

αM(ωnm) = 11 − B(ωnm) + 2D(ωnm)

2
· d̃nm,

where d̃nm = (|[dnm]x |2,|[dnm]y |2,|[dnm]z|2)/|dnm|2, 11 =
(1,1,1), we have used

∑
p

∫ ω
c

0

k dk

kz

M+
p (k,ω) = 4ω

3c
11, (57)

and introduced the vectors

B(ω) = 3c

4ω

∑
p

∫ ω
c

0

k dk

kz

M+
p (k,ω)

× (|ρp(k,ω)|2 + |τp(k,ω)|2),

C(ω) = 3c

4ω

∑
p

∫ ω
c

0

k dk

kz

M−
p (k,ω)Re(ρp(k,ω)e2ikzz), (58)

D(ω) = 3c

4ω

∑
p

∫ +∞

ω
c

k dk

Im(kz)
e−2 Im(kz)zM+

p (k,ω)

× Im(ρp(k,ω)).

The integrals appearing in B and C are defined in the
propagative sector, while D is the only evanescent contribution.
B is distance independent and depends on the thickness δ,
while C and D depend both on δ and on the atom-slab distance
z. Moreover, it is possible to show that C and D tend to 0 for
z → ∞, while for z → 0 C remains finite and D diverges
(more precisely, its TM contribution) as [see Appendix B
where the dependence of B(ω), C(ω), and D(ω) on δ and z

as well as the asymptotic behavior of D(ω) are discussed]

D(ω,z → 0)  3c3

16ω3z3
Im

(
ε(ω) − 1

ε(ω) + 1

)
(1,1,2). (59)

It follows from Eq. (56) that for small z αM(ωnm) � αW(ωnm)
because of the divergence of D. As a consequence, all the
effective temperatures tend to TM in this limit [see Eqs. (31)
and (32)] and thus the atom thermalizes at the body tempera-
ture TM. On the contrary, for large z, αW(ωnm) > αM(ωnm) and
the analysis of Eqs. (31) and (32) shows that the position of
each T

(nm)
eff in the interval [Tmin,Tmax] is governed by B(ωnm).

From these comments it follows that there always exists a
distance z for which αW(ωnm) = αM(ωnm). At this position
n

(nm)
eff does not depend on the geometry of the system and

of the dielectric properties of the body (even if the point
where this happens depends on them). This point delimits
the two zones of influence where each temperature dominates
for that specific transition. We also note that at thermal
equilibrium B does not play any role, since all the quantities
are proportional to the sum αW + αM, independent of B and
asymptotically equal to 1. We remark that since �(−ωnm) [see
Eq. (29)] must be always larger than zero, by considering the
cases TW = TM, TW = 0,TM �= 0 and TW �= 0,TM = 0 three
constraints follow (only two of them are independent), for
i = x,y,z:

1 + [B(ω)]i + 2[C(ω)]i � 0,

1 − [B(ω)]i + 2[D(ω)]i � 0, (60)

1 + [C(ω)]i + [D(ω)]i � 0.

We note that the three relevant special cases in which
the electric dipole is parallel (|[dnm]x |2 = |[dnm]y |2 =
|[dnm]|2/2,[dnm]z = 0) or perpendicular ([dnm]x = [dnm]y = 0,

|[dnm]z|2 = |[dnm]|2) to the surface, or isotropic (|[dnm]i |2 =
|[dnm]|2/3 for i = x,y,z), can be easily treated by specifying
the symmetries of electric-dipole matrix elements in Eq. (30)
or in Eq. (56).

Before providing a numerical investigation for both cases
of two- and three-level atom, we briefly discuss some limiting
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cases already treated in literature. The case in which the body
is absent is obtained by putting, in the general discussion of
Sec. III, T = 1, R = 0, or equivalently in Eq. (58), ρp(k,ω) =
0 and τp(k,ω) = 1 (ε(ω) = 1), leading to B(ω) = 11 and
C(ω) = D(ω) = 0. It follows that αW(ω) = 1 and αM(ω) = 0,
so that the rates �(±ωnm) of Eq. (29) do not depend on
the properties of the atomic dipole, and are equal to �(ω) =
�0 [1 + n(ω,TW)] and �(−ω) = �0n(ω,TW). As expected, the
body temperature TM disappears.

In the limiting case of thermal equilibrium in the pres-
ence of the slab, when TW = TM = T , Eq. (29) can be
recast as(

�(ωnm)

�(−ωnm)

)
= �0(ωnm)[11 + C(ωnm) + D(ωnm)] · d̃nm

×
(

1 + n(ω,T )

n(ω,T )

)
. (61)

We notice that in the limit of zero temperature Eq. (61) gives
the known result for the modification of the atomic decay rate
in front of a slab reported in Refs. [31,32].

When the slab is a perfect mirror, one has ε(ω) → ∞,
ρp(k,ω) = (−1)p, and τp(k,ω) = 0. In this case the temper-
ature of the slab does not play any role. This corresponds to
the fact that under this assumption (dielectric permittivity real
and infinite over the entire frequency spectrum) a temperature
cannot be properly defined. By using in Eq. (58) ρp(k,ω) =
(−1)p and τp(k,ω) = 0, we have B(ω) = 11, D(ω) = 0, and

[C(ω)]i = 3c

4ω

∑
p

(−1)p
∫ ω

c

0

k dk

kz

[M−
p (k,ω)]i cos(2kzz)

= 3

2

[(
sin z̃

z̃3
− cos z̃

z̃2

)
(δix + δiy + 2δiz)

− sin z̃

z̃
(δix + δiy)

]
, (62)

where z̃ = 2zω
c

. Equation (29) reduces to(
�(ωnm)

�(−ωnm)

)
= �0(ωnm)[11 + C(ωnm)] · d̃nm

×
(

1 + n(ωnm,TW)

n(ωnm,TW)

)
. (63)

Equations (62) and (63) allow one to retrieve known results for
this ideal case [31]. For example, for a dipole moment parallel
to the surface the emission rate is reduced to zero close to the
slab, while in the case the dipole moment is perpendicular to
the surface it is enhanced with a factor 2 with respect to the
absence of the slab.

VII. NUMERICAL ANALYSIS

In this section we provide numerical analysis for both cases
of two- and three-level atoms treated respectively in Secs. IV
and V, considering an atom in front of a slab made of gallium
arsenide (GaAs). The dielectric permittivity ε(ω) of GaAs is
described using a Drude-Lorentz model [38],

ε(ω) = εinf
ω2 − ω2

l + i�ω

ω2 − ω2
r + i�ω

, (64)

characterized by a resonance at ωr = 0.506 × 1014 rad s−1

and where εinf = 11, ωl = 0.550 × 1014 rad s−1, and � =
0.004 52 × 1014 rad s−1. This model implies a surface phonon-
polariton resonance at ωp = 0.547 × 1014 rad s−1. A relevant
length scale in this case is c/ωr  6 μm, while a reference
temperature is h̄ωr/kB  387 K. The main advantage of GaAs
with respect to silicon carbide (SiC), previously used for the
numerical analysis in Ref. [21], is that its optically relevant
frequencies are smaller than those of SiC. This allows one to
observe interesting effects in a domain of frequencies where
the thermal populations n(ω,T ) are larger. Furthermore, in
order to discuss the dependence of atomic dynamics with
respect to changes of the overall optical response of the slab,
we also briefly consider the case of a metallic slab. We specify
here that all the numerical calculations presented in this section
refer to the case of isotropic dipoles.

As we will see, the atomic frequencies will be chosen of
the same order of the slab resonances. In the case of a GaAs
slab this can be achieved, for example, by considering as an
atomic system self-assembled quantum dots made of InGaAs,
characterized by transition frequencies in the few terahertz
range [39]. In these systems, the transition frequency can
be modified by varying the size and the composition of the
quantum dot. More in general, given an atomic system, one
can look at materials for the body whose resonances match the
atomic frequencies.

A. Transition rates and effective temperatures

We first provide the analysis of quantities which are indeed
common to the case of a two- and a three-level atom, namely
the transition rates �(±ω) and the effective temperature for an
arbitrary frequency ω.

In Fig. 3 we plot �(−ω)/�0(ω) and �(ω)/�0(ω) as a
function of the atom-slab distance z. For a given couple of

10 1 100 101 102
10 2

10 1

100

101

102

103

104

z μm

0

100 101
100

1010

FIG. 3. (Color online) Main part: �(−ω)/�0(ω) as a function of
z for ω = 1.2ωr and δ = 1 cm (semi-infinite slab) for (Tmin,Tmax) =
(100,600) K. Asymptotic curves for small z (black segments) for
TM = TW = Tmax and TM = TW = Tmin. Inset: �(ω)/�0(ω) as a
function of z. For both the main part and the inset: TM = TW = Tmax

(red solid line), (TW,TM) = (Tmax,Tmin) (purple dot-dashed line),
(TW,TM) = (Tmin,Tmax) (blue dotted line), TM = TW = Tmin (green
dashed line). The symbols ← indicate the asymptotic values (with
respect to z) corresponding to the four couples of temperatures
(see Appendix B).
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FIG. 4. (Color online) Panel (a): �(−ω)/�0(ωr ) as a function of
ω. Panel (b): �(ω)/�0(ωr ) and �0(ω)/�0(ωr ) (gray small dotted line)
as a function of ω. Same color convention of Fig. 3 for (Tmin,Tmax) =
(100,600) K. For both panels z = 1 μm and δ = 1.4 μm.

temperatures (Tmin,Tmax) = (100,600) K, we compare the two
thermal-equilibrium configurations at 100 K and 600 K with
the two possible configurations out of thermal equilibrium.
From the plot we see that out of thermal equilibrium the
transition rates are always confined between the corresponding
thermal-equilibrium values. For small values of z only the
temperature of the slab contributes. On the contrary, we see that
the asymptotic value reached for large values of z differs from
the equilibrium realization at the environmental temperature.
This means that even at large atom-slab separations both
temperatures play a role in the atomic dynamics.

Let us now discuss the dependence on the atomic transition
frequency ω for (Tmin,Tmax) = (100,600) K. Figure 4 shows
that, both at and out of thermal equilibrium, the rates � have a
particularly pronounced dependence on ω around ωp. In this
sense the atomic dynamics changes strongly if the transition
frequency is tuned around the frequencies which are relevant
for the dielectric response of the body (ωp in particular).
Figure 4 also shows that �(−ω) allows a much wider range
of variations between the two thermal-equilibrium cases. This
is due to the fact that, while �(−ω) is directly proportional to
neff , the dependence of �(ω) on 1 + neff greatly reduces the
relative changes with respect to TM and TW.

In Fig. 5 we plot �(−ω)/�0(ωr ) as a function of z and ω for
δ = 8.4 μm and (TW,TM) = (600,100) K. The plot elucidates
the role of slab resonances ωr and ωp in the behavior of the
transition rates. In particular, we observe that for any value of

FIG. 5. (Color online) �(−ω)/�0(ωr ) as a function of z and ω

for δ = 8.4 μm and (TW,TM) = (600,100) K.

the atom-slab distance z, the transition rates always show a
peak centered at ωp.

In Fig. 6 the effective temperature T
(nm)

eff as a function of z

and δ is plotted for four different frequencies. The temperatures
chosen are again (TW,TM) = (600,100) K. The plot shows that
by varying the atomic transition frequency ωnm the effective
temperatures may behave quite differently, with the common
feature that for z small enough only the slab temperature
remains relevant. For large z both temperatures contribute
in a way which depends both on the frequency and the slab

FIG. 6. (Color online) Density plot of T
(nm)

eff as a function of z

and δ for four different frequencies for (TW,TM) = (600,100) K. The
chosen frequencies are ωr (a), 1.02ωr (b), ωp (c), and 1.5ωr (d).
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FIG. 7. (Color online) Density plot of the excited-state population
ρ22(∞) as a function of z and ω0 for δ = 1 cm, corresponding to a
semi-infinite slab. The temperatures are (TW,TM) = (200,500) K. On
the left (right) of the main part, the density plot at thermal equilibrium
at 500 K (200 K) is given.

thickness δ. For intermediate distances the remaining range of
temperatures is explored. We remark that small variations of
frequency around the slab resonances [compare, for example,
Figs. 6(a) and 6(b)] may lead to substantial changes in the
behavior of T

(nm)
eff . The comparison between the various plots

may allow one to identify regions where the various transitions
feel temperatures far between each other.

B. Two-level atom

We now focus our attention on the case of a two-level
atom. For this configuration, the steady state of the system
is of course identified by only one parameter, for example,
the excited-state population ρ22(∞). In Fig. 7 we plot this
population as a function of z and ω0 for δ = 1 cm (semi-infinite
slab). In the main part, the chosen temperatures are (TW,TM) =
(200,500) K. On the left (right) of the main part, the density
plot at thermal equilibrium at 500 K (200 K) is given, which
is independent of z. The main part shows that out of thermal
equilibrium ρ22 depends on the atomic position. From the
comparison of the three plots, we confirm that for small z only
the slab temperature contributes, while for large z both TW and
TM are relevant to determine the values of the population. The
dashed lines (corresponding to ωr and ωp) highlight that the
variations of the atomic population are particularly pronounced
around the slab resonances.

In Fig. 8 ρ22(∞) is plotted as a function of z for two values of
δ at ω0 = 0.9ωr for (Tmin,Tmax) = (200,500) K. We see that for
δ = 0.01 μm the atom thermalizes at large distance z at a tem-
perature very close to TM [see Fig. 8(a)], while by increasing
the thickness to 300 μm (limit of semi-infinite slab) one obtains
a steady state at an intermediate temperature between TM and
TW [see Fig. 8(b)]. This shows that the slab thickness δ plays a
role in defining the region of influence of the slab temperature.

The mathematical reason for which in close proximity of
the body the atom tends to thermalize to the temperature of
the body is the divergence of the integral D(ω) of Eq. (58),
corresponding to the fact that the field is dominated by the

FIG. 8. (Color online) ρ22(∞) as a function of z for ω0 = 0.9ωr ,
(Tmin,Tmax) = (200,500) K. Same color convention of Fig. 3. The two
considered thicknesses are δ = 0.01 μm (a) and δ = 300 μm (b).

evanescent radiation produced by the body and confined
near its surface. The absence of an evanescent contribution
associated to the surrounding walls results in an atomic state
which, even for large atom-body distances, does not tend to a
thermal state at temperature TW. Far from the surface, the atom
sees only propagative contributions to the radiation (in other
words, the atom is always far from the surrounding walls), and
its state remains dependent on the temperature and properties
of the body.

C. Three-level atom

We now turn our attention to the case of a three-level system.
As we will see, in this configuration the presence of two
different effective temperatures (each one associated to one
of the two allowed atomic transitions) allows one to produce
a wider variety of physical situations, and in particular the
population inversion of the two lowest-energy states.

FIG. 9. (Color online) Steady populations [red solid line for
ρ11(∞), green dashed line for ρ22(∞), and purple dot-dashed line
for ρ33(∞)] as a function of z for δ = 0.01 μm (a) and δ = 2 μm (b),
with (TW,TM) = (300,50) K, ω32 = 1.02ωr , and ω31 = ωp . Density
plot of purity as a function of the two frequencies ω32 and ω31 for
z = 0.47 μm, δ = 0.01 μm (c), and δ = 2 μm (d). The black dotted
lines correspond to ωr and ωp and highlight the zones where high
values of purity are obtainable.
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FIG. 10. (Color online) Density plot of ρ22(∞)/ρ11(∞) as a
function z and δ for (TW,TM) = (500,100) K, ω32 = 1.02ωr , and
ω31 = 1.57ωr . The dotted line, corresponding to ρ22(∞)/ρ11(∞) = 1,
highlights a large region of occurrence of inversion of population
ordering as well as a strong dependence on z and δ.

In Figs. 9(a) and 9(b) we plot the steady populations
as a function of z for two different values of δ, choosing
(TW,TM) = (300,50) K, ω32 = 1.02 ωr , and ω31 = ωp. The
plots show the occurrence of population inversion between the
states |1〉 and |2〉. It is also shown that by varying only
the slab thickness, for values of z around 0.5 μm one can
pass from a steady state with almost all the population in
|2〉 to another one with almost all the population in |1〉. This
kind of behavior corresponds to high values of purity which
quantifies how pure the atomic state is [34]. This is defined for
an arbitrary three-level system by

�(ρ) = Tr[ρ2] =
∑

i

ρ2
ii + 2(|ρ12|2 + |ρ13|2 + |ρ23|2). (65)

In the steady configuration the state is diagonal and high
values of purity are reached when ρ11(∞) or ρ22(∞) tends
to 1 [assuming that ρ33(∞) remains much smaller than both
ρ11(∞) and ρ22(∞)]. In Figs. 9(c) and 9(d) the density plot of
purity is represented by varying the two frequencies ω32 and
ω31 for z = 0.47 μm and δ = 0.01 μm in (c) and δ = 2 μm in
(d). The black dotted lines correspond to ωr and ωp, pointing
out that high values of purity can be obtained only when at
least one frequency is close to slab resonances.

In order to stress the occurrence of inversion of population
ordering and its dependence on the atom-slab distance and
the slab thickness, in Fig. 10 we present a density plot
of the ratio ρ22(∞)/ρ11(∞) as a function of z and δ for
(TW,TM) = (500,100) K, ω32 = 1.02ωr , and ω31 = 1.57ωr .
The dotted line corresponds to a ratio equal to 1, that is when
the two populations coincide. This plot points out a strong
dependence of the ratio on the two involved parameters, with
regions where the ratio is larger than one characterized by
inversion of population. This indeed occurs even if one of the
two frequencies is far from ωr .

In Fig. 11(a) we trace the surface of points [ρ11(∞),ρ22(∞)]
by varying z in [0.01,100] μm and δ in [0.01 μm, 1 cm]
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FIG. 11. (Color online) Region occupied by the couples
[ρ11(∞),ρ22(∞)], for z varying in [0.01,100] μm and δ in
[0.01 μm,1 cm], for ω32 = 1.02ωr and ω31 = ωp . The red curve rep-
resents the thermal states between TW and TM, while the yellow dashed
curve corresponds to temperatures exceeding the ones involved in the
system. For each value of δ we represent a continuous curve by
varying z. In (a) the chosen temperatures are (TW,TM) = (600,50) K,
while in (b) we have (TW,TM) = (50,600) K.

for (TW,TM) = (600,50) K, ω32 = 1.02ωr , and ω31 = ωp. The
region covered by the steady states is compared with the curve
of thermal states between TW and TM (red continuous line)
and outside them (yellow dashed curve). The plot proves that
a large variety of steady states can be obtained. In particular,
for δ � 3 μm (semi-infinite slab) and z = 0.54 μm, the steady
state is almost a thermal state at T  5 K (this value is obtained
by looking for the closest thermal state by using the trace-
norm distance). This cooling mechanism is connected to the
behavior of the effective temperatures, which for these values
of z and δ are T

(32)
eff  145 K and T

(31)
eff  59 K. We remark here

that the cooling concerns only the internal atomic degrees of
freedom and not the external motion. In Fig. 11(b) the same
plot is presented by inverting the two temperatures (TW,TM) =
(50,600) K. The resulting shape of the surface is completely
different, showing that the behavior of the steady state is not
symmetric for exchange of the two temperatures. In particular,
for large values of z the steady state remains quite far from the
thermal state at TW.
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FIG. 12. (Color online) Points [ρ11(∞),ρ22(∞)] for all possible
couples of temperatures (TW,TM) in the interval (50 K,600 K) for
δ = 300 μm (semi-inifinite slab) and z = 1 μm. Thermal states are
represented by red solid line (50 K < T < 600 K) and yellow dashed
line (T < 50 K and T > 600 K). In the main plot, ω32 = 1.02ωr and
ω31 = ωp . In the inset, ω32 = 0.9ωr and ω31 = ωr . Darker zones
correspond to a higher density of states. By moving along the border
of the surface we have the following variations of temperature. From
the comparison with the inset one sees that in correspondence with the
same change of temperatures, different trajectories are obtained. From
“a”[(TW,TM) = (600,600) K] to “c”[(TW,TM) = (600,50) K], TW is
fixed while TM goes from 600 K to 50 K. From “c” to “b”[(TW,TM) =
(50,50) K], TM is fixed while TW goes from 600 K to 50 K. From
“b”to “d” [(TW,TM) = (50,600) K], TW is fixed while TM goes from
50 K to 600 K. From “d” to “a,”TM is fixed while TW goes from 50 K
to 600 K. “e”[(TW,TM) = (250,200) K] represents a point internal to
the surface.

In Fig. 12 we show that, by varying only TW and TM in
the interval [50,600] K while keeping all the other parameters
fixed, large regions in the space of states can be explored.
Different shapes are realized when one varies for example
ω31 and ω32, as shown in the inset. Figure 12 confirms that
nonequilibrium configurations provide new tools to realize a
large variety of nontrivial steady states.

D. Gold slab

In this subsection we briefly discuss the qualitative modifi-
cations to the atomic dynamics induced by the replacement of
GaAs with a metallic surface. To this aim we consider a slab
made of gold, whose dielectric permittivity ε(ω) is described
using a Drude model,

ε(ω) = 1 − ω2
pl

ω2 + iωγ
, (66)

characterized by a plasma frequency ωpl = 137.2 ×
1014 rad s−1 and where � = 0.4059 × 1014 rad s−1. This
model implies a surface plasmon resonance at ωp = 96.987 ×
1014 rad s−1. Both ωpl and ωp correspond to temperatures
much higher than a typical room temperature of 300 K.
However, in order to make effects out of thermal equilibrium
emerge, we prefer to limit our analysis at frequencies around
room temperature, that is around ωR = 300kB/h̄  0.392 ×
1014 rad s−1. In this range of frequencies we observe much

FIG. 13. (Color online) Atom in front of a gold slab. Density
plot of T

(nm)
eff as a function of z and δ for four different frequencies

for (TW,TM) = (600,100) K. The chosen frequencies are 0.1ωR (a),
0.5ωR (b), ωR (c), and 2.5ωR (d).

less richness in the behavior of the quantities of interest as a
function of the various parameters.

Analogous with what we presented in Fig. 6, we plot in
Fig. 13 the effective temperature T

(nm)
eff as a function of z

and δ for four different frequencies and (TW,TM) = (600,100)
K. By varying ωnm around ωr the only visible effect is a
global horizontal shift of the plot, corresponding to the fact
that by increasing the frequency the region where the effect of
the slab dominates decreases. This effect is connected to the
rapid decay with ω of the imaginary part of the dielectric
permittivity, which in turn reduces the contribution of the

FIG. 14. (Color online) Atom in front of a gold slab. Density
plot of the excited-state population ρ22(∞) as a function of z and ω0

for δ = 1 cm (semi-infinite slab). The temperatures are (TW,TM) =
(200,500) K. On the left (right) of the main part, the density plot at
thermal equilibrium at 500 K (200 K) is given.
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FIG. 15. (Color online) Atom in front of a gold slab. Density plot
of ρ22(∞)/ρ11(∞) as a function z and δ for (TW,TM) = (600,60) K,
ω32 = 0.704ωR, and ω31 = ωR. We observe a weak dependence on
z and δ, with small regions of occurrence of inversion of population
ordering.

term D(ωnm) (the only one diverging at smaller distances)
to αM(ωnm) [see Eq. (56) and Appendix B].

In the case of a two-level system, in analogy with Fig. 7,
we plot in Fig. 14 the excited-state population ρ22(∞) as a
function of z and ω0 for δ = 1 cm (semi-infinite slab). The plot
highlights a smoother dependence of ρ22(∞) on z. Moreover,
we see that in the case of a metal thermal-equilibrium values
at TW are always recovered for large z. This is technically due
to the fact that in Eq. (56) the contribution B(ωnm) has always
values close to 1 so that in the zone where it dominates (that
is asymptotically in z), it makes only αW(ωnm) contribute and
thus the slab temperature irrelevant.

In the case of a three-level system, in analogy with Fig. 10,
we plot in Fig. 15 the ratio ρ22(∞)/ρ11(∞) as a function z and
δ for (TW,TM) = (600,60) K, ω32 = 0.704ωR, and ω31 = ωR.
Black dotted lines indicate where the ratio is equal to 1, that is
when the two populations coincide. The comparison between
this figure and Fig. 10 shows that in this case the dependence
of the ratio on the two involved parameters is less rich and
inversion of population is reached in a small region of the
(z,δ) plane, with ρ22(∞) only slightly larger than ρ11(∞).

VIII. CONCLUSIONS

In this paper we have reported a detailed investigation of
the dynamics of an elementary quantum system placed close
to an arbitrary body whose temperature TM is kept fixed and
different from that of the surrounding walls TW. We have
derived a suitable master equation for the atomic dynamics
in such stationary environments out of thermal equilibrium,
providing closed-form analytic expressions for the transition
rates governing the dynamics in terms of scattering matrices
of the body. We have pointed out relevant differences with
respect to the case of thermal equilibrium, with the steady state
now dependent on a complex interplay between the atom-body
distance and the geometrical and material properties of the
body. The overall dynamics can be readily interpreted in
terms of effective temperatures associable to each allowed

transition. After treating the general case of an N -level atom,
the case of two- and three-level atoms have been discussed
in detail. In the first case, the atom thermalizes to a thermal
state at a temperature comprised between TM and TW, while
in the second case the steady state is not thermal in general
and the steady population may exceed the equilibrium values
at TM and TW. This effect, emerging out of equilibrium,
allows one to strongly manipulate the steady state, realizing
inversion of population ordering and cooling of internal atomic
temperature at values external to the interval between the
involved temperatures. We have then specialized our analysis
to the case in which the body is a slab of finite thickness,
deriving explicit expressions for the transition rates. We
have provided a detailed numerical investigation for both the
cases when the slab is made of a dielectric and a metal,
pointing out that dielectric configurations present a richer
variety in controlling the atomic dynamics. The slab thickness
regulates the distances from the slab at which the evanescent
contribution of the field emitted by the slab dominates the
atomic dynamics which, in this limit, becomes similar to an
equilibrium dynamics at TM. Moving the atom far enough from
the slab, the effect of TW becomes relevant. This effect depends
on the relative value of the frequency of the transition with
respect to the slab resonances. As a consequence, for each
transition the influence of the two temperatures can be also
quite different, allowing a strong manipulation of the atomic
dynamics by varying TM and TW.

The results reported in this paper could be of interest
for experimental investigations in the absence of thermal
equilibrium involving real or artificial atoms (such as quantum
dots). Our work suggests that similar effects will be present
also in the case of more atoms trapped close to a substrate
[14] or traveling in an atomic beam [40] in proximity to a
surface. For quantum dots one can also consider a mechanical
manipulation of the dot [41].
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APPENDIX A: APPROXIMATIONS

In this Appendix we briefly discuss the approximations
used in the derivation of Sec. II A [34].

The first approximation consists of a weak-coupling as-
sumption which allows one to expand the exact equation of
motion for the density matrix up to second order in the coupling
constant. Together with the condition ρtot(t)  ρ(t)ρB this
leads to the Born approximation of the master equation. The
second approximation is the Markov approximation in which
the quantum master equation is made local in time: the density
matrix ρ(t), in principle depending on ρ(s) for any s � t , is
assumed to depend only on the density matrix at the same
time t . Furthermore, the master equation is made independent
of the initial state of the system. This Born-Markov limit is
valid if the bath correlation time τB is small compared to the
relaxation time of the system τR , that is τB � τR . Finally,
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in the rotating-wave approximation, rapidly oscillating terms
proportional to exp[i(ω′ − ω)t] for ω′ �= ω are neglected,
ensuring that the quantum master equation is in Lindblad form.
The corresponding condition is that the inverse frequency
differences involved in the problem are small compared to the
relaxation time of the system, that is τA  |ω′ − ω|−1 � τR .
The master equation given in Eq. (8) can be used only for values
of the various parameters (coupling constants, temperatures,
atom frequencies, etc.) such that the conditions stated above
are satisfied.

We first estimate τR for a given transition of frequency ωnm.
For a two-level atom, we argue from Eq. (37) that it is given
by

τR  [γ (ωnm)]−1 = [�(−ωnm) + �(ωnm)]−1. (A1)

For an atom with more than two levels, τR will be a complex
function of all the various transition rates. For our numerical
estimation, we consider the typical case of dipole momentum
of the order of 10−29 C m. In order to test the validity
of the Born-Markov approximation, we focus on the worst
case. The smallest values of τR are obtained for ωnm = ωp,
for small values of z (which in our numerical analysis start
from 0.01 μm) and for large values of δ. Let us fix the
temperatures as Tmax = 600 K, Tmin = 100 K, and δ = 1 cm.
The smallest value of τR , obtained for z = 0.01 μm and
TM = Tmax, is τR  4 × 10−11 s. In this limit, the results
at equilibrium (TW = Tmax) and out of equilibrium (TW =
Tmin) are equal (only the slab temperature is relevant). By
increasing z, τR rapidly increases. At z  0.04 μm we have
τR  2 × 10−9 s. Also by slightly moving ωnm around ωp we
observe a rapid increase of τR . For example, at ωnm  1.04ωp

and z  0.01 μm, τR  4 × 10−9 s. At ωnm = ωp and large
values of z, we find very large times being τR  0.005 s for
TW = Tmax. Similar considerations and numerical values are
found for the three-level case in a � configuration analyzed
along the paper.

We now estimate τB by looking at the decay time of
〈Ei(R,s)Ej (R,0)〉. This means computing [compare with
Eq. (12)]

〈Ei(R,s)Ej (R,0)〉 = h̄2

2π

∫ +∞

−∞
dω e−iωsγij (ω). (A2)

We can thus numerically estimate τB and compare it with τR .
In the absence of the body the decay time τB is fixed by the
thermal fluctuations giving times for τB of the order of 10−13 s.
In the presence of the body, τB has a weak dependence on z

and the two temperatures, and assumes values of the order
of (1−10) × 10−12 s. These values are almost always much
smaller than τR , becoming close only for z  0.01 μm. Once
again, close to the slab only the slab temperature is relevant,
so that the analyses at equilibrium and out of equilibrium
give analogous results. With the condition τB � τR always
satisfied for values of the dipole momentum small enough,
then the Born-Markov approximation is well satisfied in our
system.

With regard to the rotating-wave approximation, in the
case of a two-level system τA ∼ (2ωnm)−1, so that one has to
check if (2ωnm)−1 � [�(−ωnm) + �(ωnm)]−1. In our system,
the frequencies investigated are of the order of (0.05−1.5) ×
1014 rad s−1, so that τA is of the order of (0.3−10) × 10−14 s.

These values are typically much smaller than τR , which,
as discussed before, in the worst case is of the order of
4 × 10−11 s. Similar considerations hold for the three-level
atom consider in the paper.

APPENDIX B: INTEGRALS B(ω), C(ω), AND D(ω)

This section is devoted to a brief discussion of the
dependence of B(ω), C(ω), and D(ω) [defined in Eq. (58)]
on the atom-slab distance z and the slab thickness δ.

Let us start with the contribution B(ω), the only one
appearing both in αW and αM. As remarked before, it does
not depend on z but only on the thickness δ. Using Eq. (57)
and noting that the sum |ρp(k,ω)|2 + |τp(k,ω)|2 belongs to
[0,1], we have as an immediate result that 0 < [B(ω)]i < 1
for i = x,y,z. Moreover, for δ → +∞ we have τp(k,ω) → 0
and we can replace ρp(k,ω) with the bulk Fresnel coefficient
rp(k,ω), obtaining

B(ω) = 3c

4ω

∑
p

∫ ω
c

0

k dk

kz

M+
p (k,ω)|rp(k,ω)|2. (B1)

Finally, for δ = 0 (namely in the absence of the slab) we have
ρp(k,ω) = 0 and τp(k,ω) = 1 so that [B(ω)]i = 1. We observe
that in the same limit we have C(ω) = 0 and D(ω) = 0, so that
αM(ω) = 0, i.e., the dependence on the properties of the slab
naturally disappears.

Let us now discuss the properties of C(ω). We first observe
that C(ω) is finite in the limit z → 0, as a consequence of
Lebesgue dominated convergence theorem. As for the limit
z → +∞, we set k̃ = ck

ω
, z̃ = ωz

c
, and we make the change

of variable
√

1 − k̃2 → s. The integral C(ω) is reduced to the
form

∫ 1

0
g(s)e2isz̃ds, (B2)

for some smooth function g(s). An integration by parts then
shows that C(ω) → 0 as z̃ → +∞.

The asymptotic behavior of D(ω) for z → +∞ is obtained
by noting that the integrals involved are, after the change of
variable

√
k̃2 − 1 → s, of the form

∫ +∞

0
g(s)e−2sz̃ds, (B3)

where the function g(s) has a polynomial behavior near s = 0,
i.e., g(s) ∼ Gsn for some non-negative integer n. We can then
use the Lebesgue dominated convergence theorem to show that
near z̃ → +∞ one has

∫ +∞

0
g(s)e−2sz̃ds ∼ G n!

2n+1

1

z̃n+1
. (B4)

It now remains to specify the value of the constant G for each
component of D. The components x and y of D(ω) are equal
and are denoted Dxy . In particular, the terms connected to the
two polarizations TE and TM are denoted D(TE)

xy and D(TM)
xy ,
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respectively. They are given by

D(TE)
xy = 3

4

∫ ∞

0
e−2sz̃ Im(ρ1(s,δ,ε))ds,

(B5)

D(TM)
xy = 3

4

∫ ∞

0
e−2sz̃s2 Im(ρ2(s,δ,ε))ds.

For the z component Dz of D(ω), we have

D(TE)
z = 0,

(B6)

D(TM)
z = 3

2

∫ ∞

0
e−2sz̃(1 + s2) Im(ρ2(s,δ,ε))ds.

The following asymptotic expansions near s = 0 hold:

Im (ρ1(s,δ,ε)) ∼ −2s Im (f (δ,ε)),
(B7)

Im (ρ2(s,δ,ε)) ∼ −2s Im (ε f (δ,ε)),

where f (ε,δ) = cot(δ
√

ε−1)√
ε−1

. We then obtain for z̃ → ∞
D(TE)

xy D(TM)
xy D(TM)

z

z̃ = ωz

c
→ ∞ −3 Im(f (ε,δ))

8z̃2
−9 Im(εf (ε,δ))

16z̃4
−3 Im(εf (ε,δ))

4z̃2

Finally, we evaluate the behavior of the integrals with
respect to δ near 0 and +∞. Denoting δ̃ = ωδ

c
, we have

cot(δ
√

ε − 1) → 1
δ
√

ε−1
for δ → 0 and cot(δ

√
ε − 1) → −i

for δ → ∞, so that

z̃ → ∞ D(TE)
xy D(TM)

xy D(TM)
z

ωδ

c
→ ∞ 3

8z̃2 Re( 1√
ε−1

) 9
16z̃4 Re( ε√

ε−1
) 3

4z̃2 Re( ε√
ε−1

)
ωδ

c
→ 0 −3

8z̃2 δ̃
Im( 1√

ε−1
) −9

16z̃4 δ̃
Im( ε√

ε−1
) −3

4z̃2 δ̃
Im( ε√

ε−1
)

The integrals being continuous functions of the variables
(z,δ) for z and δ near +∞, the limits z̃ → +∞ and δ̃ →
+∞ commute. In conclusion, for z → +∞ B(ω) is the only
relevant contribution governing the interplay between the slab
and environmental temperatures in the long-distance atomic
dynamics.

We now focus on the properties of D(ω) for small atom-slab
distances z → 0. As we will see, this evanescent contribution
is divergent in this limit and is at the origin of the fact that

the effective temperature at any frequency ω and thickness
δ tends to the one of the slab for small z. Indeed, the TE
components are finite because of the following behavior for
s → +∞: Im (ρ1(s,δ,ε)) ∼ Im(ε)/4s2. The divergence comes
instead from the TM components. In order to obtain the
divergent TM small-distance behavior we use the following
asymptotic theorem [42]: let h be a function such that h(s)
has a polynomial behavior near s = +∞, i.e., h(s) ∼ H sn

for some non-negative integer n. Then when z̃ → 0, it holds
that ∫ +∞

0
e−2z̃sh(s) ds ∼ H n!

2n+1

1

z̃n+1
. (B8)

The quantity Im (ρ2(s,δ,z)) has expansions around s = +∞
given by

Im (ρ2(s,δ,ε)) ∼ Im

(
ε − 1

ε + 1

)
. (B9)

We then obtain

D
(TE)
xy/z D(TM)

xy D(TM)
z

z → 0 No divergence
3 Im( ε−1

ε+1 )

16z̃3

3 Im( ε−1
ε+1 )

8z̃3

We observe that in this limit there is no dependence on slab
thickness δ.

The integrands being not continuous near (z,δ) ∼ (0,0) the
limits z → 0 and δ → 0 do not commute (the notation δ →
a, z → b means that first the limit z → b is taken, and then
the limit δ → a is taken) and we have

D(TM)
z D(TM)

xy D(TE)
xy

δ → 0, z → 0 3
8

1
z̃3 I1

3
16

1
z̃3 I1

3δ̃

2

∫ +∞
0 Im( r1

1−r2
1

)ds

z → 0, δ → 0 3
64

δ̃

z̃3 I2
3

128
δ̃

z̃3 I2
3δ̃

2

∫ +∞
0 Im( r1

1−r2
1

)ds

δ → +∞, z → 0 3
8

1
z̃3 I1

3
16

1
z̃3 I1

3
4

∫ +∞
0 Im(r1)ds

z → 0, δ → +∞ 3
8

1
z̃3 I1

3
16

1
z̃3 I1

3
4

∫ +∞
0 Im(r1)ds

where I1 = Im( ε−1
ε+1 ) and I2 = Im( ε2−1

ε
).
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[9] M. Krüger, T. Emig, and M. Kardar, Phys. Rev. Lett. 106, 210404
(2011).

[10] A. W. Rodriguez, O. Ilic, P. Bermel, I. Celanovic, J. D.
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[27] J. Fortágh and C. Zimmermann, Rev. Mod. Phys. 79, 235 (2007)

and references therein.
[28] A. Kittel, W. Müller-Hirsch, J. Parisi, S.-A. Biehs, D. Reddig,

and M. Holthaus, Phys. Rev. Lett. 95, 224301 (2005).
[29] Y. De Wilde et al., Nature (London) 444, 740 (2006).
[30] S. Kawata, Y. Inouye, and P. Verma, Nat. Photon. 3, 388 (2009)

and references therein.
[31] L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge

University Press, Cambridge, UK, 2006).

[32] S.-A. Biehs and J.-J. Greffet, Phys. Rev. A 84, 052902
(2011).

[33] M. Tschikin, S.-A. Biehs, F. S. S. Rosa, and P. Ben-Abdallah,
Eur. Phys. J. B 85, 233 (2012).

[34] H.-P. Breuer and F. Petruccione, The Theory of Open Quantum
Systems (Oxford University Press, New York, 2002).

[35] C. Cohen-Tannoudji, J. Dupont-Roc, and G. Grynberg, Photons
and Atoms: Introduction to Quantum Electrodynamics (Wiley,
New York, 1997).

[36] R. Kubo, Rep. Prog. Phys. 29, 255 (1966).
[37] We remark here that in the expression of the transmission

coefficient of Eq. (93) of Ref. [12] a factor e−ikzδ is missing.
This does not modify the physical discussion provided in the
context of the numerical anlysis.

[38] Handbook of Optical Constants of Solids, edited by E. Palik
(Academic Press, New York, 1998).

[39] E. A. Zibik et al., Nat. Mater. 8, 804 (2009).
[40] C.-I. Sukenik, M.-G. Boshier, D. Cho, V. Sandoghdar, and E.-A.

Hinds, Phys. Rev. Lett. 70, 560 (1993).
[41] E. Saı̈di et al., Nanotechnology 20, 115703 (2009).
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