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Multiple Sensor Fusion and Classification for
Moving Object Detection and Tracking

R. Omar Chavez-Garcia and Olivier Aycard

Abstract—The accurate detection and classification of mov-
ing objects is a critical aspect of Advanced Driver Assistance
Systems (ADAS). We believe that by including the objects
classification from multiple sensors detections as a key
component of the object’s representation and the perception
process, we can improve the perceived model of the environ-
ment. First, we define a composite object representation to
include class information in the core object’s description. Sec-
ond, we propose a complete perception fusion architecture
based on the Evidential framework to solve the Detection
and Tracking of Moving Objects (DATMO) problem by
integrating the composite representation and uncertainty
management. Finally, we integrate our fusion approach in a
real-time application inside a vehicle demonstrator from the
interactIVe IP European project which includes three main
sensors: radar, lidar and camera. We test our fusion approach
using real data from different driving scenarios and focusing
on four objects of interest: pedestrian, bike, car and truck.

Index Terms—Intelligent vehicles, Sensor fusion, Classifi-
cation algorithms, Vehicle detection, Vehicle Safety

I. INTRODUCTION

INTELLIGENT vehicles have moved from being a
robotic application of tomorrow to a current area of

extensive research and development. The most striking
characteristic of an intelligent vehicle system is that it has
to operate in increasingly unstructured environments,
which are inherently uncertain and dynamic.

ADAS help drivers to perform complex driving tasks
to avoid dangerous situations. Assistance tasks include:
warning messages in dangerous driving situations (e.g.,
possible collisions), activation of safety devices to mit-
igate imminent collisions, autonomous manoeuvres to
avoid obstacles, and attention-less driver warnings.

Perceiving the environment involves the selection of
different sensors to obtain a detailed description of the
environment and an accurate identification of the objects
of interest. Vehicle perception is composed of two main
tasks: simultaneous localization and mapping (SLAM)
which generates a map of the environment while simul-
taneously localizing the vehicle within the map given
all the measurements from sensors; and DATMO which
detects and tracks the moving objects surrounding the
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vehicle and estimates their future behaviour. Fig. 1
shows the main components of the perception task.
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Figure 1. General architecture of the perception task and its two main
components: SLAM and DATMO. Perception provides a model of the
environment usually composed by the vehicle’s location, map of static
objects, and a list of moving objects.

Management of incomplete information is an impor-
tant requirement for perception systems. Incomplete in-
formation can be originated from sensor-related reasons,
such as calibration issues, hardware malfunctions, uncer-
tain detections and asynchronous scans; or from scene
perturbations, like occlusions, weather issues and object
shifting. The tracking process assumes that its inputs
correspond uniquely to moving objects, and then focus
on data association and tracking problems. However, in
most of the real outdoor scenarios, these inputs include
non-moving detections, such as noisy detections or static
objects. Correctly detecting moving objects is a critical
aspect of a moving object tracking system. Usually, many
sensors are part of such systems.

Knowing the class of objects surrounding the ego-
vehicle provides a better understanding of driving sit-
uations. Classification is seen as a separate task within
the DATMO task or as an aggregate information for the
final perception output [1], [2]. Classification can help to
enrich the detection stage by including information from
different sensor views of the environment, e.g. impact
points provided by lidar and image patches provided
by camera. Evidence about the class of objects can pro-
vide hints to discriminate, confirm and question data
associations. Moreover, knowing the class of a moving
object benefits the motion model learning and tracking.
We believe that classification information about objects
of interest gathered from different sensors at early stages
can improve their detection and tracking, by reducing
false positive detections and mis-classifications [3], [1].

Regarding the state of the art approaches, we assume
the SLAM stage as a solved task, and focus on the
detection, classification and tracking of moving objects.
Precisely, we include object’s class as the key compo-
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nent of an Evidential fusion approach that includes
uncertainty management from sensor detections. The
goal is to improve the results of the perception task,
i.e. a more reliable list of moving objects of interest
represented by their dynamic state and appearance in-
formation. Therefore, we address the problems of sensor
data association, sensor fusion for object detection, and
tracking. We assume that a richer list of tracked objects
can improve future stages of an ADAS and enhance the
final application.

The rest of this paper is organized as follows. Section II
reviews the related works. Section III introduces the
concepts behind the Evidential framework. Sections IV
and V describe the vehicle demonstrator and the soft-
ware architecture of our real vehicle application inside
the interactIVe project. Section VI describes our proposed
strategies to extract classification information from the
different sensors. In Section VIII, we present our fusion
approach at detection level, and the tracking of moving
objects. Experimental results are presented in Section IX.
Finally, conclusion and perspectives are presented in
Section X.

II. RELATED WORK

Fig. 2 shows the different fusion levels inside a per-
ception system. Whilst low level fusion is performed
within SLAM component, detection and track level fusions
are performed within DATMO component. At detection
level, fusion is performed between lists of moving object
detections provided by individual sensors. At track level,
lists tracks from individual sensor modules are fused to
produce the final list of tracks.
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Figure 2. Fusion levels within the SLAM and DATMO components
interaction.

Promising SLAM results obtained in [3], [1] and
[2] motivated our focus on the DATMO component.
Whilst Vu [1] and Wang [3] use an almost deterministic
approach to perform the association in tracking, we use
an evidential approach based on mass distributions over
the set of different class hypotheses.

In order to narrow the vast variety of related works,
we focus on the fusion methods inside DATMO that
use lidar, camera and radar sensors. This decision comes
from our sensor set-up described in Section IV.

Multi-sensor fusion at track level requires a list of up-
dated tracks from each sensor. Then, the fusion process
must get a combined list of tracks. This process has
to solve the association problem between lists of tracks

and implement a mechanism to combine the related
objects. By using an effective fusion strategy at this
level, false tracks can be reduced. Usually, this level is
characterized by including classification information as
complementary to the final output [4], [2], [5].

Fusion at detection level focus on gathering and com-
bining early data from sensor detections to reduce the
number of mis-detections that can lead to false tracks.
Several works focus on data redundancy from active
and passive sensors, and follow physical or learning
constrains to increase the certainty of object detection.
These works do not include all the available kinetic and
appearance information [6], [7]. Moreover, at this level,
appearance information from sensor measurements is
not considered as important as the kinetic data to dis-
criminate moving and static objects [8].

When classification is considered as an independent
module inside the perception solution, this is often im-
plemented as a single-class (e.g., only classifies pedestri-
ans) or single-sensor based classification process [2], [5].
This excludes valuable discriminative data from multiple
sensor views that can generate multi-class modules.
Research perspectives point-out the improvement of the
data association and tracking tasks as a direct enhance-
ment when classification information is managed at early
levels of perception [5], [2], [9].

The most common approaches for multi-sensor fusion
are based on probabilistic methods [2], [1]. However,
methods based on the Evidential framework proposed
an alternative not only to multi-sensor fusion but to
many modules of vehicle perception [7], [5], [9]. These
methods highlight the importance of incomplete and
imprecise information which is not ussually present in
the probabilistic approaches.

An advantage of our fusion approach at the detec-
tion level is that the description of the objects can be
enhanced by adding knowledge from different sensor
sources. For example, lidar data can give a good esti-
mation of the distance to the object and its visible size.
In addition, classification information, usually obtained
from camera images, may allow to make assumptions
about the class of detected object. An early enrichment
of objects’ description could allow the reduction of the
number of false detections and to involve classification
as a key element rather than only an add-on to the
perception output.

III. EVIDENTIAL FRAMEWORK

The Evidential framework is a generalization of the
Bayesian framework of subjective probability [10]. Evi-
dential theory (ET) allows us to have degrees of belief for
a related question according to the available evidence.
ET represents the world in a set of mutually exclusive
propositions known as the frame of discernment (Ω). It
uses belief functions to distribute the evidence about the
propositions over 2Ω. The distribution of mass beliefs is
done by the function m : 2Ω → [0, 1] , also known as
Basic Belief Assignment (BBA):

m(∅) = 0, ∑
A⊆Ω

m(A) = 1. (1)



INTELLIGENT TRANSPORTATION SYSTEMS, IEEE TRANSACTIONS ON, VOL. XX, NO. X, JANUARY 2014 3

Yager’s rule combines two sources of evidence while
avoiding counter-intuitive results, which are present
when there is a considerable degree of conflict
(m(∅)) [11]. In this rule, the conflict value is distributed
among all the elements of the frame of discernment
rather than only the elements with intersections of the
combining masses:

m(A) = ∑
Xi∩Yj=A

m1(Xi)m2(Yj), A 6= ∅, A 6= Ω,

m(Ω) = ∑
Xi∩Yj=Ω

m1(Xi)m2(Yj)+

K︷ ︸︸ ︷
∑

Xi∩Yj=∅
m1(Xi)m2(Yi) .

(2)

A. Evidential Theory for Vehicle perception

ET has the ability to represent incomplete evidence,
total ignorance and the lack of a need for a priori probabil-
ities. We can encode implicit knowledge in the definition
of the structure of the frame of discernment. In addition,
discounting factors are an important mechanism to in-
tegrate the reliability of the sources of evidence, such
as sensor performance. Moreover, combination rules are
useful tools that integrate information from different
bodies of evidence. Late stages of intelligent systems,
such as reasoning & decision, can integrate evidence
distributions into the decision making process [10].

When the number of hypotheses is large, ET becomes
less computationally tractable because the belief is dis-
tributed over the power set of all the hypotheses, 2Ω.
However, the application domain may allow to make
assumptions to transform Ω into a reduced version of
the set of possible hypotheses.

IV. VEHICLE DEMONSTRATOR

We used the CRF (Fiat Research Center) demonstra-
tor, from the the interactIVe European project, to obtain
datasets from different driving scenarios. In order to
accomplish the Continuous Support functionalities, the
Lancia Delta car (see Fig. 3) is equipped with processing
units, driver interaction components, and the following
front-facing set of sensors: TRW TCAM+ camera gathers
B&W images and has a FOV of ±21◦; TRW AC100
medium range radar provides information about moving
targets. It has a detection range up to 150m, velocity
range up to 250kph, FOV of ±12◦ (close range) or ±8◦

(medium range), and angular accuracy of 0.5◦; and an
IBEO Lux laser scanner provides a 2D list of impact
points, it has a range up to 200m with an angular and
distance resolution of 0.125◦ and 4cm respectively, and
a FOV of 110◦.

V. SOFTWARE ARCHITECTURE

Our contribution insde the interactIVe project takes
place at the Perception System (PS) that aims at im-
proving the efficiency and quality of sensor data fusion,
focusing on object detection and classification. In the PS,
multiple functions are developed for continuous driver

Figure 3. Left: images of the CRF vehicle demonstrator. Right: Field of
view of the three frontal sensors used as inputs to gather datasets for
our proposed fusion approach detailed in Sections VI, VII and VIII.

support, and also for executing active interventions for
collision avoidance and collision mitigation.

Fig. 4 shows the schematic of our proposed PS, and the
interaction between the detection and classification mod-
ules. The PS aims at detecting, classifying and tracking a
set of moving objects of interest that may appear in front
of the vehicle. The inputs of the fusion module are three
lists of detected objects from three sensors: lidar, radar
and camera. Each object is represented by its position,
size and an evidence distribution of class hypotheses.
Class information is obtained from the shape, relative
speed and visual appearance of the detections. Lidar and
radar data are used to perform moving object detection
and, in cooperation with image data they extract object
classification. Three list of composite object descriptions
are taken by our fusion approach and delivered to
our tracking algorithm. The final output of the fusion
method comprises a fused list of object detections that
will be used for the tracking module to estimate the
moving object states and deliver the final output of our
DATMO solution.
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Figure 4. Schematic of our multiple sensor perception system, also
known as Frontal Object Perception (FOP) - Moving Object Detection
(MOC) module. Kinetic and appearance information are extracted from
lidar and radar sensors, and only appearance information from camera.

VI. MOVING OBJECT DETECTION

Here, we review the moving object detection methods
for each sensor. In Section VII, we describe the process
for object classification.
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A. LIDAR processing
We consider the LIDAR (LIght Detection And Rang-

ing) scanner as the main sensor in our configuration
due to the its high resolution and accuracy to detect
obstacles. In addition, it powers the SLAM component
of our perception solution. The main goal of the lidar
processing is to get precise measurements of the shape
of the moving obstacles in front of the vehicle.

1) SLAM component solution: Although our main con-
tributions are focused on the DATMO component, we
solve the SLAM component in order to obtain the map
and the vehicleś localization. Following the idea pro-
posed in [1], we employ lidar data (z1:t) for populating
a two-dimensional Bayesian occupancy grid map. Each
cell in the map M is associated with a measurement
indicating the probability that the cell is occupied or not
by an obstacle. Vehicle’s location is found by a Maximum
Likelihood approach. It consists of finding the best ve-
hicle tracks estimates (ω∗) according to a shape model
(P(ω|z1:t)), prior model (P(ω)) and likelihood model
(P(z1:t|ω)) (Equation 3). Afterwards, this method uses
the pose estimate and the latest sensor measurements to
update the grid [12].

ω∗ = arg max
ω∈Ω

P(ω|z1:t), for P(ω|z1:t) ∝ P(w)P(z1:t|ω)

(3)
2) LIDAR-based Detection: As described [1], [12], we

focus on identifying the inconsistencies between free and
occupied cells within the grid map M while incremen-
tally building such map. If an occupied measurement
is detected on a location previously set as free, then
it belongs to a moving object. If a free measurement
is observed on a location previously occupied then it
probably belongs to a static object.

Using a distance-based clustering process we identify
clouds of cells that could belong to moving objects. This
process provides information about the visible shape of
the possible moving object, an estimation of its size, and
the distance to the object. Fig. 5 shows an example of
the evolution of the lidar-based moving object detection
process. Measurements detected as parts of a moving
object are not used to update the map in SLAM.

Figure 5. Occupancy grid representation obtained by processing raw
lidar data. From left to right: Reference image; static occupancy grid
Mt−1 after applying the SLAM solution; current lidar scan; detection
of the moving objects (green bounding boxes).

B. Camera images
In order to extract information regarding the visual

appearance of the objects from camera images, we have
to be able to represent these objects using visual features.

1) Visual representation: The Histograms of Oriented
Gradients (HOG) descriptor has shown promising re-
sults in vehicle and pedestrian detection [13]. We de-
cided to take this descriptor as the core of our vehicle
and pedestrian visual representation. The goal of object
representation is to generate visual descriptors of areas
of the image to be used in future stages to determine
whether these areas contain an object of interest or not.

We propose sparse version of HOG descriptor (S-
HOG) that focuses on specific areas of an image patch.
This allows us to reduce the common high-dimensional
HOG descriptor [12]. Fig. 6 illustrates some of the blocks
we have selected to generate the descriptors for different
object classes: pedestrian, bike, car and truck. These
blocks correspond to meaningful regions of the object
(e.g., head, shoulder and legs for pedestrians). To acceler-
ate S-HOG feature computation, we followed an integral
image scheme [14].

Figure 6. Informative blocks for each object class patch, from left to
right: pedestrian, car, and truck. Histograms of gradients are computed
over these sparse blocks and concatenated to form S-HOG descriptors.
Average size of the descriptors for pedestrians, bikes, cars and trucks
are 216, 216, 288 and 288 respectively.

2) Object classification: Due to performance constraints,
we did not implement a visual-based moving object
detection. We used the regions of interest (ROI) provided
by lidar detection to focus on specific regions of the
image.For each ROI, visual features are extracted, and
a classifier is applied to decide if an object of interest
is inside the ROI. The choice of the classifier has a
substantial impact on the resulting speed and quality.
We implemented a boosting-based learning algorithm,
discrete Adaboost [15]. It combines many weak classi-
fiers to form a powerful one, where weak classifiers are
only required to perform better than chance.

For each class of interest (pedestrian, bike, car, truck),
a binary classifier was trained to identify object (positive)
and non-object (negative) patches. For the off-line train-
ing stage, positive images were collected from public
(such as the Daimler dataset) and manually labelled
datasets containing objects of interest from different
object’s viewpoints (frontal, rear, profile) [9].

Off-line classifiers are used by the on-line object
classification stage in a sliding-window scheme. Fig. 7
shows examples of the pedestrian and car detection
results (green and red boxes respectively) before merging
into the final objects. We estimate the confidence of
object classification for each possible object. Generally,
the greater the number of positive areas (containing an
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object of interest), the higher the confidence that the
object belongs to that specific class.

C. Radar targets

The radar sensor uses a built-in mechanism to detect
moving obstacles (targets), specially those with a cross-
section similar to a car. The list of n targets is delivered
as input to the perception approach. Each element of
the list includes the range, azimuth and relative speed
of the detected target. As the sensor will produce a
return for each object with a significant radar cross
section, targets may correspond to static objects or other
moving obstacles, producing false positives. In a similar
way, weak objects like pedestrians can not always be
detected, consequently producing mis-detections. Due
to different dyanmics defining the objects of interest,
we track every target using and Interactive Multiple
Model (IMM) represented by constant velocity, constant
acceleration and turning models. IMM provides a trade-
off between a Generalized Pseudo Bayesian method of
first (GPB1) and second (GPB2) degree [16], [3]. It only
computes k Gaussians as in GPB1 but it still having
as output an mixture of k Gaussians as in GPB2. Data
association between targets is achieved by a prunned
Multi Hypothesis Tracking approach.

VII. MOVING OBJECT CLASSIFICATION

We enhanced the common kinetic representation by in-
cluding class information within fusion at the detection
level. This information can help to improve detection
associations, better estimate object’s motion, and reduce
the number of false tracks. However, at detection level,
there is not enough certainty about the object’s class and
keeping only one class hypothesis disables the possibility
of rectifying a premature decision.

Our composite representation is formed by two
parts: kinetic + appearance. The former includes po-
sition and shape information in a two dimensional
space, inferred from the moving object detection pro-
cess. The latter includes an evidence distribution
m(2Ω) for all possible class hypotheses, where Ω =
{pedestrian, bike, car, truck} is the frame of discernment
representing the classes of interest. This representation
is used by the fusion approach to deliver a fused list of
object detections, and to perform tracking.

Figure 7. Examples of successful detection of pedestrians (left) and
cars (right) from camera images.

A. Lidar sensor

The first part of the object representation can be ob-
tained by analysing the shape of the detected moving
objects. In the case of large detections this object is
modelled by a box {x, y, w, l, c}, where x and y are the
center of the box, w and l are the width and length
according to the class of object c. For small detections
(mainly pedestrians) a point model {x, y, c} is used,
where x, y and c represent the object center and class
of the object, respectively. The position and size of the
object is obtained by measuring the detected objects in
the 2D occupancy grid. The class of the object is inferred
from the visible size of the object and follows a fixed
fitting-model approach. However, no precise classifica-
tion decision can be made due to the temporary visibility
of the moving objects. For example, if the width of a
detected object is less than a threshold ωsmall , we may
think the object is a pedestrian or a bike but we are not
sure of the real size of the object.

To define the typical size of the classes of interest, we
used a priori knowledge from the distribution of the
physical dimensions of several passenger cars, trucks
and motorbikes sold in Europe [17]. However, instead
of keeping only one class decision, we define a basic
belief assignment ml(A) (Equation 4) for each A ∈ Ω,
which describes an evidence distribution for the class of
the moving object detected by lidar. We include class-
related factors (αp, αb, αc and αt) to represent the lidar’s
performance to detect pedestrians, bikes, cars and trucks,
respectively. Also we use discounting factors (γb and γc)
to indicate the uncertainty of the lidar processing for
mis-detecting a bike or car.

When a bike is detected, due to visibility issues the
detected object can still be a part of a car or a truck, for
that reason evidence is also put in {b, c, t}. For the same
reason, when a truck is detected, we are almost sure it
cannot be a smaller object. In all the cases, the ignorance
hypothesis Ω represents the lack of knowledge and the
general uncertainty about the class.

ml(A) =



ml({p}) = αp if class = p
ml(Ω) = 1− αp

ml({b}) = γbαb if class = b
ml({b, c, t}) = γb(1− αb)

ml(Ω) = 1− γb

ml({c}) = γcαc if class = c
ml({c, t}) = γc(1− αc)

ml(Ω) = 1− γc

ml({t}) = αt if class = t
ml(Ω) = 1− αt

(4)

B. Camera sensor

Camera images offer discriminative visual information
which leads to obtain another evidence distribution for
the object classes. We follow the image processing de-
scribed in Section VI-B2. For hypotheses generation, we
first build a S-HOG descriptor for each section of the
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image we want to classify. For hypothesis verification,
we use the built classifiers to classify the different objects.

The camera-based classification generates several sub
regions inside each ROI, provided by lidar, in order to
cover many possible scale and size configurations. Some-
times a ROI can contain more than one object of interest.
Once we have obtained the object classification for each
ROI, we generate a basic belief assignment mc following
the Equation 5. This belief assignment represents the
evidence distribution for the classes hypotheses in Ω of
each object detected for camera processing, where αp,
αc and αt are confidence factors and cc represents the
camera sensor’s precision.

mc(A) =



mc({p}) = αpcc if class = p
mc({p, b}) = αp(1− cc)

mc(Ω) = 1− αp

mc({b}) = αbcc if class = b
mc({p, b}) = αb(1− cc)

mc(Ω) = 1− αb

mc({c}) = αccc if class = c
mc({c, t}) = αc(1− cc)

mc(Ω) = 1− αc

mc({t}) = αtcc if class = t
mc({c, t}) = αt(1− cc)

mc(Ω) = 1− αt

(5)

C. Radar sensor
Radar targets are considered as preliminary moving

object detections. Therefore, to obtain the object’s class,
we use the relative target speed deliver by the sensor.
Speed threshold Sp is statitically stimated using recorded
data from the slowest scenario for vehicles, urban areas.
We apply the basic belief assignment mr (Equation 6),
where α and β are confidence factors for specific classes.

mr(A) =


mr(Ω) = α if objectspeed < Sp

mr({p, b}) = 1− α

mr(Ω) = 1− β if objectspeed > Sp

mr({c, t}) = β

(6)

VIII. FUSION APPROACH

Once we have performed moving object detection
for each sensor input, and defined a composite object
representation, the next task is the fusion of object de-
tections and tracking. We propose a multi-sensor fusion
framework placed at the detection level. Although this
approach is presented using three main sensors, it can
be extended to work with more sources of evidence by
defining extra detection modules that are able to deliver
the object representation previously defined.

A. Data association

When working with many sources of evidence, as in
the object detection level, it is important to consider the
problem of finding which object detections are related
among the different lists of detections provided by the
sensors (sources of evidence).

The combination of information at the detection level
has the advantage of increasing the reliability of the
detection result by reducing the influence of inaccurate,
uncertain, incomplete, or conflicting information from
sensor measurements or object classification modules.

Let us consider two sources of evidence S1 and S2.
Each of these sources provides a list of detections A =
{a1, a2, .., ab} and B = {b1, b2, ..bn}, respectively. In order
to combine the information of these sources we need to
find the associations between the detections in A and B.
All possible associations can be expressed as a matrix
of magnitude |A × B| where each cell represents the
evidence mai ,bj

about the association of the elements ai
and bj for i ≤ |A| and j ≤ |B|. We can define three
propositions regarding the possible association P(ai, bj):
• 1 : if ai and bj are the same object.
• 0 : if ai and bj are not the same object.
• Ω : ignorance about the association (ai, bj).
Let us define Ωd = {1, 0} as the frame of discernment

to represent the aforementioned propositions. Therefore,
mai ,bj

({1}) and mai ,bj
({0}) quantify the evidence sup-

porting the proposition P(ai, bj) = 1 and P(ai, bj) = 0
respectively, and mai ,bj

({1, 0}) stands for the ignorance,
i.e., evidence that cannot support the other propositions.
These propositions can be addressed by finding similar-
ity measures between detections in A and B.

Sensors S1 and S2 can provide detections of a different
kind. These detections can be represented by a position,
shape, or appearance information, such as class. Hence,
mai ,bj

has to be able to encode all the available similarity
information. Let us define mai ,bj

in terms of its similarity
value as follows:

mai ,bj
({1}) = αi,j, mai ,bj

({0}) = βi,j,

mai ,bj
({1, 0}) = 1− αi,j − βi,j,

(7)

where αi,j and βi,j quantify the evidence supporting the
singletons in Ωd for the detections ai and bj, i.e., the
similarity measures between them.

We can define mai ,bj
as the fusion of all possible sim-

ilarity measures to associate detections ai and bj. There-
fore, we can assume that individual masses of evidence
carry specific information about these two detections. Let
us define mp as the evidence measures about the position
similarity between detections in A and B provided by
sources S1 and S2 respectively; and mc as the evidence
measures about the appearance similarity.

Following the analysis made in Section III-A, we use
Yagers’s combination rule defined in Equation 2 to rep-
resent mai ,bj

in terms of mp
ai ,bj

and mc
ai ,bj

as follows:

mai ,bj
(A) = ∑

B∩C=A
mp

ai ,bj
(B)mc

ai ,bj
(C),

Kai ,bj
= ∑

B∩C=∅
mp

ai ,bj
(B)mc

ai ,bj
(C),

mai ,bj
({Ωd}) =m′ai ,bj

({Ωd}) + Kai ,bj
,

(8)

where mp
ai ,bj

and mc
ai ,bj

represent the evidence about the
similarity between detections ai and bj according to
position and class information, respectively.
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Once matrix MA,B is built, we can analyse the evidence
distribution mai ,bj

for each cell to decide if there is an
association (mai ,bj

(1)), there is not(mai ,bj
(0)), or we have

not enough evidence to decide (mai ,bj
(1, 0)) which can

probably be due to noisy detections. In the next sections
we will describe how to calculate these fused evidence
distributions using similarity evidence from detections.

When two object detections are associated, the method
combines the object representations by fusing the evi-
dence distributions for class information. This fusion is
achieved by applying the combination rule described in
Equation 2. The fused object representation (kinetic +
appearance) is passed as input to the tracking stage to be
considered in the objects motion model estimation. Non-
associated object detections are passed as well expecting
to be deleted by the tracking process if they are false
detections or to be verified as real objects in case there
is future evidence that confirms it.

It is important to notice that not all the sensors provide
the same amount and type of information. For example,
while radar data do not include information about the
shape of the target, lidar data provide information about
the position and the shape of the object. If two associ-
ated detections have complementary information, this is
passed directly to the fused object representation; if the
information is redundant, it is combined according to its
type. For the position, we use the Bayesian based fusion
presented in [2], which combines the position informa-
tion of two detections by integrating their covariance
matrices. Shape information is usually provided only by
the lidar. As stated above, class information is combined
using the evidential combination rule from Equation 2.

In the next section we review our proposed methods
to extract similarity information from the position and
class of the detections. This information is included in
Equation 8 to decide if two detections are associated.

1) Position similarity: According to the position of two
detections ai and bj, we encode their similarity evidence
in mp

ai ,bj
. Based on their positions, we can define function

dai ,bj
as a distance function that satisfies the properties

of a pseudo-distance metric. We choose Mahalanobis
distance due to its ability to include the correlations of
the set of distances. Therefore, a small value of dai ,bj
indicates that detections ai and bj are part of the same
object; and a large value indicates the opposite. All the
propositions for mp

ai ,bj
belong to the frame of discernment

Ωd. Hence, the BBA for mp
ai ,bj

is described as follows:

mp
ai ,bj

({1}) = α f (dai ,bj
), mp

ai ,bj
({0}) = α(1− f (dai ,bj

)),

mp
ai ,bj

({1, 0}) =1− α,
(9)

where α ∈ [0, 1] is an evidence discounting factor and
f (dai ,bj

) → [0, 1]. The smaller the distance, the larger
value given by function f . In our case we choose f as:

f (dai ,bj
) = exp(−λdai ,bj

), (10)

where λ is used as a threshold factor that indicates the
border between close and far distances.

2) Class dissimilarity: Contrary to the evidence pro-
vided by position, class information does not give direct
evidence that supports the proposition P(ai, bj) = 1.
This means that even if two detections are identified
with the same class, one can not affirm that they are
the same object. This is due to the fact that there can
be multiple different objects of the same class in the
current driving scenario. However, it is clear that if
two detections have different classes it is more likely
that they belong to different objects. Hence, we use the
class to provide evidence about the dissimilarity between
detections: mc

ai ,bj
. The frame of discernment for the class

evidence distribution is the set Ω = {p, b, c, t}. The
frame of discernment for detections’ association is Ωd
and was described in Section VIII-A. Hence, we transfer
the evidence from in Ω to Ωd as follows:

mc
ai ,bj

({1}) =0,

mc
ai ,bj

({0}) = ∑
A∩B=∅

mc
ai
(A)mc

bj
(B), ∀A, B ⊂ Ω,

mc
ai ,bj

({1, 0}) =1−mc
ai ,bj

({0}),

(11)

which means that we fuse the mass evidences where no
common class hypothesis is shared between detections
in lists A and B. mc

ai
and mc

bj
represent the BBAs for the

class hypotheses of detections in lists A and B. However,
as we have no information about the possible relation of
detections with the same class, we place the rest of the
evidence in the ignorance hypothesis {1, 0}.

B. Moving object tracking
Using the combined list of object detections provided

by our fusion approach, we modified the model-based
moving object tracking approach described in [1]. We
adapted a MCMC sampling process using our compos-
ite representation to find the best trajectories of tracks
(hypotheses) in a sliding window of time. Generated
object hypotheses are then put into a top-down process
taking into account all the object dynamics models, sen-
sor model, and visibility constraints. However, instead
of searching in all the possible neighbour hypotheses,
we use the class evidence distribution of each object
detection to reduce the search space by considering
the hypotheses with more mass evidence. Two objects
have similar classes if their classes belong to the same
general set. Two sets of classes are defined as general:
vehicle = {c, t} and person = {p, b}.

If an object has a high evidence mass in the hypothesis
{c}, we only sample the possible hypotheses for c and
t. When the highest mass evidence is placed in a non-
singleton hypothesis, such as vehicle, the search space
is expanded to include c and t samples alike.

We perform a dynamic fusion strategy, as described in
[9], to associate the object’s current state delivered by our
fusion approach, and the object description of the current
track. This allows to keep the object class information up-
to-date each time new sensor data is available. Hence,
the final output of our DATMO solution is composed of
a list of moving objects described by their kinetic infor-
mation and by a set of all the possible class hypotheses
represented by masses of evidence.
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IX. EXPERIMENTAL RESULTS

Using the sensor set-up described in Section IV, we
gathered four datasets from real scenarios: two datasets
from urban areas and two data sets from highways.
Both data sets were manually tagged in order to provide
a ground truth reference. We analysed the degree of
improvement achieved by early inclusion of class infor-
mation within the DATMO component. Moreover, we
performed a comparison between the fusion approach at
tracking level described in [9] and our fusion approach
at detection level using the same experimental scenarios.

In our DATMO solution at detection level, we first
performed SLAM for the lidar sensor measurements (see
Section VI-A) to detect the possible moving entities.
Among the 2D position state for each detection, we
define the frame of discernment Ω = {p, b, c, t} for its
evidence class distribution. Therefore, 2Ω is the number
of all the possible class hypotheses for each detection.
Then, the object representations for lidar, radar and cam-
era detections are extracted following the methodologies
presented in Sections VI and VII. Once we obtained
the object representations, we perform the fusion at
detection level and the tracking of the fused list of objects
as detailed in Section VIII.

Fig. 8 shows two output examples of our complete
PS in highway and urban areas. Both scenarios are
considered as high-traffic scenarios due to the large
number of moving objects around the vehicle. In both
cases, all vehicles, including oncoming ones, are well
detected, tracked and correctly classified: several cars
and two trucks in the highway; and several cars, one
truck and one pedestrian in the urban area. Additionally,
static objects (such as barriers) are also reported and
correctly identified as static obstacles using the method
described in Section VI-A1. In the top view of these
examples moving objects velocity is estimated by the
model-based tracking module which takes advantage
of the composite object representation to deliver speed
and orientation. In the early fusion stage, the radar
Doppler velocity information helps to improve the target
speed estimated by the lidar after its moving direction
is known. Also, the class of the object is improved by
the fused information from the three different sensors
providing a more reliable class hypothesis in the form of
a class distribution. The continuous support applications
use this class distribution to decide the correct actions.

In the output of our perception approach, a moving
object is represented by several pieces of information:
location, geometry, object class, speed, and moving di-
rection that cannot be provided by only one individual
sensor. The size of the bounding box is updated using the
visible lidar measurements, the fixed-size class models
and the lateral information from camera classification.
The height of a bounding box is set according to the
class of the detected object and to the result from camera
classifiers.

Tables I and II show a comparison between the

Table I
FUSION RESULTS. NUMBER OF c AND t MIS-CLASSIFICATIONS.

Dataset Moving
objects

Number of vehicle mis-classifications
Tracking level Detection level

Highway 1 110 6 4
5.4% 3.6%

Highway 2 154 7 5
4.5% 3.2%

Urban 1 195 20 10
10.2% 5.1%

Urban 2 233 24 9
10.3% 3.8%

Table II
FUSION RESULTS. NUMBER OF p AND b MIS-CLASSIFICATIONS.

Dataset Moving
objects

Number of pedestrian mis-classifications
Tracking level Detection level

Urban 1 52 11 6
21.1% 11.53%

Urban 2 58 14 7
24.13% 12%

results obtained by the proposed fusion approach at
detection level and our previous fusion approach at
tracking level presented in [9]. It takes into account the
erroneous classifications of moving objects. We use four
datasets to conduct our experiments: 2 datasets from
highways and 2 datasets from urban areas. We can see
that the improvement of the fusion at detection level
in highways with respect to the tracking level fusion is
not considerable. However, in high-speed situations, the
certainty about the moving vehicles is quite important.
Hence, this small improvement is very useful for the
final applications, such as continuous support systems.
Urban areas represent a modern challenge for vehicle
perception. The improvement of the fusion approach
at detection level was considerable compared to our
other fusion approach. Here, the richer representation
of sensor detections and the data association relations
allowed the early detection of real moving vehicles.

Regarding the pedestrian classification results, we ob-
tained similar improvements to those obtained for ve-
hicle detections. The problem of small clusters detected
by lidar as moving obstacles but without the certainty
of being classified as pedestrians is mainly overcome by
the early combination of class information from radar
and camera-based classification. Furthermore, the classi-
fication of moving objects (not only pedestrians) in our
proposed approach takes on average less sensor scans
than the compared fusion approach described in [9].
This is due to the early integration of the knowledge
about the class of detected objects placed in mc

a and mc
b,

which is directly related to the reduced search space
for the shape and motion model discovering process
performed by the MCMC technique.

A. On-line evaluation

Based on the running-time statistics of our PS, in
urban areas (the most challenging scenario), the average



INTELLIGENT TRANSPORTATION SYSTEMS, IEEE TRANSACTIONS ON, VOL. XX, NO. X, JANUARY 2014 9

Figure 8. Results of the PS for highway (1) and urban areas (2). Several objects of interest are detected. Left side shows the camera image and
the identified moving objects. Yellow boxes represent moving objects, red dots represent lidar hits and red circles represent radar detections.
Right side displays the top view of the same scene. Tags identify detected object’s classes. Video demonstrations of our results can be found in
http://goo.gl/FuMBC2.

computing time is 40ms which fulfils the processing time
requirement of the designed real-time platform (75ms).
In rural areas and highways, the processing of the whole
PS can be reduced to 30ms.

Table III summarizes the results collected after testing
our PS with on-line data in four different scenarios.
Correct detections represent true moving objects. False
detections represent detections wrongly recognized as
moving objects. Correct classifications represent well
classified moving objects. False classifications are self-
explanatory. For clarity sake, the number of correct and
false detections, and classifications are also represented
by percentages. Four objects of interest were taken into
account: pedestrians, bikes, cars and trucks.

In test track scenarios, where only few cars and pedes-
trians are present, the detection and classification rate
of pedestrians and cars are nearly perfect (96-100%).
This scenario does not contain many common driving
situations, such as several moving objects and high
traffic dynamics. However, it allows us to test specific
components of the PS, e.g., pedestrian and vehicle clas-
sification, and moving vehicle tracking.

In highways, the detection rate of vehicles is also very
good: car (97.8%), truck (96.4%) where the missed detec-
tions are due mainly to inherently noisy and cluttered
data (e.g., lidar impacts on the ground). The large size
of the truck makes the truck detection not as accurate
as car detection since it is sometimes confused with the
barrier. The false detection rate (2.2%) is due mainly
to the reflection in raw lidar data which creates ghost
objects and the noisy radar target detection. However,
the fusion approach allows the ability to obtain a highly
correct classification rate for both cars or trucks whilst
keeping a very low false classification rate.

In urban areas, vehicle detection and classification is
still high, considering the increased number of moving

obstacles and the cluttered environment. However, the
false detection rate is higher than in highway scenarios.
This increase is due to the highly dynamic environment
and to the reduced field of view in high traffic situations.
Moreover, the pedestrian false classifications commonly
appears when the classifiers mis-classify traffic posts as
pedestrians. These mis-classifications suggest the con-
struction of more robust visual classifiers or the imple-
mentation of more discriminating visual descriptors.

In Rural roads, several moving objects of interest
may appear, but high traffic dynamics are not present.
Besides, there are less traffic landmarks. The false-
classification rates obtained in this scenario are higher
than the ones obtained from the other three scenarios.
This is due to the increasing number of natural obstacles,
such as bushes and trees. The common object false
classifications are due to false moving objects (mainly
bushes) preliminary classified as trucks or pedestrians.
One solution could be to implement a dedicated classi-
fier to discard this type of obstacles.

X. CONCLUSIONS AND PERSPECTIVES

In this paper we have reviewed the problem of in-
telligent vehicle perception. Specifically, we have focus
on the DATMO component of the perception task. We
have proposed the use of classification information as a
key element of a composite object representation, where
not only kinetic information but appearance information
plays an important role in the detection, classification
and tracking of moving objects of interest. We have
analysed the impact of our composite object description
by performing multi-sensor fusion at detection level. We
used three main sensors to define, develop, test and
evaluate our fusion approach: lidar, radar, and camera.
Moreover, our complete perception solution was evalu-

http://goo.gl/FuMBC2
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Table III
RESULTS OF OUR PS IN FOUR SCENARIOS: HIGHWAY, URBAN AREA, RURAL ROAD AND TEST TRACK. FOUR OBJECTS OF INTEREST ARE

CONSIDERED: pEDESTRIAN, bIKE, cAR, AND tRUCK.

Scenario
Detections Classifications

Total objects Correct False Correct False
p b c t p b c t all p b c t p b c t

Highway 0 0 702 281 n/a n/a 687 271 22 n/a n/a 669 251 0 0 4 0
n/a n/a 97.8% 96.4% 2.2% n/a n/a 95.2% 89.3% 0% 0% 0.5% 0%

Urban 65 7 619 97 57 6 580 88 17 57 6 570 78 9 1 6 5
87.6% 85.7% 93.6% 90.7% 2.1% 87.6% 85.7% 92.0% 80.4% 13.8% 14.2% 0.9% 5.1%

Rural 9 0 68 6 9 n/a 62 5 9 9 n/a 60 5 3 0 5 2
100% n/a 91.1% 83.3% 10.8% 100% n/a 88.2% 100% 33.3% 0% 7.3% 33.3%

Test track 248 0 301 0 247 n/a 300 n/a 1 240 n/a 300 n/a 0 0 0 0
99.6% n/a 100% n/a 0.1% 96.7% n/a 100% n/a 0% 0% 0% 0%

ated using on-line and off-line data from a real vehicle
of the interactIVe European project.

Integrating class information at the detection level,
allowed the fusion to improve the detection by consid-
ering an evidence distribution over the different class
hypotheses of the detected objects. This improvement
directly reduces the number of false detections and false
classifications at early levels of the DATMO component.
Moreover, the tracking stage benefits from the reduction
of mis-detections and from the more accurate classifica-
tion information to accelerate the tracking process.

A. Perspectives
A 3D-based representation (e.g., voxels segments) can

provide more information about the shape/class of the
obstacles surrounding the vehicle demonstrator, such as
objects of interest, and common obstacles that generate
false classifications (e.g., trees, bushes and poles).

Section IX has shown that sometimes the classifica-
tion precision varies according to the current driving
scenario. Promising results on the field of scene clas-
sification can power context-based learning methods to
estimate parameters in the detection and classification
modules, thus generating reliability factors closer to the
real driving situation.
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