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SUPERVISED AND UNSUPERVISED CLASSIFICATION USING

MIXTURE MODELS

STÉPHANE GIRARD AND JÉRÔME SARACCO

Abstract. This chapter is dedicated to model-based supervised and unsuper-

vised classification. Probability distributions are defined over possible labels
as well as over the observations given the labels. To this end, the basic tools
are the mixture models. This methodology yields a posterior distribution over

the labels given the observations which allows to quantify the uncertainty of
the classification. The role of Gaussian mixture models is emphasized leading
to Linear Discriminant Analysis and Quadratic Discriminant Analysis meth-
ods. Some links with Fisher Discriminant Analysis and logistic regression are

also established. The Expectation-Maximization algorithm is introduced and
compared to the K-means clustering method. The methods are illustrated
both on simulated datasets as well as on real datasets using the R software.

1. Introduction

Classification is an important field of statistical learning which is usually di-
vided into two main tasks. First, in the supervised learning approach, the goal is
to estimate a function from inputs x to outputs y given a training set {(xi, yi), i =
1, . . . , n} where n is the number of examples. In most cases, x ∈ R

p and x is referred
to as the features or the covariates. If the response variable is real-valued, then the
estimation of the link function is a regression problem, see Fraix-Burnet and Valls-
Gabaud (2014) for application to astrophysics. If the response variable is categori-
cal, it is rather denoted by z, and it takes its value in a finite set: z ∈ {1, . . . ,K}.
The estimation problem is called supervised classification, or discriminant analysis.
Second, in the unsupervised learning approach, one only has {xi, i = 1, . . . , n}. In
this case, the goal is not so well defined, it can be summarized as finding interesting
patterns in the data. Unsupervised dimension reduction or unsupervised classifica-
tion (also called clustering) can enter in this framework. We refer to Bishop (2006)
and Hastie et al., (2001) for accounts on statistical learning.

This chapter is dedicated to model-based supervised and unsupervised classifi-
cation. We shall define a (prior) probability distribution p(z) over possible labels
z as well as over the observations x given the labels z, denoted by p(x|z). To this
end, the basic tools are the mixture models. This will allow us to build a posterior
distribution p(z|x) over the labels given the observations and thus to quantify the
uncertainty of the classification. Supervised classification is addressed in Section 2.
The role of Gaussian mixture models is emphasized leading to Linear Discriminant
Analysis and Quadratic Discriminant Analysis methods. Some links with Fisher
Discriminant Analysis and logistic regression are also established. Section 3 is ded-
icated to unsupervised classification. The Expectation-Maximization algorithm is
introduced and compared to the K-means clustering method. Finally, some exten-
sions are presented in Section 4.
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2. Supervised classification

Recall that the dataset is denoted by {(x1, z1), . . . , (xn, zn)} where xi ∈ R
p and

zi ∈ {1, ...,K} for all i = 1, . . . , n. It is assumed that this dataset is already split
into K groups C1, . . . , CK . The labels are thus supposed to be known and zi = k
means xi ∈ Ck for all i = 1, . . . , n and k = 1, . . . ,K. The goal of supervised
classification is to affect a new data point x ∈ R

p to one of the K groups in an
optimal way. Some further notations are introduced in the next subsubsection.

2.1. Notations. For all k = 1, . . . ,K, let us consider:

• the number of observations in class Ck: nk = ♯{i = 1, . . . , n s.t. zi = k},
• the mean x̄k ∈ R

p of class Ck defined as

x̄k =
1

nk

∑

zi=k

xi,

• the sample mean x̄ ∈ R
p which can be calculated using two equivalent

formulas:

x̄ =
1

n

n
∑

i=1

xi =
1

n

K
∑

k=1

nkx̄k,

• the sample p× p covariance matrix associated with class Ck defined as:

Vk =
1

nk

∑

zi=k

(xi − x̄k)(xi − x̄k)
t,

• the within-class p×p covariance matrix which is defined as the mean of the
previous covariance matrices:

W =
1

n

K
∑

k=1

nkVk,

• the between-class p×p covariance matrix which is defined as the covariance
matrix of the class means:

B =
1

n

K
∑

k=1

nk(x̄k − x̄)(x̄k − x̄)t,

• the sample p × p covariance matrix which can be calculated using two
equivalent formulas:

V =
1

n

n
∑

i=1

(xi − x̄)(xi − x̄)t = B +W.

2.2. Fisher Discriminant Analysis. The goal of Fisher Discriminant Analysis
(FDA) is to project the data in a subspace of dimension d ≪ p in order to visualize
the classes structure. Let us denote by a1, . . . , ad the d axes in R

p spanning the
Fisher discriminant subspace.
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2.2.1. Idea of the method in the case d = 1. In this simplified framework, the Fisher
discriminant subspace is one dimensional, and is spanned by only one axis a1. The
idea is find a1 ∈ R

p such that the projected observations at1xi belonging to different
classes are well-separated. In other words, the goal is to maximize the ratio between
the between projected variance and the sample projected variance. Mathematically,
the sample projected variance on an axis a ∈ R

p is obtained as

var(atx1, . . . , a
txn) =

1

n

n
∑

i=1

[(atxi)− (atx̄)]2

=
1

n

n
∑

i=1

[at(xi − x̄)]2

=
1

n

n
∑

i=1

at(xi − x̄)(xi − x̄)ta

= at

(

1

n

n
∑

i=1

(xi − x̄)(xi − x̄)t

)

a

= atV a.

A similar formula holds for the between projected variance and therefore, the axis
a1 is obtained by solving the following optimization problem:

a1 = argmax
a∈Rp

atBa

atV a
.

It is easily shown that the solution is closed-form: a1 is the eigenvector of the matrix
V −1B associated with the largest eigenvalue.

2.2.2. Back to the general case d ≥ 1. As a straightforward extension of the case
d = 1, one can show that Fisher discriminant subspace is spanned by a1, . . . , ad
obtained as the d eigenvectors of V −1B associated with the d largest eigenvalues.

Remark. The dimension of the optimal projection subspace is at most K − 1.

This property is a consequence of Rank(B) ≤ K − 1 (since B is the covariance
matrix of K observations) which implies Rank(V −1B) ≤ K − 1.

Remark. Both matrices V −1B and W−1B have the same (ordered) eigenvectors.

This fact can be proved as follows. Let a be an eigenvector of V −1B associated with
the eigenvalue λ. Thus V −1Ba = λa which is equivalent to Ba = λV a. Recalling
that V = W +B, we have Ba = λ(B+W )a or equivalently W−1Ba = (1− λ)−1a.

As a consequence of the two above remarks, when there are K = 2 classes, Fisher
discriminant subspace is one dimensional and is spanned by

a1 = W−1(x̄1 − x̄2),

since, in such a case, the eigenvector associated to the unique non-zero eigenvalue
is closed form.
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2.2.3. Fisher Discriminant Analysis versus Principal Component Analysis. Princi-
pal Component Analysis (PCA) is a dimension reduction technique, see for instance
Jolliffe (2002). It aims at finding the linear subspace maximizing the sample pro-
jected variance. Similarly, it can be shown that it amounts to performing the
eigendecomposition of V . PCA is usually an efficient way to reduce the dimension
(van der Maaten et al., 2009) but it may be sub-optimal in the supervised classi-
fication framework since it does not take into account the label information. As a
comparison, FDA can be considered as a supervised dimension reduction method
whereas PCA is unsupervised. This difference is illustrated on the USPS digit data-
base, a standard dataset for handwritten digit recognition. It can be downloaded at
http://statweb.stanford.edu/~tibs/ElemStatLearn/data.html. Each of the
n = 7291 observations is a 16×16 grey-level image obtained by scanning a handwrit-
ten digit. The images are encoded as vectors of dimension p = 16× 16 = 256. The
original dataset is made of K = 10 classes corresponding to the digits 0, 1, . . . , 9.
Here, we focus on the three classes associated with the digits 3, 5 and 8 (see the
top panel of Figure 1). The two-dimensional projections of the dataset obtained
by PCA and FDA are compared on the bottom panel. The class structure is much
clearer on the FDA projection than on the PCA one.
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Figure 1. Top: A sample from the USPS dataset. Bottom: Two-
dimensional projections (left: PCA axes, right: FDA axes).

2.3. Mixture model.

2.3.1. Definition. The observations x1, . . . , xn are supposed to be independent re-
alizations from a random vector X ∈ R

p while the labels z1, . . . , zn are assumed to
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be drawn from a discrete random variable Z ∈ {1, . . . ,K}. The distribution of the
random pair (X,Z) is built assuming that:

• Z follows a multinomial distribution with parameters π1, . . . , πK called mix-
ing proportions, i.e. P(Z = k) = πk, k = 1, . . . ,K. The mixing propor-
tions should verify the constraints πk ∈ [0, 1] for all k = 1, . . . ,K and
∑K

k=1 πk = 1.
• Given Z = k, X has a density denoted by f(·, θk), where θk represents the
parameter (possibly multidimensional) of f . For the sake of simplicity, it is
assumed here that the parametric form of f does not depend on the mixture
component k. This assumption could be nevertheless easily be dropped.

From the law of total probability, one can show that the density of X is a linear
combination of the densities associated with the K mixture components:

(1) f(·) =

K
∑

k=1

πkf(·, θk).

An illustration in dimension p = 1 is provided in Figure 2 in case of Gaussian
densities. We refer to McLachlan and Peel (2000) for a general account on mixture
models.

2.3.2. Sampling from a mixture. Sampling from a mixture model is an easy task
which involves two steps:

• Pick a component k with probability πk,
• Draw a sample from the density f(·, θk).

An illustration is given in Figure 3, where the previous algorithm is implemented
in R code on the same mixture model as in Figure 2.

2.3.3. A priori vs a posteriori probabilities. For all k = 1, . . . ,K, the mixing pro-
portion πk = P(Z = k) can be interpreted as the a priori probability that an
observation x belongs to the class Ck. Here, a priori means without using the ob-
servation x of the random variable X. At the opposite, the conditional probability
P(Z = k|X = x) is called the a posteriori probability that an observation x belongs
to Ck. These two probabilities are linked through Bayes rule:

(2) P(Z = k|X = x) = P(Z = k)f(x|Z = k)/f(x) = πkf(x, θk)/f(x).

2.3.4. Bayes decision rule. The aim of supervised classification is to build a decision
rule i.e. a function δ : R

p → {1, . . . ,K} which affects a label k ∈ {1, . . . ,K} to
each observation x ∈ R

p. It is possible to show that the rule which minimizes the
probability of miss-classification is Bayes decision rule given by

δ⋆(x) = argmax
k=1...,K

P(Z = k|X = x) = argmax
k=1,...,K

πkf(x, θk)/f(x),

from (2). Remarking that the denominator does not depend on k, Bayes decision
rule can be simplified as

(3) δ⋆(x) = argmax
k=1,...,K

πkf(x, θk).
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In practice, the parameters πk and θk have to be estimated: π̂k = nk/n and θ̂k is
the maximum likelihood estimator computed on the class Ck given by

θ̂k = argmax
θ

∏

zi=k

f(xi, θ) = argmax
θ

∑

zi=k

log f(xi, θ) =: argmax
θ

L(θ, x1, . . . , xn).

In the previous equation, L(θ, x1, . . . , xn) denotes the log-likelihood which is usually
more convenient to optimize than the likelihood. The estimated Bayes decision rule
is then obtained by plugging the estimated parameters in (3):

(4) δ̂⋆(x) = argmax
k=1,...,K

nkf(x, θ̂k).

2.3.5. Binary classification. In the particular case of K = 2 classes, the posterior
probabilities P(Z = 1|X = x) and P(Z = 2|X = x) can be simplified. Since they
sum to one, let us focus on the first one:

P(Z = 1|X = x) =
π1f(x, θ1)

π1f(x, θ1) + π2f(x, θ2)

=
1

1 + π2f(x,θ2)
π1f(x,θ1)

= Ψ(S(x)),(5)

where Ψ is called the logistic function defined by Ψ(t) = 1/(1 + exp(−t)) for all
t ∈ R and where S is the so-called score defined for x ∈ R

p by

(6) S(x) = log

(

π1f(x, θ1)

π2f(x, θ2)

)

.

The previous result is usually stated as “the posterior probability is a logistic func-
tion of the score”. A straightforward consequence is that Bayes decision rule can
be rewritten as δ⋆(x) = 1 if and only if S(x) > 0.

2.4. Gaussian Mixture Model.

2.4.1. Quadratic Discriminant Analysis. In the Gaussian Mixture Model (GMM),
it is further assumed that, for all k = 1, . . . ,K, the density f(·, θk) is a Gaussian
density with mean µk and covariance matrix Σk. We thus have θk = (µk,Σk).
Letting Lk(· · · ) = −2 log(πkf(·, θk)), Bayes decision rule (3) can be rewritten as

δ∗(x) = argmin
k=1,...,K

Lk(x)

where

Lk(x) = (x− µk)
tΣ−1

k (x− µk) + log(detΣk)− 2 log(πk) + C.

Here, and in the sequel, C is a constant which does not depend on k. This classifi-
cation method is referred to as Quadratic Discriminant Analysis (QDA). Note that
(x−µk)

tΣ−1
k (x−µk) can be interpreted as the Mahalanobis distance between x and

µk. Bayes decision rule is, in this case, a quadratic function of the observation x.
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2.4.2. Linear Discriminant Analysis. To reduce the number of parameters to esti-
mate, one may assume that all classes share the same covariance matrix Σk = Σ
for all k = 1, . . . ,K. This amounts to supposing that the K classes have the same
shape. This assumption yields

Lk(x) = µt
kΣ

−1µk − 2µt
kΣ

−1x− 2 log(πk) + C.

This is the so-called Linear Discriminant Analysis (LDA) method where the asso-
ciated Bayes decision rule is linear with respect to the observation x.

2.4.3. GMM in practice. The estimation of the parameters is simple. We still have
π̂k = nk/n and the maximum likelihood estimators are closed-form: µ̂k = x̄k

is the sample mean of Ck, Σ̂k = Vk is the sample covariance matrix of Ck and
Σ̂ = n/(n−K)W where W is the within-class covariance matrix, see Paragraph 2.1.

Let us highlight, that, in high dimension (i.e. if p is large), inverting Σ̂k or Σ̂ may
be an issue, see Bergé et al. (2012) or the chapter by C. Bouveyron in this book.

When several models are available (for instance LDA and QDA), a natural way
to choose one of them is to use a cross-validation procedure to select the model that
minimizes a sample based estimate of future miss-classification risk. See Bensmail
and Celeux (1996) for an application to the selection of parsimonious Gaussian
models.

2.4.4. Binary Linear Discriminant Analysis. We consider the particular case where
K = 2 and Σ1 = Σ2 = Σ. In such a situation, the score (6) is linear and is given by

S(x) =
1

2
(L2(x)− L1(x))

= xt Σ−1(µ1 − µ2)−
1

2
(µ1 + µ2)

t Σ−1(µ1 − µ2) + log(π2/π1).(7)

Once the parameters are estimated, the classification rule becomes δ̂⋆(x) = 1 if and
only if

xt W−1(x̄1 − x̄2) > (x̄1 + x̄2)
t W−1(x̄1 − x̄2) + log(n2/n1)

xt a1 > (x̄1 + x̄2)
t W−1(x̄1 − x̄2) + log(n2/n1),

where a1 is the Fisher discriminant axis, see Paragraph 2.2. It thus appears that
Binary LDA reduces to comparing the projection xt a1 of the data x to classify on
the Fisher discriminant axis a1 with a threshold (x̄1+x̄2)

t W−1(x̄1−x̄2)+log(n2/n1)
depending on the geometry of the problem.

2.4.5. Binary logistic regression. As previously mentioned, in case of binary classi-
fication (K = 2), the probability to affect x to the first class is P(Z = 1|X = x) =
Ψ(S(x)), see (5). If, moreover, it is assumed that Σ1 = Σ2 = Σ, then the score S(x)
is a linear function of x, see (7). This is the binary LDA method described above.
Binary logistic regression directly assumes that there exist β0 ∈ R and β ∈ R

p such
that

P(Z = 1|X = x) = Ψ(β0 + βt x)

without any other hypothesis. The estimation of β0 and β is performed by maxi-
mizing the conditional likelihood:

(8)
∏

zi=1

Ψ(β0 + βt xi)
∏

zi=2

(1−Ψ(β0 + βt xi)).
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The advantage of binary logistic regression is to be potentially more general than
binary LDA since it does not make any Gaussian assumption. The computation
of the estimators is however more difficult since the maximization of (8) requires
numerical procedures.

3. Unsupervised classification

Recall that the goal is to split a dataset x1, . . . , xn of n observations in R
p into K

homogeneous groups C1, . . . , CK . The labels are still denoted by z1, . . . , zn but are
not observed. In a first time, the number K of clusters is supposed to be known.
The choice of K is addressed in Paragraph 3.3.

3.1. K-means algorithm. Each cluster Ck is represented by a vector µk ∈ R
p

called prototype for all k = 1, . . . ,K. The binary numbers rik = I{zi = k},
i = 1, . . . , n, k = 1, . . . ,K indicating the class membership of the observations are
called responsibilities. It is assumed that each observation xi belongs to one and

only one cluster so that
∑K

k=1 rik = 1 for all i = 1, . . . , n. K-means algorithm
translates the clustering problem as the computation of the vector of prototypes
and responsibilities θ := (µk, rik)i=1,...,n, k=1,...,K . To this end, the following opti-
mization problem is introduced:

(9) min
θ

n
∑

i=1

k
∑

k=1

rik‖xi − µk‖
2

under the constraints: rik ∈ {0, 1} and
∑K

ℓ=1 riℓ = 1 for all i = 1, . . . , n, k =
1, . . . ,K. Since this problem has no explicit solution, the principle of K-means
algorithm is to perform an alternate minimization, see Hartigan and Wong (1979):

• Minimization with respect to the responsibilities, assuming that the pro-
totypes are known. The solution is given by: rik = 1 if and only if µk is
the closest prototype of xi, i = 1, . . . , n, k = 1, . . . ,K. This amounts to
partitioning the observations according to the Voronoi diagram generated
by the prototypes.

• Minimization with respect to the prototypes, assuming that the respon-
sibilities are known. The solution is given by: µk is the mean of the xi

affected to the cluster Ck, that is

(10) µk =

n
∑

i=1

rikxi

/

n
∑

i=1

rik ,

for all k = 1, . . . ,K.

In practice, it is recommended to standardize the data before running the algorithm.
It has been proved that each iteration of K-means algorithm decreases the criterion
to minimize (9). The algorithm thus converges to a local minimum and the result
may depend on the initialization. However, since the algorithm is usually very fast,
it is possible to run it multiple times with different starting conditions.

K-means algorithm suffers from some drawbacks. First, the hard assignment
of data points xi to clusters Ck may be unstable: A small change of a data point
can move it to another cluster. Second, the choice of the number of clusters K is
difficult. In the following subsubsection, we shall work in the GMM framework.
This will allow us to replace hard assignments by “soft” probabilistic assignments.
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3.2. Maximum likelihood in the GMM. In the unsupervised framework, both
the model parameters θk = (πk, µk, Σk) and the labels zik, i = 1, . . . , n, k =
1, . . . ,K are unknown. Denoting the unknown (multidimensional) parameter by
θ = (θ1, . . . , θK), the inference is still based on the log-likelihood

L(θ, x1, . . . , xn) =

n
∑

i=1

log

(

K
∑

k=1

πkf(xi, µk,Σk)

)

.

Recall that f(·, µ,Σ) is the p-dimensional Gaussian density with mean µ and co-
variance matrix Σ. Since there is a sum in the logarithm, the maximum likelihood
estimator of θ is not explicit. Let us however consider the gradient of the log-
likelihood with respect to µk, k = 1, . . . ,K:

∇µk
L = −

n
∑

i=1

πkf(xi, µk,Σk)
∑K

j=1 πjf(xi, µj ,Σj)
Σ−1

k (xi − µk)

= −
n
∑

i=1

P(Z = k|X = xi)Σ
−1
k (xi − µk),

in view of (1) and (2). Annulling the previous gradient yields, for all k = 1, . . . ,K,

(11) µ̂k =

∑n
i=1 P(Z = k|X = xi) xi
∑n

i=1 P(Z = k|X = xi)
.

It appears that µ̂k is a weighted mean of the observations. Let us precise that µ̂k

is not a proper estimator of µk since the weights i.e. the posterior probabilities
P(Z = k|X = xi) are unknown. Comparing to the K-means formula (10), the
binary weights are replaced by real values in the unit interval. Similar calculations
yield, for all k = 1, . . . ,K:

(12) Σ̂k =

∑n
i=1 P(Z = k|X = xi) (xi − µk)(xi − µk)

t

∑n
i=1 P(Z = k|X = xi)

,

with a similar interpretation. Using a Lagrange multiplier technique to take into

account the constraint
∑K

k=1 πk = 1 entails:

(13) π̂k =
1

n

n
∑

i=1

P(Z = k|X = xi).

The intuitive idea of the Expectation-Maximization (EM) algorithm is to alternate
the calculations (11)–(13) with an update of the posterior probabilities according
to

(14) P(Z = k|X = xi) =
πkf(xi, µk,Σk)

∑K
j=1 πjf(xi, µj ,Σj)

,

see (1) and (2). The EM algorithm is however based on a more general maximization
principle and is not limited to Gaussian mixtures, see Dempster et al. (1977). In
our considered framework, the algorithm can be summarized as follows.
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3.2.1. EM algorithm.

• Initialization: Initial guess for the model parameters.
• E Step: Estimation of tik := P(Z = k|X = xi) using

t̂ik =
π̂kf(xi, µ̂k, Σ̂k)

∑K
j=1 π̂jf(xi, µ̂j , Σ̂j)

• M Step: Maximization of log-likelihood yielding the previous formulas:

µ̂k =

∑n
i=1 t̂ik xi
∑n

i=1 t̂ik
,

Σ̂k =

∑n
i=1 t̂ik (xi − µ̂k)(xi − µ̂k)

t

∑n
i=1 t̂ik

,

π̂k =
1

n

n
∑

i=1

t̂ik.

• Repeat until convergence.

It can be shown that the EM algorithm increases the likelihood at each iteration.
This property allows some monitoring of the convergence. In practice, the iterations
are stopped when the increase of the log-likelihood is behind a small threshold.
EM algorithm converges to a local maxima of the likelihood, the initialization is
thus an important issue, addressed for instance in Biernacki et al. (2003). The
most common practice is to initialize the EM algorithm with K-means clustering.
Stochastic and classification versions of EM have been developed (G. Celeux and G.
Govaert, 1992). Either the a posteriori probabilities tik are used to randomly select
the class belongings (random assignment), or are binarized (hard assignment). A
simple implementation of the EM algorithm in R is provided in Figure 4. In this
toy case, we limit ourselves to the situation already considered in Figure 2 and

Figure 3 where K = 2 and p = 1. The algorithm is initialized with µ
(0)
1 = 0,

µ
(0)
2 = 1, π

(0)
1 = π

(0)
2 = 1/2 and σ

(0)
1 = σ

(0)
2 are set to the sample standard-

deviation. The number of iterations is fixed by the user. An example of result
is depicted in Figure 5. The EM algorithm has been run with 100 iterations on
a sample simulated from the model considered in Figure 2 and Figure 3. The
estimated parameters are π̂1 = 0.48, π̂2 = 0.52, µ̂1 = 0.46, µ̂2 = 1.98, σ̂2

1 = 2.94
and σ̂2

2 = 0.82. The true and estimated densities look very similar. Note that the
results may depend on the simulated data.

3.2.2. Links with K-means algorithm. Let us consider the GMM, with common and
spherical covariance matrices i.e. Σk = εIp for all k = 1, . . . ,K. Replacing in (14),
the a posteriori probabilities are given by

tik =
πk exp

(

− 1
2ε‖xi − µk‖

2
)

∑K
j=1 πj exp

(

− 1
2ε‖xi − µj‖2

)

=
1

1 +
∑

j 6=k

πj

πk
exp

(

1
2ε (‖xi − µk‖2 − ‖xi − µj‖2)

) .

Letting ε → 0, tik becomes a binary number: tik = I{‖xi−µk‖ < ‖xi−µj‖, for all j 6=
k}, and we find back the K-means algorithm. K-means can thus be interpreted as



SUPERVISED AND UNSUPERVISED CLASSIFICATION USING MIXTURE MODELS 11

a particular case of EM. This suggests that K-means is well adapted to mixtures
where all the clusters share a common spherical shape.

As an illustration, let us consider the clustering of the Old Faithful geyser
dataset. Old Faithful is a geyser located in Yellowstone National Park (USA).
It is one of the most predictable geographical features on Earth, erupting every
40 to 100 minutes. This dataset can be downloaded at http://www.stat.cmu.

edu/~larry/all-of-statistics/=data/faithful.dat and is also included in the
mclust package, see Fraley and Raftery (2003). This dataset includes n = 272 ob-
servations described by p = 2 variables (duration of the eruption, waiting time
between eruptions). In this subsubsection, the number of classes is arbitrarily set
to K = 2. In Figure 6, it appears that the clustering obtained with the K-means
model (equal and diagonal covariance matrices) and the clustering with the QDA
model (free covariance matrices) are identical.

3.3. Selecting the number of clusters. Various criteria have been introduced to
measure the suitability of a model by balancing its goodness of fit and its complexity.
Here, we focus on criteria based on a penalization of the log-likelihood (computed
for the optimal parameter):

IC = L(θ̂, x1, . . . , xn)− ν(K)ϕ(n)

where θ̂ is the maximum likelihood estimator, ν(K) is the number of (free) param-
eters in the model and ϕ(n) is a function of n. The most famous examples are
the Akaike Information Criteria (AIC), see Akaike (1974), where ϕ(n) = 1 and the
Bayesian Information Criteria (BIC), see Schwarz (1978) where ϕ(n) = log(n)/2.
Further details and theoretical developments on AIC and BIC can be found respec-
tively in Aitkin and Rubin (1985) and Kass and Raftery (1995). In practice, it has
been remarked that, usually, BIC works better than AIC on mixtures (Bouveyron et

al., 2011) but none of them takes into account the classification purpose. Alterna-
tive criteria have been introduced, such as ICL (Integrated Completed Likelihood),
see Biernacki et al. (2000), to overcome this limitation. The principle of ICL is to
introduce an additional penalization on overlapping classes in BIC.

As an illustrated, let us consider the clustering of the Old Faithful geyser dataset.
In Figure 6, the clustering was achieved assuming K = 2. Here, we use the BIC
criterion to select K in the set {1, . . . , 5} and to choose between common covari-
ance matrices (LDA model) or free covariance matrices (QDA model). It appears
in Figure 7 that the largest value of BIC is obtained with K = 3 components as-
sociated with the LDA model. The corresponding clustering is also depicted in
Figure 7 on a visualization space different from the original one (Figure 6), see the
package documentation. Let us highlight that the decision boundaries are linear,
see Paragraph 2.4.

4. Conclusion, recent developments

As a conclusion, mixture models are an efficient tool for both supervised and
unsupervised classifications. They offer a nice theoretical framework for model
selection and for computing classification probabilities. They also encompass geo-
metric methods as particular cases. From the practical point of view, we have seen
that they are naturally multiclass and that efficient algorithms are available. It is
also possible to deal with missing data thanks to the EM algorithm.
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In this chapter, we focused on Gaussian mixture models, but a lot of other
models are available in the statistical literature. First, in case of discrete data,
multinomial models can be used, see for instance Bouguila et al. (2003), Celeux and
Govaert (1991) or Goldstein and Dillon (1978). Second, to tackle the case of heavy-
tailed or asymmetric data, several extensions of Gaussian models have been recently
introduced: Skew normal distribution (Vilca et al., 2014), t-distributions (Andrews
and McNicholas, 2012 or Forbes and Wraith, 2014), asymmetric Laplace distribu-
tion (Franczak et al., 2014) and skew t-distributions (Lee and McLachlan, 2013 or
Wraith and Forbes, 2015). Finally, an extension of the Gaussian mixture model
to non quantitative data has been proposed by Bouveyron et. al. (2015). The in-
troduction of a kernel function permits to deal with various kind of data including
categorical data, functional data or networks.
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# mixture parameters
pi <− 0 .4
mu1 <− 0 ; sigma1 <− 1 .5
mu2 <− 2 ; sigma2 <− 1
# v i s u a l i z a t i o n parameters
l e f t <− −4.5 ; r i g h t <− 6 ; top <− 0 .5
grd <− seq ( from=l e f t , to=r ight , length=100)
# p l o t s
plot ( grd ,dnorm( grd ,mean=mu1, sd=sigma1 ) , type=” l ” , col=2,

xlim=c ( l e f t , r i g h t ) , yl im=c (0 , top ) , xlab=”” , ylab=”” ,
l t y=”dashed” , lwd=4)

par (new=TRUE)
plot ( grd ,dnorm( grd ,mean=mu2, sd=sigma2 ) , type=” l ” , col=1,

xlim=c ( l e f t , r i g h t ) , yl im=c (0 , top ) , xlab=”” , ylab=”” ,
l t y=”dotted ” , lwd=4)

par (new=TRUE)
plot ( grd , p i∗dnorm( grd ,mean=mu1, sd=sigma1)+

(1−pi )∗dnorm( grd ,mean=mu2, sd=sigma2 ) ,
type=” l ” , col=4,xlim=c ( l e f t , r i g h t ) , yl im=c (0 , top ) ,
xlab=”” , ylab=”” , lwd=2)

Figure 2. Top: Density of a GMM with K = 2 components and
p = 1 variable. The parameters are given by µ1 = 0, µ2 = 2,
σ1 = 1.5, σ2 = 2, π1 = π and π2 = 1 − π. From left to right,
the proportion π is varying in {0.4, 0.6, 0.8}. Red dashed curve:
f(·, µ1, σ

2
1), Black dotted curve: f(·, µ2, σ

2
2), Blue solid curve: den-

sity of the mixture. Bottom: The corresponding R code for π =
0.4.
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# v i s u a l i z a t i o n parameters
l e f t <− −4.5 ; r i g h t <− 6 ; top <− 0 .4
grd <− seq ( from=l e f t , to=r ight , length=100)
# sample s i z e
n <− 1000
# genera te a sample from the mixture
generated . smple <− rep (0 , n )
for ( i in 1 : n){

aux <− runif (1 ,min=0,max=1)
i f ( aux<pi ) { # simu la t e from component 1

generated . smple [ i ] <− rnorm(1 ,mean=mu1, sd=sigma1 )}
else { # simu la t e from component 2

generated . smple [ i ] <− rnorm(1 ,mean=mu2, sd=sigma2 )}
}
# histogram of the sample and t rue d en s i t y o f the mixture
hist ( generated . smple , f r e q=FALSE, xlim=c ( l e f t , r i g h t ) ,

yl im=c (0 , top ) , xlab=”” , ylab=”” ,main=”” )
par (new=TRUE)
plot ( grd , p i∗dnorm( grd ,mean=mu1, sd=sigma1)+

(1−pi )∗dnorm( grd ,mean=mu2, sd=sigma2 ) , type=” l ” , col=4,
xlim=c ( l e f t , r i g h t ) , yl im=c (0 , top ) , xlab=”” , ylab=”” , lwd=2)

Figure 3. Top: Density of a GMM with K = 2 components and
p = 1 variable (blue) superimposed to the histogram of a dataset
of n = 1000 observations simulated from the same model (black).
The parameters are given by µ1 = 0, µ2 = 2, σ1 = 1.5, σ2 = 2,
π1 = π and π2 = 1 − π. Here, the proportion is fixed to π = 0.4.
Bottom: The corresponding R code.



16 STÉPHANE GIRARD AND JÉRÔME SARACCO

EM <− function ( smple , nb . i t e r =10){

# i n t i a l i z a t i o n us ing the his togram
mu <− c ( 0 , 1 )
va r i <− c (var ( smple ) ,var ( smple ) )
prp <− c ( 0 . 5 , 0 . 5 )

# main loop ( the number o f i t e r a t i o n s i s s e t by the user )
for ( i t e r in 1 : nb . i t e r ){

# E s t ep
post1<−prp [ 1 ] ∗dnorm( smple ,mean=mu[ 1 ] , sd=sqrt ( va r i [ 1 ] ) )
post2<−prp [ 2 ] ∗dnorm( smple ,mean=mu[ 2 ] , sd=sqrt ( va r i [ 2 ] ) )
t o t a l<−post1+post2
post1<−post1/ t o t a l
post2<−post2/ t o t a l
# M step
prp [ 1 ] <− mean( post1 )
prp [ 2 ] <− mean( post2 )
mu[ 1 ]<−weighted .mean( smple , post1 )
mu[ 2 ]<−weighted .mean( smple , post2 )
va r i [ 1 ]<−weighted .mean( ( smple−mu[ 1 ] ) ˆ 2 , post1 )
va r i [ 2 ]<−weighted .mean( ( smple−mu[ 2 ] ) ˆ 2 , post2 )

}
# the func t i on re tu rns the es t imated propor t ions , means ,
# var iances as w e l l as the p o s t e r i o r p r o b a b i l i t i e s .
l i s t ( prp=prp ,mu=mu, va r i=var i , post=cbind ( post1 , post2 ) )

}

Figure 4. EM algorithm for GMM coded in R in the one-
dimensional case (p = 1) and for two clusters (K = 2).
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# run the EM algor i thm with 100 i t e r a t i o n s .
r e s <− EM( generated . smple , nb . i t e r =100)
# v i s u a l i z a t i o n parameters
l e f t <− −4.5 ; r i g h t <− 6 ; top <− 0 .5
grd <− seq ( from=l e f t , to=r ight , length=100)
# p l o t s
plot ( grd ,dnorm( grd ,mean=re s$mu[ 1 ] , sd=sqrt ( r e s$va r i [ 1 ] ) ) ,

type=” l ” , col=2,xlim=c ( l e f t , r i g h t ) , yl im=c (0 , top ) ,
xlab=”” , ylab=”” , l t y=”dashed” , lwd=4)

par (new=TRUE)
plot ( grd ,dnorm( grd ,mean=re s$mu[ 2 ] , sd=sqrt ( r e s$va r i [ 2 ] ) ) ,

type=” l ” , col=1,xlim=c ( l e f t , r i g h t ) , yl im=c (0 , top ) ,
xlab=”” , ylab=”” , l t y=”dotted ” , lwd=4)

par (new=TRUE)
plot ( grd , r e s$prp [ 1 ] ∗dnorm( grd ,mean=re s$mu[ 1 ] ,

sd=sqrt ( r e s$va r i [ 1 ] ) )
+r e s$prp [ 2 ] ∗dnorm( grd ,mean=re s$mu[ 2 ] ,

sd=sqrt ( r e s$va r i [ 2 ] ) ) , type =” l ” , col=4,
xlim=c ( l e f t , r i g h t ) , yl im =c (0 , top ) , xlab=”” , ylab=”” ,
lwd=2)

Figure 5. Top left (reproduced from Figure 2): Density of a
GMM with K = 2 components and p = 1 variable. The parame-
ters are given by µ1 = 0, µ2 = 2, σ1 = 1.5, σ2 = 2, π1 = π and
π2 = 1 − π with π = 0.4. Red dashed curve: f(·, µ1, σ

2
1), Black

dotted curve: f(·, µ2, σ
2
2), Blue solid curve: density of the mixture.

Top right: Estimated densities with the EM algorithm (Figure 4)
on the simulated sample (Figure 3). Bottom: The corresponding
R code for plotting the top right figure.
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# i n s t a l l and load the mclust package
in s ta l l . packages ( ”mclust ” )
l ibrary ( mclust )
# c l u s t e r i n g wi th 2 groups and K−means model
r e s1 <− Mclust ( f a i t h f u l ,G=2,modelNames=”EEI” )
# p l o t the c l u s t e r i n g
plot ( res1 , what=” c l a s s i f i c a t i o n ” )
# c l u s t e r i n g wi th 2 groups and QDA
r e s2 < −Mclust ( f a i t h f u l ,G=2,modelNames=”VVV” )
# p l o t the c l u s t e r i n g
plot ( res2 , what=” c l a s s i f i c a t i o n ” )

Figure 6. Clustering of the Old Faithful geyser dataset. Top:
results obtained with diagonal and equal covariance matrices (K-
means model encoded as EEI in mclust). Center: results obtained
with free covariance matrices (referred to as QDA in the supervised
framework and encoded as VVV in mclust). The density level sets
are depicted in grey. Bottom: The corresponding R code.
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# i n s t a l l and load the mclust package
in s ta l l . packages ( ”mclust ” )
l ibrary ( mclust )
# c l u s t e r i n g wi th { 1 , . . . , 5 } groups and LDA, QDA models
r e s <− Mclust ( f a i t h f u l ,G=c ( 1 , 2 , 3 , 4 , 5 ) ,

modelNames=c ( ”EEE” , ”VVV” ) )
# p l o t the BIC va l u e s
plot ( res , what=”BIC” )
# p l o t the c l u s t e r i n g and the d e c i s i on boundar ies
dr <− MclustDR( r e s )
plot ( dr , what=” boundar ies ” )

Figure 7. Top: BIC values computed on the Old Faithful geyser
dataset for K ∈ {1, . . . , 5} and for two models: free covariance
matrices (referred to as QDA in the supervised framework and en-
coded as VVV in mclust, red curve with � symbols) and equal
covariance matrices (referred to as LDA in the supervised frame-
work and encoded as EEE in mclust, blue curve with � symbols).
The best model here is EEE and K = 3 groups. Center: Cluster-
ing associated with the best model. The decision boundaries are
depicted in grey. Bottom: The corresponding R code.


