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We consider a stochastic differential equation with additive fractional noise of Hurst parameter H > 1/2, and a non-linear drift depending on an unknown parameter. We show the Local Asymptotic Normality property (LAN) of this parametric model with rate √ τ as τ → ∞, when the solution is observed continuously on the time interval [0, τ ]. The proof uses ergodic properties of the equation and a Poincaré type inequality.

Introduction

Let B be a d-dimensional fractional Brownian motion with Hurst parameter H > 1/2. Let us recall that B is a centered Gaussian process defined on a complete probability space (Ω, F , P). The law of B is thus characterized by its covariance function, which is defined by

R s;t ≡ E B i t B j s = 1 2 t 2H + s 2H -|t -s| 2H 1 {0} (i -j), s, t ∈ R. (1) 
The variance of the increments of B is then given by

E |B i t -B i s | 2 = |t -s| 2H , s, t ∈ R, i = 1, . . . , d, (2) 
and this implies that almost surely the fBm paths are γ-Hölder continuous for any γ < H.

In this article, we consider the following R d -valued stochastic differential equation driven by B:

Y t = y 0 + t 0 b(Y s ; θ) ds + d j=1 σ j B j t , t ∈ [0, τ ]. (3) 
Here y 0 ∈ R d is a given initial condition, B = (B 1 , . . . , B d ) is the aformentioned fractional Brownian motion (fBm), the unknown parameter θ lies in a certain set Θ which will be specified later on, {b(•; θ), θ ∈ Θ} is a known family of drift coefficients with b(•; θ) : R d → R d , and σ 1 , . . . , σ d ∈ R d are assumed to be known diffusion coefficients.

There has been a wide interest in drift estimation for stochastic equations driven by fractional Brownian motion in the recent past, partly motivated by inverse problems in a biomedical context [START_REF] Kou | Generalized Langevin equation with fractional Gaussian noise: subdiffusion within a single protein molecule[END_REF]. However, notice that the existing literature on the topic mainly focuses on the case where the dependence θ → b(x; θ) is linear and all coefficients are realvalued. In this situation least squares and maximum likelihood estimators (MLE) for the unknown parameter θ can be computed explicitly, and numerous results are available: the case of continuous observations of Y and where the drift coefficient is linear in both θ and x (that is, fractional Ornstein-Uhlenbeck type process) has been studied e.g. in [START_REF] Belfadli | Parameter Estimation for Fractional Ornstein-Uhlenbeck Processes: Non-ergodic Case[END_REF][START_REF] Hu | Parameter estimation for fractional Ornstein-Uhlenbeck processes[END_REF][START_REF] Kleptsyna | Statistical analysis of the fractional Ornstein-Uhlenbeck type process[END_REF][START_REF] Breton | Filtering and parameter estimation in a simple linear system driven by a fractional Brownian motion[END_REF], either in the ergodic (θ < 0) and non-ergodic (θ > 0) case. See also the monograph [START_REF] Rao | Statistical inference for fractional diffusion processes[END_REF] and the references therein. Results on parameter estimation based on discrete observations of Y in the linear case can be found e.g. in [START_REF] Brouste | Parameter estimation for the discretely observed fractional Ornstein-Uhlenbeck process and the Yuima R package[END_REF][START_REF] Xiao | Parameter estimation for fractional Ornstein-Uhlenbeck processes at discrete observation[END_REF]. The case of a dependence of the form (θ, x) → θ b(x) is handled e.g. in [START_REF] Kozachenko | On drift parameter estimation in models with fractional Brownian motion[END_REF][START_REF] Tudor | Statistical aspects of the fractional stochastic calculus[END_REF].

However, the case of a general multi-dimensional coefficient b(θ, x) in equation ( 3) is also a very natural situation to consider, though we are only aware of the articles [START_REF] Chronopoulou | On inference for fractional differential equations[END_REF][START_REF] Neuenkirch | A least square-type procedure for parameter estimation in stochastic differential equations with additive fractional noise[END_REF] giving some positive answers for such a dependence. The current contribution has thus to be thought of as a step in this direction. Indeed, our main aim is to show that the model given by equation (3) satisfies the Local Asymptotic Normality property (LAN) with rate √ τ as τ → ∞, when the process Y is observed continuously on the time interval [0, τ ].

Before we proceed to a specific statement of our results, let us describe the assumptions we shall work with, which are similar to the ones used in [START_REF] Neuenkirch | A least square-type procedure for parameter estimation in stochastic differential equations with additive fractional noise[END_REF]. We start with a standard hypothesis on the parameter set Θ: Hypothesis 1.1. The set Θ is compactly embedded in R q for a given q ≥ 1.

In order to describe the assumptions on our coefficients b, we will use the following notation for partial derivatives: Notation 1.2. Let f : R d × Θ → R be a C p 1 ,p 2 function for p 1 , p 2 ≥ 0. Then for any tuple (i 1 , . . . i p ) ∈ {1, . . . , d} p , we set ∂ ..∂θ ip , where (i 1 , . . . i p ) is a tuple in {1, . . . , q} p . Moreover, we will write ∂ x f resp. ∂ θ f for the Jacobi-matrices (∂ x 1 f, . . . , ∂ x d f ) and (∂ θ 1 f, . . . , ∂ θq f ). Finally, for the sake of simplicity, we denote by •, • the Euclidean scalar product in R q or R d , and by | • | the corresponding Euclidean norm.

Let us now state the linear growth plus inward assumptions on our drift coefficient ensuring ergodic properties for the process Y : Hypothesis 1.3. (i) There exists α > 0 such that for every x, y ∈ R d and θ ∈ Θ we have

b(x; θ) -b(y; θ), x -y ≤ -α |x -y| 2 . (ii) We have b ∈ C 2,1 (R d × Θ; R d ), with ∂ x b and ∂ 2 xx b uniformly bounded in (x, θ). (iii) We have b := ∂ θ b ∈ C 2,0 (R d × Θ; R d × R q ), with ∂ x b and ∂ 2
xx b uniformly bounded in (x, θ). (iv) There exists c > 0 such that for every x, y ∈ R d and θ, θ 0 ∈ Θ, the following Lipschitz and growth conditions hold:

|b(x; θ)| ≤ c (1 + |x|) , | b(x; θ)| ≤ c (1 + |x|) | b(x; θ) -b(x; θ 0 )| ≤ c|θ -θ 0 |(1 + |x|), | b(x; θ) -b(y; θ)| ≤ c|x -y|.
Furthermore, we suppose that the coefficient σ fulfills an invertibility condition of the following form: Hypothesis 1.4. The number d of driving fBm equals the dimension of the state space R d for Y . In addition, denoting by σ the d × d matrix with columns σ 1 , . . . , σ d , we assume that σ is invertible.

Notice that Hypothesis 1.3 and 1.4 entail the following result (see next section for more details): for a given θ ∈ Θ the solution to equation (3) converges for t → ∞ almost surely to a stationary and ergodic stochastic process (Y t , t ≥ 0).

Let us now introduce the concept of LAN property in our context. Towards this aim, for any θ ∈ Θ and λ < H, we denote by P θ (resp. P τ θ ) the probability laws of the solution to equation (3) in the spaces

C λ (R + ; R d ) (resp. C λ ([0, τ ]; R d ))
. Moreover, we assume that the process Y is observed continuously in [0, τ ]. In this context, the definition of LAN property takes the following form: Definition 1.5. We say that the parametric statistical model {P θ , θ ∈ Θ} satisfies the LAN property at θ ∈ Θ if there exist: (i) A q × q invertible matrix ϕ τ (θ), (ii) A q × q positive definite matrix Γ(θ), such that for any u ∈ R q , the following limit holds true as τ → ∞:

log dP τ θ+ϕτ (θ)u dP τ θ L(P θ ) ---→ u T N (0, Γ(θ)) - 1 2 u T Γ(θ)u,
where N (0, Γ(θ)) is a centered q-dimensional Gaussian random variable with covariance matrix Γ(θ).

The LAN property is a fundamental concept in asymptotic theory of statistics, which was developed by Le Cam [START_REF] Cam | Locally asymptotically normal families of distributions[END_REF]. The essence of LAN is that the local log likelihood ratio is asymptotically normally distributed, with a locally constant covariance matrix and a mean equal to minus one half the variance. The main application of the LAN property is the following Minimax Theorem. It asserts (if LAN holds true) an asymptotic (minimax) lower bound for the risk with respect to a loss function, for any sequence θτ of estimators of θ.

Theorem 1.6 (Minimax Theorem). [START_REF] Ibragimov | Statistical estimation -Asymptotic theory[END_REF]Theorem 12.1] Suppose that the family of probability measures (P θ ) θ∈Θ satisfies the LAN property at a point θ. Let ( θτ ) τ ≥0 be a family of estimators of the parameter θ and l : R q → [0, +∞) be a loss function such that l(0) = 0, l(x) = l(|x|) and l(|x|) ≤ l(|y|) if |x| ≤ |y|. Then we have:

lim δ→0 lim inf τ →∞ sup |θ ′ -θ|<δ E θ ′ l ϕ -1 τ (θ) θτ -θ ′ ≥ E θ [l (Z)] , (4) 
where L(Z) = N (0, Γ(θ) -1 ).

Observe that when the loss function l in Theorem 1.6 is the quadratic function, the lower bound in ( 4) is simply the trace of Γ(θ) -1 . A sequence of estimators that attains this asymptotic bound is called asymptotic minimax efficient. Therefore, Theorem 1.6 opens the way to a theory which mimics the concept of efficient estimator from the Cramér-Rao lower bound.

As one can see, the LAN property is an important tool in order to quantify the identifiability of a system. The aim of this paper is thus to show the following result for our equation (3). Theorem 1.7. Assume Hypothesis 1.3, and recall that P τ θ stands for the probability law of the solution to equation (3) in the space C λ ([0, τ ]; R d ). Then, for any θ ∈ Θ and u ∈ R q fixed, as τ → ∞, we have:

log dP τ θ+ u √ τ dP τ θ L(P θ ) ---→ u T N (0, Γ(θ)) - 1 2 u T Γ(θ)u, (5) 
where the matrix Γ(θ) is defined by:

Γ(θ) := R 2 + E θ [( b(Y 0 ; θ) -b(Y r 1 ; θ)) T (σ -1 ) T σ -1 ( b(Y 0 ; θ) -b(Y r 2 ; θ))] r 1/2+H 1 r 1/2+H 2 dr 1 dr 2 , (6) 
In [START_REF] Chronopoulou | On inference for fractional differential equations[END_REF], recall that Y is the ergodic limit of our process Y and that we have set b for the Jacobian matrix ∂ θ b.

Though our result encompasses a wide range of coefficients b, it is worth illustrating it on the simple linear case, that is for the real-valued fractional Ornstein-Uhlenbeck process corresponding to b(x; θ) = -θ x and σ ≡ 1. In this case we have:

Y t = -θ t 0 Y s ds + B t , t ∈ [0, τ ], θ > 0.
Let θτ be the MLE of θ from the observation of Y in [0, τ ]. Then, it is well-known (see [START_REF] Bercu | Sharp Large Deviations for the Fractional Ornstein-Uhlenbeck Process[END_REF][START_REF] Kleptsyna | Statistical analysis of the fractional Ornstein-Uhlenbeck type process[END_REF]) that lim τ →∞ θτ = θ a.s. and that

L(P θ ) -lim τ →∞ √ τ ( θτ -θ) = N (0, 2θ). (7) 
In particular, this last result already suggests that the rate of convergence for the LAN property in this case is τ -1/2 , as mentioned in [30, p.162]. Our result confirms this intuition, and one can see that the MLE reaches this optimal rate of order τ -1/2 . However, observe that the identification of ( 6) and ( 7) is far from being clear, leaving open the question of efficiency of the ML estimator in the fractional Ornstein-Uhlenbeck case.

The LAN property for stochastic processes has been widely explored in the literature. To mention a few references close to our contribution, the case of ergodic diffusion processes observed continuously (with an unknown parameter on the drift coefficient) is dealt with in e.g. [START_REF] Kutoyants | Statistical Inference for Ergodic Diffusion Processes[END_REF]Proposition 2.2]. The proof follows from Girsanov's theorem, ergodic properties and the central limit theorem for Brownian martingales. The rate of convergence achieved in [START_REF] Kutoyants | Statistical Inference for Ergodic Diffusion Processes[END_REF]Proposition 2.2] is √ τ like in our Theorem 1.7, with a function Γ(θ) given by:

Γ(θ) = E θ [ b(Y ; θ) T σ -1 (Y ) T σ -1 (Y ) b(Y ; θ)],
which should be compared to our expression [START_REF] Chronopoulou | On inference for fractional differential equations[END_REF]. The case where the Brownian diffusion process is observed discretely was solved in [START_REF] Gobet | LAN property for ergodic diffusions with discrete observations[END_REF] using an integration by parts formula taken from the Malliavin calculus. Let us also mention that the LAN property is obtained in [START_REF] Cohen | LAN property for some fractional type Brownian motion[END_REF] for some discretely observed fractional noises including fractional Brownian motion. This last result is achieved by a direct expansion of log-likelihood functions, plus a thorough analysis based on properties of Toeplitz matrices. Finally let us say a few words about the strategy we have followed in order to handle the case of equation [START_REF] Bercu | Sharp Large Deviations for the Fractional Ornstein-Uhlenbeck Process[END_REF]. In order to compare likelihood functions for different values of the parameter, we take the obvious choice of applying Girsanov's theorem for fractional Brownian motion (following the steps of [START_REF] Moret | Onsager-Machlup functional for the fractional Brownian motion[END_REF]). We are then left with two technical difficulties in order to get asymptotic results: (i) Handle the singularities popping out of the fractional derivatives in the Girsanov exponent. (ii) Get ergodic results in Hölder type norms for our process Y . Let us also mention that CLTs for martingales, which were an essential tool in the diffusion case, are unavailable in our fBm situation. We sort out this problem by means of Malliavin calculus techniques. Specifically, we shall derive some concentration properties for the Girsanov exponent by means of a Poincaré type inequality (see relation [START_REF] Hu | Parameter estimation for fractional Ornstein-Uhlenbeck processes[END_REF] below). This means that some Malliavin derivatives will have to be conveniently upper bounded, which is a non negligible part of our efforts.

Our paper is structured as follows: Section 2 is devoted to preliminary results, including Malliavin calculus background and the derivation of most of the concentration properties for the process Y needed later on. Then we prove Theorem 1.7 in Section 3, following the strategy described above.

Let us close this introduction by giving a set of notations which will prevail until the end of the paper. Notation 1.8. We use the following conventions: for 2 quantities a and b, we write a b if there exists a universal constant c such that a ≤ c b. In the same way, we write a ≍ b whenever a b and b a. If f is a vector-valued function defined on an interval [0, τ ] and s, t ∈ [0, τ ], δf st designates the increment f tf s .

Auxiliary Results

In this section we first recall some basic facts about stochastic analysis for a fBm B, and also about Young integrals. Then we shall derive some pathwise and probabilistic estimates for equation (3) under the coercive Hypothesis 1.3. 3) are accurately encoded by the fBm representation given in [START_REF] Hairer | Ergodicity of stochastic differential equations driven by fractional Brownian motion[END_REF], which goes back to the original paper [START_REF] Mandelbrot | Fractional Brownian motions, fractional noises and applications[END_REF]. We present this construction here for a one-dimensional fBm, for sake of simplicity. Obvious generalizations to the d-dimensional case are left to the reader.

Stochastic analysis related to B. The ergodic properties of equation (

2.1.1. Wiener space related to B. Let W be a two-sided Brownian motion, and H a Hurst parameter in (0, 1). We consider the process B defined for t ∈ R by:

B t = c H R - (-r) H-1/2 [dW t+r -dW r ] (8) = c H 0 -∞ (-(r -t)) H-1/2 -(-r) H-1/2 dW r - t 0 (-(r -t)) H-1/2 dW r .
Then B is well-defined as a fBm, that is a centered Gaussian process with covariance given by (1).

The process B is closely related to the following fractional derivatives: for α ∈ (0, 1) and

ϕ ∈ C ∞ c (R) we set D α + ϕ t = c α R + ϕ t -ϕ t-r
r 1+α dr, and

I α + ϕ t = cα R + ϕ t-r r α-1 dr.
With this notation in mind, the following proposition identifies a convenient operator which transform W into B as in [START_REF] Deucreusefond | Stochastic integration with respect to fractional Brownian motion[END_REF].

Proposition 2.1. For w ∈ C ∞ c (R) and H ∈ (0, 1), set [K H w] t = c H R - (-r) H-1/2 [ ẇt+r -ẇr ] dr.
Then the following holds true: (i) There exists a constant c H such that

[K H w] t =    -c H [I H-1/2 + w] t -[I H-1/2 + w] 0 , for H > 1 2 -c H [D 1/2-H + w] t -[D 1/2-H + w] 0 , for H < 1 2 . (ii) For H > 1/2, K H can be extended as an isometry from L 2 (R) to I H-1/2 + (L 2 (R)).
(iii) There exists a constant c H such that we have

K -1 H = c H K 1-H .
The natural Wiener space related to our fractional Brownian motion indexed by R, as represented in [START_REF] Deucreusefond | Stochastic integration with respect to fractional Brownian motion[END_REF], is given as follows (see [START_REF] Hairer | Ergodicity of stochastic differential equations driven by fractional Brownian motion[END_REF] for further details): one can take B as the underlying space, where

B = f ∈ C(R; R d ); |f t | 1 + |t| < ∞ .
For this choice of B, equipped with the law P of our fractional Brownian motion B, there are various ways to express the generic form of an element of the Cameron-Martin space H. Among those we will choose the following one: h is an element of H iff there exists an element X h in the first chaos such that:

h t = E[B t X h ], and h H = X h L 2 (Ω) . (9) 
Moreover, one can check that (B, H, P) is an abstract Wiener space. Notice that the space H has to be distinguished from the space H usually considered (e.g in [START_REF] Nualart | The Malliavin Calculus and Related Topics[END_REF]) for the Malliavin calculus with respect to B. For the Wiener process W , we would have for instance H = L 2 (R), while H has to be identified with the Sobolev space H 1 (R).

Let us recall a definition concerning variation norms which can be found e.g in [START_REF] Friz | Multidimensional dimensional processes seen as rough paths[END_REF]. For 0 ≤ s < t ≤ τ and a function f : [s, t] → R d , we set:

h 1-var;[s,t] = sup t i ∈Πst δf t i t i+1 ; Π st partition of [s, t] .
With this definition in hand, we can label the following property of elements of H for further use:

h 1-var;[s,t] ≤ (t -s) H h H. ( 10 
)
Next we give a representation of the Cameron-Martin space on a finite interval [0, τ ], namely H([0, τ ]), which can be found in [START_REF] Deucreusefond | Stochastic integration with respect to fractional Brownian motion[END_REF]. To this aim, let us recall the definition of fractional integrals of order α ∈ (0, 1] on a finite interval:

[I α 0+ f ] t = 1 Γ(α) t 0 (t -u) α-1 f u du, and [I α τ -f ] t = 1 Γ(α) τ t (u -t) α-1 f u du. ( 11 
)
With this additional definition in hand and assuming H > 1/2, a function h lies into the space H([0, τ ]) if it can be written as

h = Kτ f, with Kτ f = I 1 0+ [x κ I κ 0+ (x -κ f )] and f ∈ L 2 ([0, τ ]), (12) 
where we have set κ = H -1/2. Related to this representation, we have h

H([0,τ ]) = f L 2 ([0,τ ]
) whenever h = Kτ f . Notice that this space will play a prominent role in our estimates on finite intervals, associated to another space called H([0, τ ]) which pops out in Malliavin calculus computations (as mentioned above for H and H). Indeed, if h ∈ H([0, τ ]) admits the representation [START_REF] Garrido-Atienza | Discretization of stationary solutions of stochastic systems driven by fractional Brownian motion[END_REF], then for a smooth function g on [0, τ ] we have:

τ 0 g s dh s = τ 0 g s s κ [I κ 0+ (x -κ f )] s ds = τ 0 [K * τ g] s f s ds, (13) 
where we have set:

K * τ g = x -κ I τ -(x κ g
), and we recall that I τ -is defined by [START_REF] Gobet | LAN property for ergodic diffusions with discrete observations[END_REF]. and where the integral τ 0 g s dh s is understood in the Young sense. The closure of smooth functions under the inner product

K * τ g 1 , K * τ g 2 L 2 ([0,τ ])
is the space which is called H([0, τ ]). We shall resort to the following formulae (for which we refer e.g to [START_REF] Deucreusefond | Stochastic integration with respect to fractional Brownian motion[END_REF]) concerning H([0, τ ]) in the sequel:

g 2 H([0,τ ]) = c H [0,τ ] 2 g s 1 |s 1 -s 2 | 2H-2 g s 2 ds 1 ds 2 , g H([0,τ ]) ≤ c H τ κ g L 2 ([0,τ ]) . (14) 
The following relation between norms in H and W 1,2 will also be needed in the sequel. We include its proof here for sake of completeness, because we haven't been able to track it down in the literature. Proposition 2.2. Let H > 1/2 and τ > 0. Consider the space H([0, τ ]) defined by [START_REF] Garrido-Atienza | Discretization of stationary solutions of stochastic systems driven by fractional Brownian motion[END_REF] and the usual Sobolev space W 1,2 ([0, τ ]). Then for all h ∈ H([0, τ ]) we have:

h W 1,2 ([0,τ ]) ≤ c H τ H-1 2 h H. ( 15 
)
Proof. Start from the representation (12) for a typical element h ∈ H([0, τ ]), and recall that we have set κ = H -1/2. Then we have:

h W 1,2 ([0,τ ]) = sup τ 0 ℓ s ḣs ds ; ℓ L 2 ([0,τ ]) = 1 . Consider now a generic element ℓ ∈ L 2 ([0, τ ]) such that ℓ L 2 ([0,τ ]) = 1.
We resort to (13) in order to get:

τ 0 ℓ s ḣs ds ≤ K * τ ℓ L 2 ([0,τ ]) f L 2 ([0,τ ]) = K * τ ℓ L 2 ([0,τ ]) h H([0,τ ]) ,
where we recall that f comes from representation [START_REF] Garrido-Atienza | Discretization of stationary solutions of stochastic systems driven by fractional Brownian motion[END_REF]. Furthermore, invoking our bound ( 14), we end up with:

τ 0 ℓ s ḣs ds ≤ c H τ κ ℓ L 2 ([0,τ ]) h H([0,τ ]) = c H τ κ h H([0,τ ]) ,
which proves our claim.

2.1.2. Malliavin calculus tools. We refer to [START_REF] Nualart | The Malliavin Calculus and Related Topics[END_REF] and [START_REF] Üstünel | An introduction to analysis on Wiener space[END_REF] for basic definitions concerning Malliavin derivatives D and Sobolev spaces D k,p related to B. Our concentration arguments for the solution to (3) will heavily rely on the following Poincaré type inequality borrowed from [34, page 76].

Proposition 2.3. Let F : B → R be a functional in D 1,2 .
Then,

E [|F -E[F ]|] ≤ π 2 E [ DF H] , (16) 
where we recall that D denotes the Malliavin derivative.

Next we prepare the ground for our Girsanov transform by relating a general drift with respect to a fractional Brownian motion with its counterpart with respect to W (we continue in the one-dimensional setting for the sake of simplicity). This proposition is a slight extension of [START_REF] Hairer | Ergodicity of stochastic differential equations driven by fractional Brownian motion[END_REF]Lemma 4

.2]. Proposition 2.4. Let H ∈ (1/2, 1), b 1 , b 2 be two paths in I H-1/2 + (L 2 (R))
, and suppose that b j = K H w j for j = 1, 2, where K H is defined at Proposition 2.1. We also assume that for t ≥ 0, b 1 and b 2 are linked by the relation:

b 2 0 = b 1 0 , and b 2 t = b 1 t + t 0 g b,s ds,
for a function g b in L 2 (R). Then we also have:

w 2 t = w 1 t + t 0 g w,s ds, with g w = D H-1/2 + g b .
Proof. By [15, Lemma 4.2, relation (4.11a)] and [29, relation (4)],

g w,t = c H d dt t -∞ g b,u (t -u) H-1/2 du = c H D 1 + I H+1/2 + g b t = D H-1/2 + g b t ,
which finishes our proof.

The previous proposition yields a version of Girsanov's theorem in a fractional Brownian context, inspired by [START_REF] Moret | Onsager-Machlup functional for the fractional Brownian motion[END_REF] (see also [START_REF] Nualart | Regularization of differential equations by fractional noise[END_REF]): Proposition 2.5. Let B be a fractional Brownian motion and g be an adapted process in I

H-1/2 + (L 2 (R)). We set V t = t 0 g s ds and Q t = B t + V t for t ≥ 0. Then Q is a fractional Brownian motion on [0, τ ],
under the probability P defined by:

d P dP| [0,τ ] = e -L , where L = τ 0 [D H-1/2 + g] u dW u + 1 2 τ 0 [D H-1/2 + g] 2 u du, (17) 
provided D

H-1/2 + g satisfies Novikov's conditions on [0, τ ].
2.2. Generalized Riemann-Stieltjes Integrals. We are focusing here on the case of a Hurst parameter H > 1/2 for sake of simplicity, so that all the stochastic integrals with respect to B should be understood in the Young (or Riemann-Stieltjes) sense. In order to recall the definition of this integral, we set

f ∞;[a,b] = sup t∈[a,b] |f (t)|, |f | λ;[a,b] = sup s,t∈[a,b] |f (t) -f (s)| |t -s| λ
where f : R → R n and λ ∈ (0, 1). We also recall the classical definition of Hölder-continuous functions:

C λ ([a, b]; R n ) = f : [a, b] → R n ; f ∞;[a,b] + |f | λ;[a,b] < ∞ . Now, let f ∈ C λ ([a, b]; R) and g ∈ C µ ([a, b]; R) with λ + µ > 1.
Then it is well known that the Riemann-Stieltjes integral b a f s dg s exists, and can be expressed as a limit of Riemann sums.

In the sequel, the only property on Young's integral we shall use is the classical chain rule for changes of variables. Indeed, let f ∈ C λ ([a, b]; R) with λ > 1/2 and F ∈ C 1 (R; R). Then we have: In addition, exploiting the integrability properties of the stationary fractional Ornstein-Uhlenbeck process, the following uniform estimates hold true. They are shown with more details in [START_REF] Garrido-Atienza | Discretization of stationary solutions of stochastic systems driven by fractional Brownian motion[END_REF], and are obtained by comparing Y with the solution to the equation dU t = -U t dt + dB t (much in the same way as in the next section 2.4). Proposition 2.7. Assume Hypothesis 1.3 holds true and let Y be the solution to equation (3). Then for any θ ∈ Θ and p ≥ 1 there exist constants c p , k p > 0 such that

F (f y ) -F (f a ) = y a F ′ (f s ) df s , y ∈ [a, b]. (18) 2.3 
E [|Y t | p ] ≤ c p ,
and

E [|δY st | p ] ≤ k p |t -s| pH ,
for all s, t ≥ 0, where we recall that we have set δY st = Y t -Y s as mentioned in Notation 1.8.

Let us now state a pathwise bound on the increments of Y , where we use a similar idea as in [START_REF] Kloeden | The pathwise convergence of approximation schemes for stochastic differential equations[END_REF], in order to translate the moment estimates into pathwise bounds. Then for all ε ∈ (0, H) there exists a random variable Z ε ∈ ∩ p≥1 L p (Ω) such that almost surely we have:

|Y t | ≤ Z ε (1 + t) 2ε , and |δY st | ≤ Z ε (1 + t) 2ε |t -s| H-ε , (19) 
uniformly for 0 ≤ s ≤ t.

Proof. We focus on the bound for δY st , the estimate on |Y t | being shown in the same manner. Set γ = Hε and consider n ≥ 1. Thanks to Garsia's lemma (see e.g. [START_REF] Garcia | A real variable lemma and the continuity of paths of some Gaussian processes[END_REF]) and recalling our Notation 1.8, for all s, t ∈ [0, n] we have |δY st | N γ,p,n |t -s| γ , where p ≥ 1 and N γ,p,n is defined by:

N γ,p,n ≡ n 0 n 0 |δY uv | p |v -u| γp+2 dudv 1 p .
Furthermore, owing to Proposition 2.7 we immediately get:

E 1/p N p γ,p,n n ε , under the constraint p ≥ ε -1 . Set now Z ε = sup n∈N |Nγ,p,n| n 2ε .
Then for all q > ε -1 we have:

E [Z q ε ] = E sup n∈N |N γ,p,n | q n 2εq ≤ ∞ n=1 E [|N γ,p,n | q ] n 2εq ∞ n=1 1 n εq < ∞, (20) 
namely we have found Z ε ∈ ∩ p≥ε -1 L p (Ω). Obviously this also yields Z ε ∈ ∩ p≥1 L p (Ω). Finally, replace n ≥ 1 by [t] + 2 to obtain our pathwise bound [START_REF] Kloeden | The pathwise convergence of approximation schemes for stochastic differential equations[END_REF].

Let h be a generic element of H (this space being defined by ( 9)), and set Y h for the solution to our equation (3) driven by B + h. We shall need an extension of the previous proposition to Y h , whose proof is left to the reader since it follows along the same lines as Proposition 2.8. Proposition 2.9. For h ∈ H and θ ∈ Θ, let Y h be the solution to:

Y h t = y 0 + t 0 b(Y h s ; θ) ds + d j=1 σ j B j t + h j t , t ∈ [0, τ ]. (21) 
Under the same assumptions as for Proposition 2.7, for all ε ∈ (0, H) there exists a random variable Z ε ∈ ∩ p≥1 L p (Ω) such that almost surely we have:

|δY h st | ≤ Z ε (1 + t) 2ε (1 + h H) |t -s| H-ε , (22) 
uniformly for 0 ≤ s ≤ t.

We next show that our Girsanov type theorem 2.5 can be applied to the solution to (3).

Proposition 2.10. Assume Hypothesis 1.3 and let Y be the solution to (3), for a given θ ∈ Θ. Consider the d-dimensional process Q t given by:

Q t = t 0 σ -1 b(Y s ; θ) ds + B t .
Then Q is a d-dimensional fractional Brownian motion under the probability Pθ defined by

d Pθ dP θ | [0,τ ] = e -L , with L = τ 0 σ -1 [D H-1/2 + b(Y ; θ)] u , dW u + 1 2 τ 0 |σ -1 [D H-1/2 + b(Y ; θ)] u | 2 du. (23) 
Proof. We first need to show that D H-1/2 + b(Y ; θ) is well defined on [0, τ ], which follows since the function u → b(Y u ; θ) is (Hε)-Hölder, and thus (H -1/2)-Hölder.

Second, we need to verify Novikov's condition (see [9, Theorem 1.1]), that is, that there exists λ > 0 such that

sup t∈[0,τ ] E θ exp λ t 0 |σ -1 [D H-1/2 + b(Y ; θ)] s | 2 ds < ∞. (24) 
Towards this aim, we extend the definition of Y to R -by setting Y t = y 0 for all t ≤ 0. Then,

|σ -1 [D H-1/2 + b(Y )] s | = c H R + σ -1 (b(Y s ; θ) -b(Y s-r ; θ)) r H+1/2 dr ≤ c H (A 1 + A 2 ),
where

A 1 = s 0 σ -1 (b(Y s ; θ) -b(Y s-r ; θ)) r H+1/2 dr and A 2 = ∞ s σ -1 (b(Y s ; θ) -b(y 0 ; θ)) r H+1/2 dr .
Using the mean value theorem and the uniform boundedness of ∂ x b, the second term is easily bounded as:

A 2 ≤ c H |Y s -y 0 | s H-1/2
. Similarly, we get that for all 0 < ε < 1 2 ,

A 1 ≤ c sup 0<r≤s |Y s -Y s-r | r H-ε s 0 1 r 1 2 +ε dr = c H s 1 2 -ε sup 0<r≤s |Y s -Y s-r | r H-ε
Then, proceeding as in [START_REF] Nualart | Regularization of differential equations by fractional noise[END_REF] (where Fernique's theorem is invoked), we get the desired result.

Contraction properties of the SDE.

The inward Hypothesis 1.3 for the function b yields some contraction properties for the solution to equation ( 3), which will be useful for our purposes. We summarize some of them in this section. Let us start by giving a result quantifying the way two solutions starting from different initial conditions are getting close as t goes to ∞. Proposition 2.11. Assume Hypothesis (1.3). Let X be the solution to equation (3) starting from initial condition x, and Y the solution to the same equation starting from initial condition y. Then we have:

X t -Y t ≤ x -y e -αt , (25) 
where the constant α is introduced in Hypothesis 1.3.

Proof. Recall that we have assumed:

b(x; θ) -b(y; θ), x -y ≤ -α|x -y| 2 .
Now it is readily checked that the difference X -Y satisfies

X t -Y t = (x -y) + t 0 [b(X s ; θ) -b(Y s ; θ)] ds, t ≥ 0.
Applying the change of variable formula in the Young setting [START_REF] Kleptsyna | Statistical analysis of the fractional Ornstein-Uhlenbeck type process[END_REF], we thus get:

|X t -Y t | 2 = |x -y| 2 + 2 t 0 b(X s ; θ) -b(Y s ; θ), X s -Y s ds ≤ |x -y| 2 -2α t 0 |X s -Y s | 2 ds.
Our claim thus follows by a direct application of Gronwall's lemma.

The previous proposition can be enhanced in order to get a bound on increments for X -Y .

Proposition 2.12. Under the same assumptions as in Proposition 2.11, the following inequality holds true for 0 ≤ u ≤ v < ∞:

δX uv -δY uv ≤ c x -y e -αu |u -v|, (26) 
where the constant α is introduced in Hypothesis 1.3.

Proof. The same computations as in the proof of Proposition 2.11 show that

δX uv -δY uv = v u [b(X s ; θ) -b(Y s ; θ)] ds.
We then use the mean value theorem and the uniform bound on ∂ x b, together with inequality [START_REF] Mandelbrot | Fractional Brownian motions, fractional noises and applications[END_REF], which yields our result.

We now study the contraction properties of the map h → Y h for h ∈ H.

Proposition 2.13. Assume Hypothesis 1.3. Let h be an element of H and Y, Y h be solutions to the system:

Y t = y 0 + t 0 b(Y s ; θ) ds + d j=1 σ j B j t , and 
Y h t = y 0 + t 0 b(Y h s ; θ) ds + d j=1 σ j B j t + h j t . ( 27 
)
Then the difference Y h -Y satisfies:

|Y h t -Y t | ≤ c exp - α t 2 h H, ( 28 
)
uniformly in t ∈ R + .
Proof. Consider s ≤ t and proceed again as for the proof of Proposition 2.11 in order to get:

|Y h s -Y s | 2 ≤ -2α s 0 |Y h r -Y r | 2 dr + d j=1 t 0 Y h r -Y r , σ j dh j r ,
and thus, applying Cauchy-Schwarz inequality we end up with:

|Y h s -Y s | 2 ≤ -2α s 0 |Y h r -Y r | 2 dr + d j=1 |σ j | h j W 1,2 ([0,t]) s 0 |Y h r -Y r | 2 ds 1/2 . Now recall that ab ≤ a 2 2ε 2 + ε 2 b 2 2
for a, b, ε > 0. Applying this inequality to ε 2 = 2α and resorting to Proposition 2.2, we obtain:

|Y h s -Y s | 2 ≤ -α s 0 |Y h r -Y r | 2 dr + d j=1 |σ j | 2 h 2 H t 2H-1 4α .
The last inequality being valid uniformly in s ≤ t, our claim is thus easily deduced by a direct application of Gronwall's lemma plus the fact that t 2H-1 exp(-αt/2) is bounded over the time interval R + .

We now push forward our analysis to include the increments of processes.

Proposition 2.14. Assume Hypothesis 1.3. Let h be an element of H and Y h , Y be solutions to the system [START_REF] Neuenkirch | A least square-type procedure for parameter estimation in stochastic differential equations with additive fractional noise[END_REF]. Then for 0 ≤ u ≤ v, the difference Y h -Y satisfies:

|δY h uv -δY uv | ≤ c 1 exp - α u 2 h H (v -u) H/2 .
Proof. Like in the proof of Proposition 2.13, we start from the inequality:

|δY h uv -δY uv | 2 ≤ -2α v u |Y h s -Y s | 2 ds + d j=1 v u Y h s -Y s , σ j dh j s ,
and since the first term on the right hand side above is negative, we get:

|δY h uv -δY uv | 2 ≤ d j=1 v u Y h s -Y s , σ j dh j s ≤ sup s∈[u,v] |Y h s -Y s | d j=1 |σ j | h j 1-var,[u,v] .
We now plug relations ( 10) and ( 28) in order to get:

|δY h uv -δY uv | 2 ≤ c 1 exp (-α u) h 2 H(v -u) H .
As a consequence of Propositions 2.13 and 2.14, the following bounds for the H-norm of the Malliavin derivative of the process and its increments hold.

Corollary 2.15. Assume Hypothesis 1.3. Let Y t be the solution to the system (3). Then, for all t > 0, Y t belongs to D 1,2 , and the Malliavin derivative satisfies that

DY t H ≤ c exp - α t 2 , ( 29 
)
uniformly in t ∈ R + . Moreover, for 0 ≤ u ≤ v, D(δY uv ) H ≤ c 1 exp - α u 2 (v -u) H/2 , ( 30 
)
uniformly in u and v.

Proof. The fact that Y t belongs to D [START_REF] Nualart | Regularization of differential equations by fractional noise[END_REF]. Finally, ( 30) is proved similarly using Proposition 2.14.

Ergodic Properties of the SDE.

We recall here some basic facts about the limiting behavior of equation ( 3), mainly taken from [START_REF] Garrido-Atienza | Discretization of stationary solutions of stochastic systems driven by fractional Brownian motion[END_REF]. We still work on the Wiener space (B, H, P) introduced in Section 2.1.1, and seen as the canonical probability space. Together with the shift operators θ t : Ω → Ω defined by

θ t ω(•) = ω(• + t) -ω(t), t ∈ R, ω ∈ Ω,
our probability space defines an ergodic metric dynamical system, see e.g. [START_REF] Garrido-Atienza | Ergodicity of the infinite-dimensional fractional Brownian motion[END_REF]. In particular, the measure P is invariant to the shift operators θ t , i.e. the shifted process (B s (θ t •)) s∈R is still an m-dimensional fractional Brownian motion and for any integrable random variable

F : Ω → R we have lim τ →∞ 1 τ τ 0 F (θ t (ω)) dt = E[F ],
for P-almost all ω ∈ Ω.

Under our coercive hypothesis on the drift coefficient of equation (3), the following limit theorem is borrowed from [START_REF] Garrido-Atienza | Discretization of stationary solutions of stochastic systems driven by fractional Brownian motion[END_REF]Section 4]. Notice that its proof is based on contraction properties for the stochastic equation. It is worth observing that the convergence of Y towards Y can also be quantified in Hölder norm, like in Section 2.4: Proposition 2.17. Let α ∈ (0, H). There exists a random variable Z admitting moments of any order and a constant c > 0 such that for all 0 ≤ s ≤ t we have:

Y t -Y t ≤ Z e -cs and δ Y -Y st ≤ Z e -cs (t -s) α .
Proof. The proof is done along the same lines as for relation [START_REF] Moret | Onsager-Machlup functional for the fractional Brownian motion[END_REF], and details are left to the patient reader for sake of conciseness.

We now recall, as in [START_REF] Neuenkirch | A least square-type procedure for parameter estimation in stochastic differential equations with additive fractional noise[END_REF], that the integrability of Y implies the ergodicity of equation ( 3): Proposition 2.18. Assume Hypothesis 1.3 holds true. Then for any θ ∈ Θ and any f ∈

C 1 (R d ; R) such that |f (x)| + |∂ x f (x)| ≤ c 1 + |x| N , x ∈ R d ,
for some c > 0, N ∈ N, we have

lim τ →∞ 1 τ τ 0 f (Y t ) dt = E[f (Y )], P-a.s. (31) 
3. Proof of Theorem 1.7

We can now gather the information we have obtained on the system (3) in order to complete the proof of Theorem 1.7. This will be divided in different steps.

Step 1. The first step of the proof consists in applying Girsanov's theorem. Namely, fix θ ∈ Θ, and set θ τ = θ + τ -1/2 u. Then Proposition 2.10 implies that

log dP τ θτ dP τ θ = - τ 0 σ -1 ([D H-1/2 + b(Y ; θ τ )] t -[D H-1/2 + b(Y ; θ)] t ), dW t - 1 2 τ 0 |σ -1 ([D H-1/2 + b(Y ; θ τ )] t -[D H-1/2 + b(Y ; θ)] t )| 2 dt. (32) 
Step 2. We next linearize relation [START_REF] Shiryaev | Probability. 2nd ed[END_REF]. To this aim, recall that b is defined at Hypothesis 1.3 as b = ∂ θ b. We add and substract the d-dimensional vector

[D H-1/2 + b(Y ; θ)] t (θ τ -θ) = 1 √ τ [D H-1/2 + b(Y ; θ)] t u,
where we abbreviate [D

H-1/2 + b(Y ; θ)] t , u R q into [D H-1/2 +
b(Y ; θ)] t u for notational sake. This easily yields:

log dP τ θτ dP τ θ = I 1 -I 2 - 1 2 I 3 -I 4 , (33) 
where

I 1 = 1 √ τ τ 0 σ -1 [D H-1/2 + b(Y ; θ)] t u, dW t - 1 2τ τ 0 |σ -1 [D H-1/2 + b(Y ; θ)] t u| 2 dt I 2 = τ 0 σ -1 ([D H-1/2 + b(Y ; θ τ )] t -[D H-1/2 + b(Y ; θ)] t -[D H-1/2 + b(Y ; θ)] t (θ τ -θ)), dW t I 3 = τ 0 |σ -1 ([D H-1/2 + b(Y ; θ τ )] t -[D H-1/2 + b(Y ; θ)] t -[D H-1/2 + b(Y ; θ)] t (θ τ -θ))| 2 dt
and

I 4 = τ 0 σ -1 ([D H-1/2 + b(Y ; θ τ )] t -[D H-1/2 + b(Y ; θ)] t -[D H-1/2 + b(Y ; θ)] t (θ τ -θ)), σ -1 [D H-1/2 + b(Y ; θ)] t (θ τ -θ) dt.
Step 3. In this step we set the ground for the identification of the main contribution to our log-likelihood. That is, we wish to show that as τ → ∞ we have:

1 τ τ 0 |σ -1 [D H-1/2 + b(Y ; θ)] t u| 2 dt P θ -→ u T Γ(θ)u, (34) 
where Γ(θ) is given by [START_REF] Chronopoulou | On inference for fractional differential equations[END_REF]. Observe that (34) together with the multivariate central limit theorem for Brownian martingales (cf. [START_REF] Kutoyants | Statistical Inference for Ergodic Diffusion Processes[END_REF]Theorem 1.21]), imply that I 1 is the term that contributes to the limit in [START_REF] Crauel | Random attractors[END_REF]. In Steps 7 and 8 below we will show that I 2 , I 3 and I 4 are negligible terms with respect to this main contribution.

In order to prove [START_REF] Üstünel | An introduction to analysis on Wiener space[END_REF], according to the expression of D H-1/2 + , we thus have to find an equivalent for the quantity

J τ (Y ) = τ 0 σ -1 N t (Y ) 2 dt, with N t (Y ) = R + ( b(Y t ; θ) -b(Y t-r ; θ))u r H+1/2 dr. (35) 
Furthermore, in order to define N t (Y ) properly, we have to extend the definition of Y to R - by setting Y t = y 0 for all t ≤ 0. Next we decompose N t (Y ) into N 1,t (Y ) + N 2,t (Y ), where:

N 1,t (Y ) = t 0 ( b(Y t ; θ) -b(Y t-r ; θ))u r H+1/2 dr, N 2,t (Y ) = ∞ t ( b(Y t ; θ) -b(y 0 ; θ))u r H+1/2 dr. ( 36 
)
We shall bound those terms separately.

Step 4. This step is devoted to reduce our computations to an evaluation for the expected value. Specifically, we shall prove that:

lim τ →∞ 1 τ E θ [|J τ -E θ [J τ ]|] = 0, (37) 
where we write J τ instead of J τ (Y ) in order to alleviate notations for the remainder of this step. Observe that owing to the Poincaré type inequality [START_REF] Hu | Parameter estimation for fractional Ornstein-Uhlenbeck processes[END_REF], relation (37) can be reduced to show that:

lim τ →∞ E θ [ DJ τ H] τ = 0, (38) 
which is what we proceed to do now. Indeed, by the chain rule we have:

DJ τ = 2 τ 0 σ -1 N t , D σ -1 N t dt,
where we have used the notation N t for N t (Y ). Therefore, by Cauchy-Schwarz' inequality, we obtain:

DJ τ H τ 0 |σ -1 N t | D σ -1 N t H dt.
Thus, another use of Cauchy-Schwarz' inequality yields:

E θ [ DJ τ H] τ E 1/2 θ [J τ ] E 1/2 θ D (σ -1 N • ) H 2 L 2 ([0,τ ])
τ .

We shall prove (see the forthcoming inequality (46)) that E θ [J τ ] is of order τ . Hence:

E θ [ DJ τ H] τ E 1/2 θ σ -1 D (N • ) H 2 L 2 ([0,τ ]) τ 1/2 E 1/2 θ D (N • ) H 2 L 2 ([0,τ ]) τ 1/2 . ( 39 
)
Let us now compute DN t . We can decompose N t as in (36) and recall that y 0 is considered as a constant, in order to get DN t = DN 1,t + DN 2,t , with:

DN 1,t = t 0 ( ∂ x b(Y t ; θ), DY t -∂ x b(Y t-r ; θ), DY t-r )u r H+1/2 dr DN 2,t = ∞ t ∂ x b(Y t ; θ), DY t u r H+1/2 dr. (40) 
We treat again those two terms separately.

The term DN 2,t in (40) can be explicitly computed as t 1/2-H ∂ x b(Y t ; θ), DY t u. Thus, according to Hypothesis 1.3(iii), we get:

E 1/2 θ D (N 2,• ) H 2 L 2 ([0,τ ]) E 1/2 θ τ 0 DY t 2 H t 1-2H dt .
By Corollary 2.15, DY t H is uniformly bounded in t > 0. This yields:

E 1/2 θ D (N 2,• ) H 2 L 2 ([0,τ ]) τ 1/2 τ 1-H τ 1/2 = 1 τ H-1/2
, which tends to zero as τ → ∞ since H > 1 2 . We next treat the term DN 1,t in (40). Observe that it can be expressed as:

t 0 ( ∂ x b(Y t ; θ), DY t -DY t-r -∂ x b(Y t-r ; θ) -∂ x b(Y t ; θ), DY t-r )u r H+1/2 dr.
Therefore, by the mean value theorem and Hypothesis 1.3(iii), we get that

DN 1,t H t 0 DY t -DY t-r H r H+1/2 dr + t 0 |Y t-r -Y t | DY t-r H r H+1/2
dr.

We now appeal to Proposition 2.8 and Corollary 2.15, to obtain that for all ε ∈ (0, H),

D (N 1,• ) H 2 L 2 ([0,τ ]) τ 0 dt t 0 exp (-c(t -r)) r (H+1)/2 dr 2 + Z 2 ε τ 0 dt (1 + t) 4ε t 0 exp (-c(t -r)) r 1/2+ε dr 2 , (41) 
where Z ε is a random variable with finite moments of all orders. The integrals in the right hand side above can be bounded as follows: for β ∈ (0, 1) and a generic constant c > 0 which can change from line to line, observe that:

I β,t ≡ t 0 exp (-c(t -r)) r β dr = t/2 0 exp (-c(t -r)) r β dr + t t/2 exp (-c(t -r)) r β dr exp (-cαt) t 1-β + t -β t -β ,
uniformly in t. This bound is useful for t ≥ 1. When t ≤ 1, we can bound I β,t by a constant c. Therefore, I β,t can be uniformly bounded by c(1+t) -β . Reporting this information into (41), we obtain that for τ ≥ 1,

DN 1,• H 2 L 2 ([0,τ ]) τ 0 1 (1 + t) H+1 dt + Z 2 ε τ 0 (1 + t) 4ε (1 + t) 1+2ε dt Z 2 ε τ 2ε .
Thus, for τ ≥ 1,

E 1/2 θ DN 1,• H 2 L 2 ([0,τ ]) τ 1/2 τ ε-1/2 ,
which tends to zero as τ → ∞ as long as we choose ε < 1 2 . Gathering our bounds on DN 1 , DN 2 and plugging them into (39), the proof of ( 38) is now completed. As a consequence of this inequality together with the Poincaré type bound [START_REF] Hu | Parameter estimation for fractional Ornstein-Uhlenbeck processes[END_REF], we get that:

lim τ →∞ E θ J τ -E θ [J τ ] τ = 0.
This allows us to be reduced to an evaluation of E θ [J τ ] only in the sequel.

Step Step 5a. The term N 2,t (Y ) is easily estimated: it is readily checked that

N 2,t (Y ) = c H ( b(Y t ; θ) -b(y 0 ; θ))u t H-1/2 .
Invoking Proposition 2.7 as well as the linear growth for b, we get lim t→∞ N 2,t (Y ) = 0, almost surely and in any L p (Ω) for p ≥ 1.

Step 5b. Let us compare N 1,t (Y ) and N 1,t (Y ). One can write:

N 1,t (Y ) -N 1,t (Y ) = t 0 δ b(Y ; θ) -b(Y ; θ) t-r,t u r H+1/2 dr ≡ N 11,t + N 12,t ,
where we have set:

N 11,t = t/2 0 δ b(Y ; θ) -b(Y ; θ) t-r,t u r H+1/2 dr, N 12,t = t t/2 δ b(Y ; θ) -b(Y ; θ) t-r,t u r H+1/2 dr.
We now show that those two terms give raise to a negligible (that is o(1) in terms of t) contribution.

The term N 11,t involves some increments of Y -Y , and should thus be handled thanks to Proposition 2.17. However, due to the composition with the nonlinearity b, we have to resort to a special treatment concerning rectangular increments. To this aim, let us define a path a : [0, 1] 2 → R of the following form:

a(λ, µ) = Y t-r + λ(Y t -Y t-r ) + µ(Y t-r -Y t-r ) + λµ ∆Y t,r ,
where we have set ∆Y t-r,t = Y t -Y t-r -Y t + Y t-r . We also write A for the composition of a with the non linearity b, that is

A(λ, µ) = b(a(λ, µ)). It is then readily checked that: b(Y t ) -b(Y t-r ) -b(Y t ) + b(Y t-r ) = A(1, 1) -A(1, 0) -A(0, 1) + A(0, 0) = [0,1] 2 ∂ 2 λµ A(λ, µ) dλdµ. (42) 
Furthermore, thanks to the fact that the first and second order derivative of b are bounded (see Hypothesis 1.3), we get that:

∂ 2 λµ A(λ, µ) |∂ λ a(λ, µ) ∂ µ a(λ, µ)| + ∂ 2 λµ a(λ, µ) |δY t-r,t | + ∆Y t-r,t Y t -Y t + ∆Y t-r,t + ∆Y t-r,t |δY t-r,t | + ∆Y t-r,t Y t -Y t + Y t-r -Y t-r + ∆Y t-r,t
We now bound δY t-r,t thanks to Proposition 2.8 and Y t -Y t , Y t-r -Y t-r and ∆Y t-r,t according to Proposition 2.17. Gathering all those estimates we get that for all α < H and ε < H, the following holds true:

∂ 2 λµ A(λ, µ) Z (1 + t) 2ε r H-ε + Z e -c(t-r) r α Z e -c(t-r) + Ze -c(t-r) r α . (43) 
Therefore, reporting (43) in ( 42) and then in the definition of N 11,t , and taking α > H -1 2 and ε < 1 2 , we get that:

N 11,t Z t/2 0 e -c(t-r) r H+1/2-α dr + Z(1 + t) 2ε t/2 0 e -c(t-r) r 1/2+ε dr Ze -ct t 1/2-H+α + Z(1 + t) 2ε e -ct t 1/2-ε .
It is now readily checked that lim t→∞ N 11,t = 0 almost surely with uniform L p (Ω) bounds, and thus yields a negligible contribution. The term N 12,t is bounded in the same way for t ≥ 1: choosing α > H -1/2 and ε < 1 2 , we have:

N 12,t Z t t/2 e -c(t-r) r H+1/2-α dr + Z(1 + t) 2ε t t/2 e -c(t-r) r 1/2+ε dr Z t H+1/2-α t t/2 e -c(t-r) dr + Z(1 + t) 2ε t 1/2+ε t t/2
e -c(t-r) dr Z t H+1/2-α + Z t 1/2-ε , which gives another negligible contribution.

Step 5c. We should also bound the term N 2,t (Y ). Notice that Y is not constant on R -, so that:

N 2,t (Y ) = ∞ t ( b(Y t ; θ) -b(Y t-r ; θ))u r H+1/2 dr.
We shall simply bound this quantity as:

|N 2,t (Y )| ≤ |u| ∞ t | b(Y t ; θ)| + | b(Y t-r ; θ)| r H+1/2 dr. (44) 
In addition, Proposition 2.8 can be shown for Y exactly in the same way as for Y . Therefore, for any ε > 0 we get:

| b(Y t ; θ)| + | b(Y t-r ; θ)| ≤ Z ε 1 + |t| 2ε + |r| 2ε ,
where Z ε is a random variable admitting moments of all order. Plugging this bound into (44), we get a bound of the form |N 2,t (Y )| ≤ Z ε t -(H-1/2-2ε) for an arbitrarily small constant ε.

Summarizing Steps 5a to 5c, we have found that N t (Y ) -N t (Y ) is of order t -η Z with η > 0 and Z ∈ ∩ p≥1 L p (Ω). Hence J τ (Y ) -J τ (Y ) is of order τ 1-2η , which is a negligible term on the scale τ . This allows us to consider the limiting behavior of J τ (Y ) instead of J τ (Y ), which is what we do in the sequel of the proof.

Step 6. We are now reduced to the analysis of the quantity E θ [J τ (Y )], which is equal to u T Ψu where: Furthermore, we have already observed that Proposition 2.8 is also satisfied by Y . Hence, thanks to the fact that b is a Lipschitz function in x, the following bound holds true:

Ψ =
|E θ [( b(Y 0 ; θ) -b(Y r 1 ; θ)) T (σ -1 ) T σ -1 ( b(Y 0 ; θ) -b(Y r 2 ; θ))]| r H 1 ∧ 1 r H 2 ∧ 1 .
Plugging this information into (45), we obtain that Ψ is a convergent integral and:

E θ [J τ (Y )] = τ u T Γ(θ)u, (46) 
where Γ(θ) is the convergent integral given by [START_REF] Chronopoulou | On inference for fractional differential equations[END_REF]. In particular, we have:

lim τ →∞ E θ [J τ (Y )] τ = u T Γ(θ)u.
Summarizing our considerations up to now, we have proved [START_REF] Üstünel | An introduction to analysis on Wiener space[END_REF]. Hence I 1 in (33) converges to the term u T N (0, Γ(θ)) -1 2 u T Γ(θ)u in (5).

Step 7. We next show that the term I 3 in (33) converges to zero in P θ -probability as τ → ∞. For this, set g t (θ) = σ -1 [D H-1/2 + b(Y ; θ)] t . One can recast I 3 into:

I 3 = τ 0 |g t (θ τ ) -g t (θ) -∂ θ g t (θ)(θ τ -θ)| 2 dt,
and we also recall that θ τ -θ = τ -1/2 u. In addition, a simple application of Taylor's expansion for multivariate function yields the existence of a λ ∈ (0, 1) such that: g t (θ τ )g t (θ) = ∂ θ g t (ξ λ )(θ τθ), where ξ λ = θ + λ(θ τθ).

Notice that under our standing Hypothesis 1.3 we have ∂ θ g t (ξ λ ) = σ -1 [D H-1/2 + b(Y ; ξ λ )] t . We thus get: Thus, again by Proposition 2.7, the L 1 (Ω)-norm of the term 1 Step 8. We finally show that I 2 and I 4 are also negligible terms. Since I 3 is the quadratic variation of the martingale I 2 , this implies that I 2 converges to zero in P θ -probability as τ → ∞. On the other hand, applying Cauchy-Schwarz inequality to I 4 , we get that

I 3 = 1 τ τ 0 |σ -1 M t (Y )
|I 4 | ≤ 1 τ τ 0 |σ -1 [D H-1/2 + b(Y ; θ)] t u| 2 dt 1/2 × I 1/2 3 ,
Thus, by the results in Steps 3 and 4, we obtain that I 4 converges to zero in P θ -probability as τ → ∞, which completes the proof of the theorem.

i 1 .

 1 ..ip x f for ∂ p f ∂x i 1 ...∂x ip . Analogously, we use the notation ∂ i 1 ...ip θ f for ∂ p f ∂θ i 1 .

.Proposition 2 . 6 .

 26 Basic properties of solutions to SDEs. We first state the existence and uniqueness result for equation (3) borrowed from [15, Lemma 3.9]. Under Hypothesis (1.3), there exists a unique continuous pathwise solution to equation (3) on any arbitrary interval [0, τ ]. Moreover the map Y : (y 0 , B) ∈ R d × C([0, τ ]; R d ) → C([0, τ ]; R d ) is locally Lipschitz continuous.

Proposition 2 . 8 .

 28 Assume Hypothesis 1.3 holds true and let Y be the solution to equation (3).

Theorem 2 . 16 .

 216 Let Hypothesis 1.3 hold, and consider the unique solution Y to equation (3) as given in Proposition 2.6. Then there exists a random variable Y : Ω → R d such that lim t→∞ |Y t (ω) -Y (θ t ω)| = 0 for P-almost all ω ∈ Ω. Moreover, we have E[|Y | p ] < ∞ for all p ≥ 1.

2 +dr 1

 21 E θ [( b(Y t ; θ) -b(Y t-r 1 ; θ)) T (σ -1 ) T σ -1 ( b(Y t ; θ) -b(Y t-r 2 ; θ)dr 2 . (45)By stationarity of Y , the expected value does not depend on t:E θ [( b(Y t ; θ) -b(Y t-r 1 ; θ)) T (σ -1 ) T σ -1 ( b(Y t ; θ) -b(Y t-r 2 ; θ))] = E θ [( b(Y 0 ; θ) -b(Y r 1 ; θ)) T (σ -1 ) T σ -1 ( b(Y 0 ; θ) -b(Y r 2 ; θ))].

τ τ 0 dr 1 dr 2 dt = c H τ 1+α τ 0 t 1 -

 001 |σ -1 M 1,t (Y )u| 2 dt is bounded by c 2Hα dt = c H τ α(2H+1)-1 ,which converges to zero as τ → ∞ since α > 1 2H+1 .

  5:We now show that one can approximate the quantities related to Y by quantities related to the stationary solution Y . Namely, we denote by J τ (Y ) the same quantity as J τ (Y ) (see[START_REF] Xiao | Parameter estimation for fractional Ornstein-Uhlenbeck processes at discrete observation[END_REF]), with Y replaced by Y , and we set N t (Y ), N 1,t (Y ), N 2,t (Y ) accordingly. Observe that, with[START_REF] Üstünel | An introduction to analysis on Wiener space[END_REF] in mind, we have to compare N t (Y ) with N t (Y ) up to some O(1) terms. We will achieve this aim thanks to our decomposition (36).

  u| 2 dt, where M t (Y ) = Recall that we have extended the definition of Y to R -by setting Y t = y 0 for all t ≤ 0. Thus, using Hypothesis 1.3, we obtain thatM 2,t (Y )u| 2 dt τ -2 |Y t | 2 ) t 1-2H dt.Thus, by Proposition 2.7, the L 1 (Ω)-norm of this term is bounded by c H τ -2H . Hence, this term converges in P θ -probability to zero as τ → ∞. Y ;ξ λ ) -b(Y ; θ)] t-r,t ) α (δ[ b(Y ; ξ λ ) -b(Y ; θ)] t-r,t ) 1-α r 1/2+H dr. |Y t | α + |Y t-r | α ) |Y t -Y t-r | 1-α r H(1-α) r 1/2+αH dr |Y t | α + |Y t-r 1 | α ) |Y t -Y t-r 1 | 1-α |Y t | α + |Y t-r 2 | α ) |Y t -Y t-r 2 | 1-α

	τ -1 (1 + On the other hand, fix α ∈ ( 1 τ 0 |σ -1 τ 0 1+2H , 1 2H ), and write M 1,t (Y ) = t 0 (δ[ b(Then, appealing to Hypothesis 1.3, we get that	
	|M 1,t (Y )| (1 + Therefore, 1 τ α/2 t 0				
	|M 1,t (Y )| 2 1 τ α t 0	0	t	(1 + r	H(1-α) 1	r	1/2+αH 1	(1 + r	H(1-α) 2	r	1/2+αH 2
								R +	δ[ b(Y ; ξ λ ) -b(Y ; θ)] t-r,t r 1/2+H	dr.

Next we decompose

M t (Y ) into M 1,t (Y ) + M 2,t (Y ), where M 1,t (Y ) = t 0 δ[ b(Y ; ξ λ ) -b(Y ; θ)] t-r,t r 1/2+H dr, M 2,t (Y ) = ∞ t δ[ b(Y ; ξ λ ) -b(Y ; θ)] t-r,t r 1/2+H dr.

dr 1 dr 2 .
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