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A sub-problem of the open problem of finding an explicit bijection between alternating sign matrices and totally symmetric self-complementary plane partitions consists in finding an explicit bijection between so-called (n, k) Gog trapezoids and (n, k) Magog trapezoids. A quite involved bijection was found by Biane and Cheballah in the case k = 2. We give here a simpler bijection for this case.

Introduction

One of the most famous open problem in bijective combinatorics is to find an explicit bijection between alternating sign matrices of a given size and totally symmetric self-complementary plane partitions of the same size. These objects of combinatorial interest have been known since the end of the '90s to be equinumerous [START_REF] Andrews | Plane partitions. V. The TSSCPP conjecture[END_REF][START_REF] Zeilberger | Proof of the alternating sign matrix conjecture[END_REF] but, as of today, there is no direct bijective proof of this fact. We refer the reader to [START_REF] David | Proofs and confirmations[END_REF][START_REF] Cheballah | Combinatoire des matrices à signes alternants et des partitions planes[END_REF] for more information on this story.

The previous objects are in known bijections with arrays of integers called respectively Gog and Magog triangles. The triangles of size n consist in Young diagrams of shape (n, n -1, . . . , 2, 1) filled with positive integers satisfying variation conditions along vertical, horizontal and possibly oblique lines. Although they satisfy very similar variation conditions, nobody managed to find a direct bijection between these triangles. Another surprising fact is that, if we only consider the k first rows of the triangles, the objects we obtain are also equinumerous. These objects called (n, k) trapezoids were introduced in [START_REF] Mills | Self-complementary totally symmetric plane partitions[END_REF] where they were conjectured to be equinumerous; this was later proved by Zeilberger [Zei96, Lemma 1].

The supposedly simplest problem of finding an explicit bijection between (n, k) Gog trapezoids and (n, k) Magog trapezoids has been solved only for k ≤ 2. In fact, for k = 1, the objects are exactly the same so there is nothing to prove. There is, however, a refined conjecture by Krattenthaller [Kra] involving the number of entries equal to 1 and the number of entries equal to the maximum possible value in the first and last rows. For this conjecture, even the case k = 1 is nontrivial; it was proven in [Kra].

For k = 2, a bijection was found by Biane & Cheballah [START_REF] Biane | Gog and Magog triangles, and the Sch ützenberger involution[END_REF]. Their bijection is relatively complicated and uses the so-called Sch ützenberger involution; it does not match the statistics of Krattenthaller's refined conjecture. In this work, we give a different bijection for this case. Our bijection is very simple and involves only one operation. It does not match Krattenthaller's statistics either.

Acknowledgements. I thank Jean-Franc ¸ois Marckert for introducing this problem to me.

Magog and Gog trapezoids

In this work, we are solely considering (n, 2) trapezoids and we furthermore impose that n ≥ 3 in order to avoid trivialities. Let us give proper definitions (see Figure 1 for more graphical definitions and examples).

Definition 1. Let n ≥ 3 be an integer. An (n, 2) Magog trapezoid is an array of 2n -1 positive integers m 1,1 , . . . , m 1,n-1 , m 2,1 , . . . , m 2,n such that (i) m i,j ≤ m i,j+1 for all i ∈ {1, 2} and j ∈ {1, . . . , n + i -3} ;

(ii) m 1,j ≤ m 2,j ≤ j for all j ∈ {1, . . . , n -1} and m 2,n ≤ n . Definition 2. Let n ≥ 3 be an integer. An (n, 2) Gog trapezoid is an array of 2n -1 positive integers g 1,1 , . . . , g 1,n , g 2,1 , . . . , g 2,n-1 such that (i) g i,j ≤ g i,j+1 for all i ∈ {1, 2} and j ∈ {1, . . . , n -i} ;

(ii) g 1,j < g 2,j < j + 2 for all j ∈ {1, . . . , n -1} ;

(iii) g 1,j+1 ≤ g 2,j for all j ∈ {1, . . . , n -1} .

We denote respectively by M n and G n the sets of (n, 2) Magog and Gog trapezoids.
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From Magog to Gog

Let us consider an (n, 2) Magog trapezoid M = (m i,j ). We say that an integer j ∈ {1, . . . , n -2} is a bug if m 1,j+1 > m 2,j + 1. For instance, 3 is the only bug of the Magog trapezoid of Figure 1. We set Φ n (M ) := (g ij ), where (g ij ) is constructed as follows (see Figure 2). The three cases of the bijection, from a Magog trapezoid to a Gog trapezoid. On the top line, the first bug is 3: it is symbolized by a small black oblique line. The colored blocks are moved and, whenever there is a tag on a block, it is added to all the elements of the block.

First case: M has at least a bug. In this case, we let k be the smallest bug of M and we set

g 1,j := m 1,j for 1 ≤ j ≤ k ; g 1,k+1 := m 2,k ; g 1,j := m 1,j-1 -2 for k + 2 ≤ j ≤ n ; g 2,j := m 2,j + 1 for 1 ≤ j ≤ k -1 ; g 2,j := m 2,j+1 for k ≤ j ≤ n -1 .
Second case: M does not have bugs and m 2,n-1 < m 2,n . In this case, we set

g 1,j := m 1,j for 1 ≤ j ≤ n -1 ; g 1,n := m 2,n-1 ;
g 2,j := m 2,j + 1 for 1 ≤ j ≤ n -2 ; g 2,n-1 := m 2,n .

Third case: M does not have bugs and m 2,n-1 = m 2,n . In this case, we set

g 1,j := m 1,j for 1 ≤ j ≤ n -1 ; g 1,n := m 2,n + 1 ; g 2,j := m 2,j + 1 for 1 ≤ j ≤ n -1 .
Let us check that Φ n (M ) ∈ G n . First, observe that, if j is not a bug, then by definition, m 1,j+1 ≤ m 2,j + 1, so that the yellow and purple blocks always satisfy the oblique inequalities after the mapping. It is straightforward to verify that the other inequalities are satisfied in the second and third case. In the first case, notice that g 1,k = m 1,k ≤ m 2,k = g 1,k+1 and

g 1,k+1 = m 2,k ≤ m 1,k+1 -2 = g 1,k+2 as k is a bug. Furthermore, g 2,k-1 = m 2,k-1 + 1 ≤ m 2,k + 1 ≤ m 1,k+1 -1 ≤ m 2,k+1 -1 = g 2,k -1 so that the horizontal inequalities are satisfied. Moreover, g 1,k = m 1,k ≤ m 2,k ≤ m 1,k+1 -2 ≤ m 2,k+1 -2 = g 2,k -2, g 1,k+1 = m 2,k ≤ m 2,k+2 -2 = g 2,k+1 -2, g 1,j = m 1,j-1 -2 ≤ m 2,j+1 -2 = g 2,j -2 for k + 2 ≤ j ≤ n -1,
and g 2,j = m 2,j+1 < j + 2 for k ≤ j ≤ n -1, so that the vertical inequalities are also satisfied.

Finally, the oblique inequalities are satisfied since

g 1,k+1 = m 2,k ≤ m 2,k+1 = g 2,k and g 1,j = m 1,j-1 -2 ≤ m 2,j -2 = g 2,j-1 -2 for k + 2 ≤ j ≤ n.

From Gog to Magog

We now consider an (n, 2) Gog trapezoid G = (g i,j ) and construct Ψ n (G) = (m ij ) as follows. We define k := max j ∈ {2, . . . , n -1} : g 2,j-1 ≤ g 1,j+1 + 1 .

(1)

This number is well defined as g 2,1 = 2 ≤ g 1,3 + 1.

First case: k ≤ n -2. We set

m 1,j := g 1,j for 1 ≤ j ≤ k ; m 1,j := g 1,j+1 + 2 for k + 1 ≤ j ≤ n -1 ; m 2,j := g 2,j -1 for 1 ≤ j ≤ k -1 ; m 2,k := g 1,k+1 ; m 2,j := g 2,j-1 for k + 1 ≤ j ≤ n .
Second case: k = n -1 and g 1,n < g 2,n-1 . We set Third case: k = n -1 and m 1,n = m 2,n-1 . We set

m 1,j := g 1,j for 1 ≤ j ≤ n -1 ; m 2,j := g 2,j -1 for 1 ≤ j ≤ n -2 ; m 2,n-1 := g 1,n ; m 2,n := g 2,n-1 . → -1 +2 → 1 
m 1,j := g 1,j for 1 ≤ j ≤ n -1 ; m 2,j := g 2,j -1 for 1 ≤ j ≤ n -1 m 2,n := g 1,n -1 .
We now show that Ψ n (G) ∈ M n . In the first and second cases, the definition of k entails that m 2,k-1 = g 2,k-1 -1 ≤ g 1,k+1 = m 2,k , so that the horizontal inequalities hold. In the second case, we conclude by noticing that m 2,n-

1 = g 1,n ≤ g 2,n-1 -1 ≤ n -1 and m 2,n = g 2,n-1 ≤ n.
In the first case, by definition of k, m 1,j = g 1,j+1 + 2 ≤ g 2,j-1 = m 2,j for k + 1 ≤ j ≤ n -1 and, by vertical inequalities, m 2,j = g 2,j-1 ≤ j for k + 1 ≤ j ≤ n. Finally, still by definition

of k, m 2,k = g 1,k+1 ≤ g 1,k+2 ≤ g 2,k -2 ≤ k -1.
This concludes in the first case. The third case is straightforward.

The previous mappings are inverse one from another

We now prove that the previous mappings are bijections.

Theorem 1. The mappings Φ n : M n → G n and Ψ n : G n → M n are bijections, which are inverse one from another.

Proof. We have already established that Φ n : M n → G n and Ψ n : G n → M n . It remains to show that Ψ n • Φ n and Φ n • Ψ n are the identity respectively on M n and G n . In fact, we will see that the three cases we distinguished are in correspondence via the bijection.

First case. Let M = (m i,j ) ∈ M n be a Magog trapezoid that has a bug and let k be its smallest bug. As in Section 3, we denote by

(g ij ) := Φ n (M ). We have g 2,k-1 = m 2,k-1 + 1 ≤ m 2,k + 1 = g 1,k+1 +1 and, for k+1 ≤ j ≤ n-1, g 1,j+1 +1 = m 1,j -1 < m 2,j = g 2,j-1 for k+2 ≤ j ≤ n-1, so that max j ∈ {2, . . . , n -1} : g 2,j-1 ≤ g 1,j+1 + 1 = k.
As the box moving procedure of Section 4 is clearly the inverse of that of Section 3, we conclude that

Ψ n • Φ n (M ) = M . Let now G = (g ij ) ∈
G n be such that the integer k defined by (1) is smaller than or equal to n -2. In order to conclude that Φ n • Ψ n (G) = G, it is sufficient to show that k is the smallest bug of (m i,j ) := Ψ n (G). This is indeed the case as

m 1,k+1 = g 1,k+2 + 2 > g 1,k+1 + 1 = m 2,k + 1 and, for 1 ≤ j ≤ k -1, m 1,j+1 = g 1,j+1 ≤ g 2,j = m 2,j + 1.
Second and third cases. Let M = (m i,j ) ∈ M n be a bug-free Magog trapezoid and (g ij ) := Φ n (M ). If we are in the second case, g 2,n-2 = m 2,n-2 + 1 ≤ m 2,n-1 + 1 = g 1,n + 1 and, if we are in the third case, g 2,n-2 = m 2,n-2 + 1 ≤ m 2,n + 1 = g 1,n , so that, in both cases, max j ∈ {2, . . . , n -1} : g 2,j-1 ≤ g 1,j+1 + 1 = n -1 and we conclude as above that Ψ n • Φ n (M ) = M .

Let now G = (g ij ) ∈ G n be such that the integer k defined by (1) is equal to n -1. We see that

Φ n • Ψ n (G) = G by noticing that (m i,j ) := Ψ n (G) is bug-free as, for 1 ≤ j ≤ n -1, m 1,j+1 = g 1,j+1 ≤ g 2,j = m 2,j + 1.

Extension to (ℓ, n, 2) trapezoids and perspectives

Our bijection can trivially be extended to (ℓ, n, 2) trapezoids, where ℓ ≥ 0 is an integer. An (ℓ, n, 2) Magog trapezoid is defined as an (n, 2) Magog trapezoid with the difference that item (ii) of Definition 1 is replaced by (ii') m 1,j ≤ m 2,j ≤ j + ℓ for all j ∈ {1, . . . , n -1} and m 2,n ≤ n + ℓ . See Figure 4. Similarly, an (ℓ, n, 2) Gog trapezoid is defined as an (n, 2) Gog trapezoid with the difference that item (ii) of Definition 2 is replaced by (ii') g 1,j < g 2,j < j + 2 + ℓ for all j ∈ {1, . . . , n -1} ; 
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(3, 8, 2) Gog trapezoid (3, 8, 2) Magog trapezoid For any ℓ ≥ 1 and n ≥ 3, the mappings Φ n and Ψ n can be extended without any differences in the construction into bijections between the set of (ℓ, n, 2) Magog trapezoids and the set of (ℓ, n, 2) Gog trapezoids. The proofs can be copied almost verbatim, the only thing to do is add ℓ whenever we use one of the bounds changed by these definitions.

Unfortunately, as of today, we did not manage to extend this bijection to (n, 3) trapezoids. The mapping Φ n exchanges the sizes of two consecutive rows so that one could think that, in the case of (n, 3) trapezoids, we would need to apply a similar operation several times in order to pass from a Magog to a Gog. Unfortunately, whenever a third row is present, we cannot slide the boxes of two consecutive rows without breaking the rules. This question remains under investigation.
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 1 Figure 1: The conditions satisfied by (n, 2) Magog and Gog trapezoids. Every sequence formed by numbers obtained by following the direction of a simple-arrowhead (resp. a double-arrowhead) arrow is non-decreasing (resp. increasing).
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 2 Figure 2:The three cases of the bijection, from a Magog trapezoid to a Gog trapezoid. On the top line, the first bug is 3: it is symbolized by a small black oblique line. The colored blocks are moved and, whenever there is a tag on a block, it is added to all the elements of the block.
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 3 Figure 3: The three cases of the bijection, from a Gog trapezoid to a Magog trapezoid. On the top line, k = 3.
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 4 Figure 4: Definition of (ℓ, n, 2) trapezoids.
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