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Abstract—This paper presents a new technique of simultane-
ous sparse approximation incorporating a regularity constraint
along the coefficients matrix rows. This approach is decomposed
in two steps: first a sparse representation of the coefficients matrix
is obtained using a simultaneous greedy method. Then, a ℓ1

penalty regularization on the derivative of nonzero coefficients
enforces a piecewise constant variation along the rows of the
solution. The regularization problem is solved efficiently using the
ADMM (Alternate Direction Method of Multipliers) optimization
method. The approach is applied on near-infrared spectrometry
dataset of wood wastes. This allows to select among the 1647
wavelengths of the spectra those suitable for classification. The
experimental tests validate the advantages of regularization in
terms of classification rates.

I. INTRODUCTION

Sparse approximation is one of the most studied linear
inversion problems in different application areas: compres-
sion [1], [2], spectral analysis [3], regression [4] and classifi-
cation [5]. It consists in representing a signal using a minimum
number of vectors from an overdetermined dictionary. Unlike
the standard sparse approximation, the simultaneous version
seeks to reconstruct an observations matrix Y, with elementary
signals yi sharing the same sparsity profil. This approach
was originally proposed by Cotter et al. [6] developing the
simultaneous versions of Matching Pursuit (MP) and FOCUSS
algorithms, namely the M-FOCUSS. They also demonstrated
that reconstruction rates using simultaneous sparse approxi-
mation are significantly higher than those obtained with the
standard version. As has been pointed out by Tropp et al. [7],
this approach corresponds to a convex relaxation of the exact
simultaneous sparse approximation problem which seeks to
find the solution with the minimum number of nonzero rows.
This is a NP-hard problem for which the greedy methods
provide a good compromise between efficiency and compu-
tational cost [8], [9]. Conditions of exact recovery in this case
are given in [10] and [11]. Other approaches formulate the
problem in the Bayesian framework [12], [13]. More recently,
works have focused on the development of simultaneous sparse
approximation methods that consider a correlation between
the coefficients of the solution [14], [15], [16]. In particular,
[17] proposes an approach to impose a smoothness constraint
along the solution rows. In this paper we propose to develop
a simultaneous sparse method which enforces a regularity
constraint on the rows of the coefficients matrix. This work is
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motivated by IR spectroscopy data classification application.
Indeed, in the near-IR spectral range (2.5-1 µm) the molecular
overtone and combination bands are typically very broad,
leading to complex spectra. As it can be difficult to assign
specific features to specific chemical components, multivariate
statistical methods are often employed to extract the desired
chemical information. Selecting from the full spectrum the
wavelengths that result in the maximum accuracy is still a
challenging task, mainly when spectra strongly overlap and
have imperceptible distinctive features, as is the case with NIR
spectra of wood samples. To overcome this, several approaches
have been proposed to select optimal sets of variables for
multivariate calibration or classification [18], [19]. The advan-
tage of the proposed approach is twofold: it allows to exploit
the sparse representation to reduce the problem dimension
and the form of variation (piecewise constant) is suitable to
classification problems.
The paper is organized as follows: The problem formulation
of sparse approximation including a regularity constraint on
the coefficient matrix is presented in II section. In section III
we develop the proposed approach to solve the problem. The
classification results of wood wastes NIR spectra are presented
in IV. Section V concludes the paper.

II. PROBLEM FORMULATION

The simultaneous sparse approximation problem consists
in finding the solution of the following cost function:

J0(X) =
1

2
||Y −ΦX||2F s.t. ||X||0 ! s (1)

for the observation matrix Y ∈ CM×K and the dictionary Φ ∈
CM×N (M < N ). The coefficient matrix X = [x1,x2, ...,xK ]
is the unknown sparse matrix where xi is the i-th column of
X. ||X||0 = |supp(X)|, where supp(X) = {1 ≤ i ≤ N |xi ̸=
0} = Ω is called set of active atoms, and xi stands for the i-th
row of X. s is the sparsity parameter. In this paper, we propose
to include a term promoting the reconstruction of piecewise
constant rows in the cost function. So the new criterion is
written as:

J1(X) =
1

2
||Y −ΦX||2F + λ||DX||1 s.t. ||X||0 ! s (2)



where D is a finite difference operator acting in the horizontal
direction (applied to the rows of X):

||DX||1 =
N
∑

i=1

K−1
∑

j=1

|Xi,j −Xi,j+1|. (3)

Thus we seek to find X such as:

X = arg
X,||X||0!s

min J1(X). (4)

The main contribution of this work lies in the inclusion
of the two regularization terms (sparsity constraint and con-
sistency constraint on the rows). Indeed, these two constraints
are of different nature (the first one is convex while the second
is not), and a direct solution does not exist. Therefore, we
propose to solve problem (2) in two steps by considering one
constraint at a time.

III. SPARSE REGULARIZED SIMULTANEOUS

APPROXIMATION (SR-SA)

A. General structure of the algorithm

The resolution of problem (4) is not easy because it is
not convex. Moreover, the sparsity constraint ||X||0 leads
to an NP-hard problem. Hence, we propose a suboptimal
approach which amounts to decompose the problem into two
sub-problems:

(SP1) : Ω = argmin
Ω

1

2
||Y −ΦΩXΩ||

2
F s.t. |Ω| ! s (5)

(SP2) : XΩ = argmin
XΩ

1

2
||Y −ΦΩXΩ||

2
F + λ||DXΩ||1. (6)

Note that this scheme has the advantage of being computa-
tionally efficient. However, other minimization approaches of
(4) may be considered and are currently under development.
To solve problem in (5), we use the SOLS algorithm (i.e the
simultaneous version of the OLS algorithm: Orthogonal Least
Squares) proposed in [9]. This provides the support Ω. Then,
we propose to rewrite the cost function (6) in standard form
in order to use an effecient solver (ADMM).

B. Rewriting the problem

Suppose that Ω is known and let y = vec(Y) ∈ CMK×1,
and x = vec(XΩ) ∈ C|Ω|K×1. It is easy to see that:

||Y −ΦΩXΩ||
2
F = ||y −AΩx||

2
2 (7)

where AΩ ∈ CMK×|Ω|K is a block-diagonal matrix formed
with the columns of Φ corresponding to the sparse solution:

AΩ = blkdiag(ΦΩ, ...,ΦΩ
︸ ︷︷ ︸

K times

). (8)

In addition, for all active atoms Ω we have:

||DXΩ||1 =
∑

i∈Ω

K−1
∑

j=1

|Xi,j −Xi,j+1|. (9)

Let
∆ = blkdiag(D, ...,D

︸ ︷︷ ︸

|Ω| times

) (10)

where D is a matrix of finite differences of order 1 and
dimension K ×K such that:

D =

⎡

⎢
⎢
⎣

−1 1
0

. . .
. . .

0
−1 1

0 0

⎤

⎥
⎥
⎦
. (11)

Note that the last row is zero to take into account the line
break in the matrix XΩ. Then, we can write:

||DXΩ||1 = ||∆vec(XT
Ω)||1. (12)

Now there exists a permutation matrix P such that: vec(XT
Ω) =

P · vec(XΩ) " P · x. Finally we obtain:

||DXΩ||1 = ||∆Px||1 " ||Fx||1. (13)

We can then equivalently reformulate the subproblem (6) as:

(SP2) : x = argmin
x

1

2
||y −AΩx||

2
2 + λ||Fx||1. (14)

C. Regularization problem solution by ADMM

In view of equation (14), the ℓ1 regularization problem is
the same as generalized LASSO. Therefore it can be solved
by convex optimization methods. Here, we use the augmented
Lagrangian method [20]:

min
x,z

1

2
||y −AΩx||

2
2 + λ||z||1 s.t. Fx− z = 0 (15)

where x and z are the variables to estimate. We use the
ADMM algorithm to solve this problem. ADMM is an iterative
algorithm which performs three steps at each iteration k where
x and z are the variables to estimate as follows:

xk+1 = (AT
ΩAΩ + ρFTF)−1(AT

Ωy + ρFT (zk − uk)) (16)

zk+1 = Sλ/ρ(Fx
k+1 + uk) (17)

uk+1 = uk + Fxk+1 − zk+1 (18)

where u is a scaled dual variable associated to the constraint
x = z and ρ > 0 is the nonnegative penalty parameter. Sλ/ρ
is the soft thresholding operator given by:

Sλ/ρ(x) = max{0, x− λ/ρ}−max{0,−x− λ/ρ}. (19)

This procedure performs alternating minimization of the aug-
mented Lagrangian over x and z. Indeed, at the first iteration,
z and u are fixed and the augmented Lagrangian is minimized
over x; next x and u are fixed and the we minimize over z;
finally the dual variable u is updated. It should be noted here
that the approach we propose in two stages (finding Ω and x)
yields a suboptimal solution, but that guarantees a low com-
putational cost. Moreover, estimating x in (16) may become
very expensive because of the size of the matrices involved
in this equation. However, the block-diagonal structure of the
matrix AΩ avoids its storage. Furthermore, the inversion of the
block tri-diagonal matrix AT

ΩAΩ + ρFTF can be done using
dedicated methods that have a linear cost with respect to the
support cardinality (|Ω|).



TABLE I. DIFFERENT CATEGORIES OF THE THREE GROUPS OF WOOD WASTES

Group 1 Group 2 Group 3
Cat. Name Samples Cat. Name Samples Cat. Name Samples

1.1 raw wood 123 2.5 painted solid wood 143 3.10 MDF-HDF 28
1.2 raw plywood 40 2.6 vanished solid wood 139 3.11 painted MDF-HDF 50
1.3 surfaced plywood 23 2.7 painted particle board 24 3.12 surfaced MDF-HDF 57
1.4 vanished plywood 53 2.8 raw particle board 52 3.13 raw fiber board 7

- - 2.9 surfaced particle board 84 3.14 surfaced fiber board 39
- - - - 3.15 solid wood metal salts 35
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Fig. 1. Spectra from the three groups of wood wastes. (a) Group 1 to value,
(b) Group 2 to recycle, (c) Group 3 polluted one to reject.

IV. CLASSIFICATION OF WOOD WASTES NIR SPECTRA

A. Data processing

Experiments were conducted on a wide range of wood
wastes collected from a wastes recycling park. Different wood
samples were classified into 15 labeled categories by experts.
The purpose of this application is to optimize the recycling
process by increasing quantities of wood to value (Group 1),
to recycle (Group 2) and to reject polluted ones (Group 3).
The wood categories and groups are given in Table I.

The acquisition of the infrared spectra was performed on
a Nicolet 8700 FTIR spectrometer continuously purged with
ultrapure N2. A MCT detector, and a CaF2 beam splitter
equipped the apparatus. NIR reflectance spectra, recorded
in the range 3000-10000 cm−1 (3.33-1 µm), were carried
out with near-normal specular reflectance accessory (fixed 10
degree angle of incidence) provided by Pike Technologies. The
spectral resolution was 16 cm−1 and 100 scans were co-added
for each spectrum which includes 1647 wavelengths. Once the
database of wood wastes spectra is completed, we proceed to
data processing. This consists of three major steps:

1) data pre-processing including baseline removal using
the algorithm in [21] and normalization,

2) variable selection using the proposed method,
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Fig. 2. Example of piecewise constant coefficients of wood samples. Here
four categories (1.1, 2.6, 3.11, 3.13) with 30 samples each

3) data classification using SVM algorithm with a
quadratic kernel function.

Some spectra from the three aforementioned groups are pre-
sented in Figure 1. Here, we consider only the binary classifi-
cation which determines if a sample is to keep (wood to value
or to recycle) or to reject (polluted wood).

B. Variable selection

Each column is spectrum and the spectra are grouped by
categories in the observation matrix. It is this grouping which
induces the piecewise evolution of coefficient matrix, thus
justifying the use of the SR-SA method. The dictionary is
composed of gaussian functions whose widths σ are varying
from 30 to 600 with step 30 cm−1. Their locations (centers)
start at 3400 cm−1 and are separated by σ. Sparsity parameter
is fixed to 40 and regularization parameter λ to 0.6. Penalty
parameter ρ is set to 0.4. The sparse approximation has a
major interest in the dimensionality reduction of spectroscopic
data. Indeed, it reduces the number of wavelengths from 1647
to 40. Note that samples share a lot of common features
corresponding to the wood spectral signature. As shown in
Figure 2, SR-SA produces piecewise constant coefficients
which favor the grouping of data sharing the same spectral
characteristics. This is confirmed, in the next paragraph, by
the classification error rate in each class obtained in our tests.

C. SVM classification results

SVM algorithm with quadratic kernel function is used for
data classification. As depicted in Table II, four tests are
performed. In each test, the NIR spectra are decomposed into
2 datasets of equal size: a training set and a validation set.
SVM classification results on the validation set are reported
in terms of error rates for each class in Table II for the SR-
SA algorithm, compared to the standard SOLS [9] and Sparse



TABLE II. CLASSIFICATION ERROR RATES FOR THE FOUR TESTS PERFORMED

Test # Categories SR-SA+SVM SOLS+SVM SGLasso+SVM
Type I error Type II error Type I error Type II error Type I error Type II error

Test 1 1.1 vs 3.10 6.25% 0% 6.25% 0% 6.25% 7.14%
Test 2 2.5 vs 3.11 7.25% 0% 8.7% 4% 27.78% 8%

Test 3 1.1+1.2 vs 3.10+3.13 8.33% 5.56% 12.5% 8.33% 16.67% 5.56%
Test 4 Group 1 + Group 2 vs Group 3 20.54% 5.26% 25.85% 10.53% 26.79% 14.04%

Group Lasso (SGLasso) implemented in SLEP package1. As
compared to standard Lasso, SGLasso fits better our applica-
tion because it favors the grouping of common coefficients (the
rows of X. We present for each test the true negative rate (Type
I error) and the false positive rate (Type II error). The results
confirm that the proposed approach for variable selection is
more appropriate to promote the grouping of samples with
common characteristics. Indeed, while the three methods pro-
duce similar error rate for the first test, the regularization-based
method seems more effective to group different categories of
wood in the same class. This is justified by the fact that the
proposed approach allows to select coefficients with piecewise
constant shape (not necessarily fitted to real spectra shapes)
but still potentially discriminative for SVM classifier. Note also
that the error rates obtained for the second test are justified by
the presence of painted surfaces in the two categories which
makes them more difficult to discriminate.

The choice of λ has a major importance to balance between
signal reconstruction and the piecewise variation of the coef-
ficients. To evaluate the impact of this parameter we consider
Test 3 for which different values of λ are tested to find the
optimal one. We present in Table III results of the classification
test according to this parameter. We observe that minimum
error rates is reached for λ = 0.6, and in general we have
found that the best results are obtained for λ ∈ [0.5, 0.9] for
tests 1–4.

TABLE III. IMPACT OF REGULARIZATION PARAMETER VALUE ON

CLASSIFICATION RATES

Type I error Type II error

λ = 0 (SOLS solution) 12.5% 8.33%
λ = 0.5 8.33% 5.56%
λ = 1 10.42% 5.56%
λ = 1.5 25.11% 11.11%

V. CONCLUSION

This paper presents a new approach for simultaneous sparse
approximation for piecewise signals. This consists of two
steps: first, solving the simultaneous sparse approximation
problem provides the set of active atoms. Then, the regularized
solution is obtained by rewriting the problem in standard form
and using ADMM. We showed the advantage of the method
in the context features selection and classification of wood
wastes NIR spectra. In particular, we found that the regularity
constraint on matrix coefficients increases the classification
rates compared to the tested sparsity-based variable selection
methods.
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