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Estimation of Toeplitz covariance matrices in large
dimensional regime with application

to source detection
Julia Vinogradova, Romain Couillet, and Walid Hachem

Abstract—In this article, we derive concentration inequalities
for the spectral norm of two classical sample estimators of large
dimensional Toeplitz covariance matrices, demonstrating in par-
ticular their asymptotic almost sure consistence. The consistency
is then extended to the case where the aggregated matrix of
time samples is corrupted by a rank one (or more generally,
low rank) matrix. As an application of the latter, the problem
of source detection in the context of large dimensional sensor
networks within a temporally correlated noise environment is
studied. As opposed to standard procedures, this application is
performed online, i.e. without the need to possess a learning set
of pure noise samples.

Index Terms—Covariance matrix, concentration inequalities,
correlated noise, source detection.

I. INTRODUCTION

Let (vt)t∈Z be a complex circularly symmetric Gaussian
stationary process with zero mean and covariance function
(rk)k∈Z with rk = E[vt+kv

∗
t ] and rk → 0 as k → ∞.

We observe N independent copies of (vt)t∈Z over the time
window t ∈ {0, . . . , T − 1}, and stack the observations in
a matrix VT = [vn,t]

N−1,T−1
n,t=0 . This matrix can be written

as VT = WTR
1/2
T , where WT ∈ CN×T has independent

CN (0, 1) (standard circularly symmetric complex Gaussian)
entries and R1/2

T is any square root of the Hermitian nonneg-
ative definite Toeplitz T × T matrix

RT , [ri−j ]0≤i,j≤T−1 =


r0 r1 . . . rT−1

r−1
. . . . . .

...
...

. . . . . . r1

r1−T . . . r−1 r0

 .
A classical problem in signal processing is to estimate RT
from the observation of VT . With the growing importance
of multi-antenna array processing, there has recently been a
renewed interest for this estimation problem in the regime of
large system dimensions, i.e. for both N and T large.

At the core of the various estimation methods for RT
are the biased and unbiased estimates r̂bk,T and r̂uk,T for rk,
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respectively, defined by

r̂bk,T =
1

NT

N−1∑
n=0

T−1∑
t=0

vn,t+kv
∗
n,t10≤t+k≤T−1

r̂uk,T =
1

N(T − |k|)

N−1∑
n=0

T−1∑
t=0

vn,t+kv
∗
n,t10≤t+k≤T−1

where 1A is the indicator function on the set A. Depending
on the relative rate of growth of N and T , the matrices
R̂bT = [r̂bi−j,T ]0≤i,j≤T−1 and R̂uT = [r̂ui−j,T ]0≤i,j≤T−1 may
not satisfy ‖RT − R̂bT ‖

a.s.−→ 0 or ‖RT − R̂uT ‖
a.s.−→ 0. An

important drawback of the biased entry-wise estimate lies in its
inducing a general asymptotic bias in R̂bT ; as for the unbiased
entry-wise estimate, it may induce too much inaccuracy in
the top-right and bottom-left entries of R̂uT . The estimation
paradigm followed in the recent literature generally consists
instead in building banded or tapered versions of R̂bT or R̂uT
(i.e. by weighting down or discarding a certain number of
entries away from the diagonal), exploiting there the rate
of decrease of rk as k → ∞ [1], [2], [3], [4], [5], [6].
Such estimates use the fact that ‖RT − Rγ(T ),T ‖ → 0 with
Rγ,T = [[RT ]i,j1|i−j|≤γ ] for some well-chosen functions
γ(T ) (usually satisfying γ(T ) → ∞ and γ(T )/T → 0) and
restrict the study to the consistent estimation of Rγ(T ),T . The
aforementioned articles concentrate in particular on choices
of functions γ(T ) that ensure optimal rates of convergence of
‖RT − R̂γ(T ),T ‖ for the banded or tapered estimate R̂γ(T ),T .
These procedures, although theoretically optimal, however
suffer from several practical limitations. First, they assume
the a priori knowledge of the rate of decrease of rk (and
restrict these rates to specific classes). Then, even if this were
indeed known in practice, being asymptotic in nature, the
results do not provide explicit rules for selecting γ(T ) for
practical finite values of N and T . Finally, the operations of
banding and tapering do not guarantee the positive definiteness
of the resulting covariance estimate.

In the present article, we consider instead that the only
constraint about rk is

∑∞
k=−∞ |rk| < ∞ and estimate RT

from the standard (non-banded and non-tapered) estimates
R̂bT and R̂uT . The consistence of these estimates, in general
invalid, shall be enforced here by the choice N,T → ∞
with N/T → c ∈ (0,∞). This setting is more practical in
applications as long as both the finite values N and T are
sufficiently large and of similar order of magnitude. Another
context where a non banded Toeplitz rectification of the
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estimated covariance matrix leads to a consistent estimate in
the spectral norm is studied in [7].

Our specific contribution lies in the establishment of con-
centration inequalities for the random variables ‖RT − R̂bT ‖
and ‖RT − R̂uT ‖. It is shown specifically that, for all x > 0,
− logP[‖RT − R̂bT ‖ > x] = O(T ) and − logP[‖RT − R̂uT ‖ >
x] = O(T/ log T ). Aside from the consistence in norm, this
implies as a corollary that, as long as lim supT ‖R−1

T ‖ <∞,
for T large enough, R̂uT is positive definite with outstanding
probability (R̂bT is nonnegative definite by construction).

For application purposes, the results are then extended to
the case where VT is changed into VT + PT for a rank-one
matrix PT . Under some conditions on the right-eigenspaces
of PT , we show that the concentration inequalities hold
identically. The application is that of a single source detection
(modeled through PT ) by an array of N sensors embedded in
a temporally correlated noise (modeled by VT ). To proceed
to detection, RT is estimated from VT + PT as R̂bT or
R̂uT , which is used as a whitening matrix, before applying
a generalized likelihood ratio test (GLRT) procedure on the
whitened observation. Simulations corroborate the theoretical
consistence of the test.

The remainder of the article is organized as follows. The
concentration inequalities for both biased and unbiased esti-
mates are exposed in Section II. The generalization to the rank-
one perturbation model is presented in Section III and applied
in the practical context of source detection in Section IV.

Notations: The superscript (·)H denotes Hermitian trans-
pose, ‖X‖ stands for the spectral norm for a matrix and
Euclidean norm for a vector, and ‖ · ‖∞ is the sup norm
of a function. The notations N (a, σ2) and CN (a, σ2) rep-
resent the real and complex circular Gaussian distributions
with mean a and variance σ2. For x ∈ Cm, Dx =
diag(x) = diag(x0, . . . , xm−1) is the diagonal matrix having
on its diagonal the elements of the vector x. For x =
[x−(m−1), . . . , xm−1]T ∈ C2m+1, the matrix T (x) ∈ Cm×m
is the Toeplitz matrix built from x with entries [T (x)]i,j =
xj−i.

II. PERFORMANCE OF THE COVARIANCE MATRIX
ESTIMATORS

A. Model, assumptions, and results

Let (rk)k∈Z be a doubly infinite sequence of covariance
coefficients. For any T ∈ N, let RT = T (r−(T−1), . . . , rT−1),
a Hermitian nonnegative definite matrix. Given N = N(T ) >
0, consider the matrix model

VT = [vn,t]
N−1,T−1
n,t=0 = WTR

1/2
T (1)

where WT = [wn,t]
N−1,T−1
n,t=0 has independent CN (0, 1) en-

tries. It is clear that rk = E[vn,t+kv
∗
n,t] for any t, k, and

n ∈ {0, . . . , N − 1}.
In the following, we shall make the two assumptions below.

Assumption 1. The covariance coefficients rk are absolutely
summable and r0 6= 0.

With this assumption, the covariance function

Υ(λ) ,
∞∑

k=−∞

rke
−ıkλ, λ ∈ [0, 2π)

is continuous on the interval [0, 2π]. Since ‖RT ‖ ≤ ‖Υ‖∞
(see e.g. [8, Lemma 4.1]), Assumption 1 implies that
supT ‖RT ‖ <∞.

We assume the following asymptotic regime which will be
simply denoted as “T →∞”:

Assumption 2. T →∞ and N/T → c > 0.

Our objective is to study the performance of two estima-
tors of the covariance function frequently considered in the
literature. These estimators are defined as

r̂bk,T =
1

NT

N−1∑
n=0

T−1∑
t=0

vn,t+kv
∗
n,t10≤t+k≤T−1 (2)

r̂uk,T =
1

N(T − |k|)

N−1∑
n=0

T−1∑
t=0

vn,t+kv
∗
n,t10≤t+k≤T−1. (3)

Since Er̂bk,T = (1 − |k|/T )rk and Er̂uk,T = rk, the estimate
r̂bk,T is biased while r̂uk,T is unbiased. Let also

R̂bT , T
(
r̂b−(T−1),T , . . . , r̂

b
(T−1),T

)
(4)

R̂uT , T
(
r̂u−(T−1),T , . . . , r̂

u
(T−1),T

)
. (5)

A well known advantage of R̂bT over R̂uT as an estimate of
RT is its structural nonnegative definiteness. In this section,
results on the spectral behavior of these matrices are provided
under the form of concentration inequalities on ‖R̂bT − RT ‖
and ‖R̂uT −RT ‖:

Theorem 1. Let Assumptions 1 and 2 hold true and let R̂bT
be defined as in (4). Then, for any x > 0,

P
[∥∥∥R̂bT −RT∥∥∥ > x

]
≤

exp

(
−cT

(
x

‖Υ‖∞
− log

(
1 +

x

‖Υ‖∞

)
+ o(1)

))
where o(1) is with respect to T and depends on x.

Theorem 2. Let Assumptions 1 and 2 hold true and let R̂uT
be defined as in (5). Then, for any x > 0,

P
[∥∥∥R̂uT −RT∥∥∥ > x

]
≤ exp

(
− cTx2

4 ‖Υ‖2∞ log T
(1 + o(1))

)
where o(1) is with respect to T and depends on x.

A consequence of these theorems, obtained by the Borel-
Cantelli lemma, is that ‖R̂bT −RT ‖ → 0 and ‖R̂uT −RT ‖ → 0
almost surely as T →∞.

The slower rate of decrease of T/ log(T ) in the unbiased
estimator exponent may be interpreted by the increased inac-
curacy in the estimates of rk for values of k close to T − 1.

We now turn to the proofs of Theorems 1 and 2, starting
with some basic mathematical results that will be needed
throughout the proofs.
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B. Some basic mathematical facts

Lemma 1. For x, y ∈ Cm and A ∈ Cm×m,∣∣xHAx− yHAy∣∣ ≤ ‖A‖ (‖x‖+ ‖y‖) ‖x− y‖ .

Proof:∣∣xHAx− yHAy∣∣ =
∣∣xHAx− yHAx+ yHAx− yHAy

∣∣
≤
∣∣(x− y)HAx

∣∣+
∣∣yHA(x− y)

∣∣
≤ ‖A‖ (‖x‖+ ‖y‖) ‖x− y‖ .

Lemma 2. Let X0, . . . , XM−1 be independent CN (0, 1) ran-
dom variables. Then, for any x > 0,

P

[
1

M

M−1∑
m=0

(|Xm|2 − 1) > x

]
≤ exp (−M(x− log(1 + x))) .

Proof: This is a classical Chernoff bound. Indeed, given
ξ ∈ (0, 1), we have by the Markov inequality

P
[
M−1

M−1∑
m=0

(|Xm|2 − 1) > x
]

= P

[
exp

(
ξ

M−1∑
m=0

|Xm|2
)
> exp ξM(x+ 1)

]

≤ exp(−ξM(x+ 1))E

[
exp

(
ξ

M−1∑
m=0

|Xm|2
)]

= exp (−M (ξ(x+ 1) + log(1− ξ)))

since E
[
exp(ξ|Xm|2)

]
= 1/(1− ξ). The result follows upon

minimizing this expression with respect to ξ.

C. Biased estimator: proof of Theorem 1

Define

Υ̂b
T (λ) ,

T−1∑
k=−(T−1)

r̂bk,T e
ıkλ

ΥT (λ) ,
T−1∑

k=−(T−1)

rke
ıkλ.

Since R̂bT −RT is a Toeplitz matrix, from [8, Lemma 4.1],∥∥∥R̂bT −RT∥∥∥ ≤ sup
λ∈[0,2π)

∣∣∣Υ̂b
T (λ)−ΥT (λ)

∣∣∣ ≤
sup

λ∈[0,2π)

∣∣∣Υ̂b
T (λ)− EΥ̂b

T (λ)
∣∣∣+ sup

λ∈[0,2π)

∣∣∣EΥ̂b
T (λ)−ΥT (λ)

∣∣∣ .
By Kronecker’s lemma ([9, Lemma 3.21]), the rightmost term
at the right-hand side satisfies∣∣∣EΥ̂b

T (λ)−ΥT (λ)
∣∣∣ ≤ T−1∑

k=−(T−1)

|krk|
T
−−−−→
T→∞

0. (6)

In order to deal with the term supλ∈[0,2π) |Υ̂b
T (λ)−EΥ̂b

T (λ)|,
two ingredients will be used. The first one is the following
lemma (proven in Appendix A1):

Lemma 3. The following facts hold:

Υ̂b
T (λ) = dT (λ)H

V H
T VT
N

dT (λ)

EΥ̂b
T (λ) = dT (λ)HRT dT (λ)

where dT (λ) = 1/
√
T
[
1, e−ıλ, . . . , e−ı(T−1)λ

]T
.

The second ingredient is a Lipschitz property of the function
‖dT (λ)−dT (λ′)‖ seen as a function of λ. From the inequality
|e−ıtλ − e−ıtλ′ | ≤ t|λ− λ′|, we indeed have

‖dT (λ)−dT (λ′)‖ =

√√√√ 1

T

T−1∑
t=0

|e−ıtλ − e−ıtλ′ |2 ≤ T |λ− λ′|√
3

.

(7)

Now, denoting by b·c the floor function and choosing β > 2,
define I =

{
0, . . . , bT βc − 1

}
. Let λi = 2π i

bTβc , i ∈ I, be a
regular discretization of the interval [0, 2π]. We write

sup
λ∈[0,2π)

∣∣∣Υ̂b
T (λ)− EΥ̂b

T (λ)
∣∣∣

≤ max
i∈I

sup
λ∈[λi,λi+1]

(∣∣∣Υ̂b
T (λ)− Υ̂b

T (λi)
∣∣∣+
∣∣∣Υ̂b

T (λi)− EΥ̂b
T (λi)

∣∣∣
+
∣∣∣EΥ̂b

T (λi)− EΥ̂b
T (λ)

∣∣∣) ≤
max
i∈I

sup
λ∈[λi,λi+1]

∣∣∣Υ̂b
T (λ)− Υ̂b

T (λi)
∣∣∣+ max

i∈I

∣∣∣Υ̂b
T (λi)− EΥ̂b

T (λi)
∣∣∣

+ max
i∈I

sup
λ∈[λi,λi+1]

∣∣∣EΥ̂b
T (λi)− EΥ̂b

T (λ)
∣∣∣ , χ1 + χ2 + χ3.

With the help of Lemma 3 and (7), we shall provide concentra-
tion inequalities on the random terms χ1 and χ2 and a bound
on the deterministic term χ3. This is the purpose of the three
following lemmas. Herein and in the remainder, C denotes a
positive constant independent of T . This constant can change
from an expression to another.

Lemma 4. There exists a constant C > 0 such that for any
x > 0 and any T large enough,

P [χ1 > x] ≤ exp

(
−cT 2

(
xT β−2

C‖Υ‖∞
− log

xT β−2

C‖Υ‖∞
− 1

))
.

Proof: Using Lemmas 3 and 1 along with (7), we have∣∣∣Υ̂b
T (λ)− Υ̂b

T (λi)
∣∣∣

=

∣∣∣∣dT (λ)H
V H
T VT
N

dT (λ)− dT (λi)
HV

H
T VT
N

dT (λi)

∣∣∣∣
≤ 2N−1 ‖dT (λ)− dT (λi)‖ ‖RT ‖

∥∥WH
TWT

∥∥
≤ C|λ− λi|‖Υ‖∞

∥∥WH
TWT

∥∥ .
From ‖WH

TWT ‖ ≤ Tr(WH
TWT ) and Lemma 2, assuming T

large enough so that f(x, T ) , xT β−1/(CN‖Υ‖∞) satisfies
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f(x, T ) ≥ 1, we then obtain

P [χ1 > x] ≤ P

[
C‖Υ‖∞T−β

T−1∑
t=0

N−1∑
n=0

|wn,t|2 > x

]

= P

[
1

NT

∑
n,t

(|wn,t|2 − 1) > f(x, T )− 1

]
≤ exp(−NT (f(x, T )− log f(x, T )− 1)).

Lemma 5. The following inequality holds

P [χ2 > x] ≤ 2T β exp

(
−cT

(
x

‖Υ‖∞
−log

(
1+

x

‖Υ‖∞

)))
.

Proof: From the union bound we obtain:

P [χ2 > x] ≤
bTβc−1∑
i=0

P
[∣∣∣Υ̂b

T (λi)− EΥ̂b
T (λi)

∣∣∣ > x
]
.

We shall bound each term of the sum separately. Since

P
[∣∣∣Υ̂b

T (λi)− EΥ̂b
T (λi)

∣∣∣ > x
]

= P
[
Υ̂b
T (λi)− EΥ̂b

T (λi) > x
]

+P
[
−
(

Υ̂b
T (λi)− EΥ̂b

T (λi)
)
> x

]
it will be enough to deal with the first right-hand side term as
the second one is treated similarly. Let ηT (λi) ,WT qT (λi) =

[η0,T (λi), . . . , ηN−1,T (λi)]
T where qT (λi) , R

1/2
T dT (λi).

Observe that ηk,T (λi) ∼ CN (0, ‖qT (λi)‖2IN ). We know from
Lemma 3 that

Υ̂b
T (λi)− EΥ̂b

T (λi) =
1

N

(
‖ηT (λi)‖2 − E‖ηT (λi)‖2

)
. (8)

From (8) and Lemma 2, we therefore get

P
[
Υ̂b
T (λi)− EΥ̂b

T (λi) > x
]

≤ exp

(
−N

(
x

‖qT (λi)‖2
− log

(
1 +

x

‖qT (λi)‖2
)))

.

Noticing that ‖qT (λi)‖2 ≤ ‖Υ‖∞ and that the function
f(x) = x − log

(
1 + x

)
is increasing for x > 0, we get

the result.
Finally, the bound for the deterministic term χ3 is provided

by the following lemma:

Lemma 6. χ3 ≤ C‖Υ‖∞T−β+1.

Proof: From Lemmas 3 and 1 along with (7), we obtain∣∣∣EΥ̂b
T (λ)− EΥ̂b

T (λi)
∣∣∣

=
∣∣dT (λ)HRT dT (λ)− dT (λi)

HRT dT (λi)
∣∣

≤ 2 ‖RT ‖ ‖dT (λ)− dT (λi)‖
≤ C‖Υ‖∞|λ− λi|T.

From max
i∈I

sup
λ∈[λi,λi+1]

|λ − λi| = λi+1 − λi = T−β we get the

result.
We now complete the proof of Theorem 1. From (6) and

Lemma 6, we get

P
[∥∥∥R̂bT −RT∥∥∥ > x

]
= P [χ1 + χ2 > x+ o(1)] .

Given a parameter εT ∈ [0, 1], we can write (with some slight
notation abuse)

P [χ1 + χ2 > x+ o(1)] ≤
P [χ1 > xεT ] + P [χ2 > x(1− εT ) + o(1)] .

With the results of Lemmas 4 and 5, setting εT = 1/T , we
get

P [χ1 + χ2 > x+ o(1)]

≤ P
[
χ1 >

x

T

]
+ P

[
χ2 > x(1− x

T
) + o(1)

]
≤ exp

(
−cT 2

( xT β−3

C‖Υ‖∞
− log

xT β−3

C‖Υ‖∞
− 1
))

+ exp
(
−cT

(x (1− 1
T

)
‖Υ‖∞

− log
(

1 +
x
(
1− 1

T

)
‖Υ‖∞

)
+ o(1)

))
= exp

(
−cT

( x

‖Υ‖∞
− log

(
1 +

x

‖Υ‖∞

)
+ o(1)

))
since β > 2.

D. Unbiased estimator: proof of Theorem 2

The proof follows basically the same main steps as for
Theorem 1 with an additional difficulty due to the scaling
terms 1/(T − |k|).

Defining the function

Υ̂u
T (λ) ,

T−1∑
k=−(T−1)

r̂uk,T e
ikλ

we have ∥∥∥R̂uT −RT∥∥∥ ≤ sup
λ∈[0,2π)

∣∣∣Υ̂u
T (λ)−ΥT (λ)

∣∣∣
= sup
λ∈[0,2π)

∣∣∣Υ̂u
T (λ)− EΥ̂u

T (λ)
∣∣∣

since ΥT (λ) = EΥ̂u
T (λ), the estimates r̂uk,T being unbiased.

In order to deal with the right-hand side of this expression,
we need the following analogue of Lemma 3, borrowed from
[7] and proven here in Appendix B1.

Lemma 7. The following fact holds:

Υ̂u
T (λ) = dT (λ)H

(
V H
T VT
N

�BT
)
dT (λ)

where � is the Hadamard product of matrices and where

BT ,

[
T

T − |i− j|

]
0≤i,j≤T−1

.

In order to make Υ̂u
T (λ) more tractable, we rely on the

following lemma which can be proven by direct calculation.

Lemma 8. Let x, y ∈ Cm and A,B ∈ Cm×m. Then

xH(A�B)y = Tr(DH
xADyB

T)

where we recall Dx = diag(x) and Dy = diag(y).
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Denoting

DT (λ) , diag(dT (λ)) =
1√
T

diag(1, eiλ, . . . , ei(T−1)λ)

QT (λ) , R
1/2
T DT (λ)BTDT (λ)H(R

1/2
T )H

we get from Lemmas 7 and 8

Υ̂u
T (λ) =

1

N
Tr(DT (λ)H(R

1/2
T )HWH

TWTR
1/2
T DT (λ)BT )

=
1

N
Tr(WTQT (λ)WH

T )

=
1

N

N−1∑
n=0

wH
nQT (λ)wn (9)

where wH
i is such that WT = [wH

0 , . . . , w
H
N−1].

Compared to the biased case, the main difficulty lies here in
the fact that the matrices BT /T and QT (λ) have unbounded
spectral norm as T → ∞. The following lemma, proven
in Appendix B2, provides some information on the spectral
behavior of these matrices that will be used subsequently.

Lemma 9. The matrix BT satisfies

‖BT ‖ ≤
√

2T (
√

log T + C). (10)

For any λ ∈ [0, 2π), the eigenvalues σ0, . . . , σT−1 of the
matrix Q(λ) satisfy the following inequalities:

T−1∑
t=0

σ2
t ≤ 2 ‖Υ‖2∞ log T + C (11)

max
t
|σt| ≤

√
2‖Υ‖∞(log T )1/2 + C (12)

T−1∑
t=0

|σt|3 ≤ C((log T )3/2 + 1) (13)

where the constant C is independent of λ.

We shall also need the following easily shown Lipschitz
property of the function ‖DT (λ)−DT (λ′)‖:

‖DT (λ)−DT (λ′)‖ ≤
√
T |λ− λ′|. (14)

We now enter the core of the proof of Theorem 2. Choosing
β > 2, let λi = 2π i

bTβc , i ∈ I, be a regular discretization of
the interval [0, 2π] with I =

{
0, . . . , bT βc − 1

}
. We write

sup
λ∈[0,2π)

∣∣∣Υ̂u
T (λ)− EΥ̂u

T (λ)
∣∣∣

≤ max
i∈I

sup
λ∈[λi,λi+1]

∣∣∣Υ̂u
T (λ)− Υ̂u

T (λi)
∣∣∣

+ max
i∈I

∣∣∣Υ̂u
T (λi)− EΥ̂u

T (λi)
∣∣∣

+ max
i∈I

sup
λ∈[λi,λi+1]

∣∣∣EΥ̂u
T (λi)− EΥ̂u

T (λ)
∣∣∣

, χ1 + χ2 + χ3.

Our task is now to provide concentration inequalities on
the random terms χ1 and χ2 and a bound on the deterministic
term χ3.

Lemma 10. There exists a constant C > 0 such that, if T is

large enough, the following inequality holds:

P [χ1 > x] ≤

exp

(
−cT 2

(
xT β−2

C
√

log T
− log

xT β−2

C
√

log T
− 1

))
.

Proof: From Equation (9), we have∣∣∣Υ̂u
T (λ)− Υ̂u

T (λi)
∣∣∣ =

1

N

∣∣∣∣∣
N−1∑
n=0

wH
n (QT (λ)−QT (λi))wn

∣∣∣∣∣
≤ 1

N

N−1∑
n=0

∣∣wH
n (QT (λ)−QT (λi))wn

∣∣
≤ 1

N
‖QT (λ)−QT (λi)‖

N−1∑
n=0

‖wn‖2 .

The norm above further develops as

‖QT (λ)−QT (λi)‖
≤ ‖RT ‖ ‖DT (λ)BTDT (λ)H −DT (λi)BTDT (λ)H

+DT (λi)BTDT (λ)H −DT (λi)BTDT (λi)
H‖

≤ 2 ‖DT (λ)‖ ‖RT ‖ ‖BT ‖ ‖DT (λ)−DT (λi)‖
≤ CT (

√
log T + 1) |λ− λi|

where we used (10), (14), and ‖DT (λ)‖ = 1/
√
T . Up to

a change in C, we can finally write ‖QT (λ)−QT (λi)‖ ≤
CT 1−β√log T . Assume that f(x, T ) , xT β−2/

(
C
√

log T
)

satisfies f(x, T ) > 1 (always possible for every fixed x by
taking T large). Then we get by Lemma 2

P [χ1 > x]

≤ P

(
CN−1T 1−β

√
log T

∑
n,t

|wn,t|2 > x

)

= P

(
1

NT

∑
n,t

(|wn,t|2 − 1) > f(x, T )− 1

)
≤ exp (−NT (f(x, T )− log (f(x, T ))− 1)) .

The most technical part of the proof is to control the term
χ2, which we handle hereafter.

Lemma 11. The following inequality holds:

P [χ2 > x] ≤ exp

(
− cx2T

4 ‖Υ‖2∞ log T
(1 + o(1))

)
.

Proof: From the union bound we obtain:

P [χ2 > x] ≤
bTβc−1∑
i=0

P
[∣∣∣Υ̂u

T (λi)− EΥ̂u
T (λi)

∣∣∣ > x
]
. (15)

Each term of the sum can be written

P
[∣∣∣Υ̂u

T (λi)− EΥ̂u
T (λi)

∣∣∣ > x
]

= P
[
Υ̂u
T (λi)− EΥ̂u

T (λi) > x
]

+ P
[
−
(

Υ̂u
T (λi)− EΥ̂u

T (λi)
)
> x

]
.

We will deal with the term ψi = P
[
Υ̂u
T (λi)− EΥ̂u

T (λi) > x
]
,
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the term P
[
−
(

Υ̂u
T (λi)− EΥ̂u

T (λi)
)
> x

]
being treated sim-

ilarly. Let QT (λi) = UTΣTU
H
T be a spectral factorization of

the Hermitian matrix QT (λi) with ΣT = diag(σ0, . . . , σT−1).
Since UT is unitary and WT has independent CN (0, 1) ele-
ments, we get from Equation (9)

Υ̂u
T (λi)

L
=

1

N

N−1∑
n=0

wH
nΣT (λi)wn =

1

N

N−1∑
n=0

T−1∑
t=0

|wn,t|2σt

(16)
where L= denotes equality in law. Since E

[
ea|X|

2
]

= 1/(1−a)

when X ∼ CN (0, 1) and 0 < a < 1, we have by Markov’s
inequality and from the independence of the variables |wn,t|2

ψi = P

(
1

N

N−1∑
n=0

T−1∑
t=0

|wn,t|2σt − TrQT (λi) > x

)

≤ E

[
exp
( τ
N

∑
n,t

|wn,t|2σt
)]

exp
(
−τ
(
x+

T−1∑
t=0

σt

))
= exp

(
−τ
(
x+

T−1∑
t=0

σt

)) T−1∏
t=0

(
1− σtτ

N

)−N
(17)

= exp
(
−τ
(
x+

T−1∑
t=0

σt

)
−N

T−1∑
t=0

log
(

1− σtτ

N

))
for any τ such that 0 ≤ τ < min

0≤t≤T−1

N
σt

. Writing log(1−x) =

−x− x2

2 +R3(x) with |R3(x)| ≤ |x|3
3(1−ε)3 when |x| < ε < 1,

we get

ψi ≤ exp
(
−τx+N

T−1∑
t=0

(σ2
t τ

2

2N2
+R3

(σtτ
N

)))
≤ exp

(
−N

(τx
N
− τ2

2N2

T−1∑
t=0

σ2
t

))
exp
(
N

T−1∑
t=0

∣∣∣R3

(σtτ
N

)∣∣∣).
(18)

We shall manage this expression by using Lemma 9. In order
to control the term exp(N

∑
|R3(·)|), we make the choice

τ =
axT

log T

where a is a parameter of order one to be optimized later.
From (12) we get maxt

σtτ
N = O

(
(log T )−1/2

)
. Hence, for

all T large, τ < mint
N
σt

. Therefore, (17) is valid for this
choice of τ and for T large. Moreover, for ε fixed and T
large, σtτN < ε < 1 so that for these T

N

T−1∑
t=0

∣∣∣R3

(σtτ
N

)∣∣∣ ≤ a3T 3x3

3N2(1− ε)3(log T )3

T−1∑
t=0

|σt|3

= O
(
T (log T )−3/2

)
from (13). Plugging the expression of τ in (18), we get

ψi ≤ exp
(
−N

( aTx2

(log T )N
− a2T 2x2

2N2(log T )2

T−1∑
t=0

σ2
t

))
× exp

(
C
(
T (log T )−3/2

))
.

Using (11), we have

ψi ≤ exp
(
− x2T

log T

(
a−
‖Υ‖2∞ a2T

N

))
exp
( CT

(log T )3/2

)
.

The right hand side term is minimized for a = N
2T‖Υ‖2∞

which
finally gives

ψi ≤ exp
(
− Nx2

4 ‖Υ‖2∞ log T
(1 + o(1))

)
.

Combining the above inequality with (15) (which induces
additional o(1) terms in the argument of the exponential)
concludes the lemma.

Lemma 12. χ3 ≤ CT−β+2
√

log T .

Proof: From Lemma 7, ‖RT �BT ‖ ≤ ‖RT ‖ ‖BT ‖ (see
[10, Theorem 5.5.1]), and (7), we get:∣∣∣EΥ̂u

T (λi)− EΥ̂u
T (λ)

∣∣∣ ≤ 2 ‖dT (λ)− dT (λi)‖ ‖RT ‖ ‖BT ‖

≤ CT 2 |λ− λi| ‖Υ‖∞
√

log T .

Lemmas 10–12 show that P[χ2 > x] dominates the term
P[χ1 > x] and that the term χ3 is vanishing. Mimicking the
end of the proof of Theorem 1, we obtain Theorem 2.

We conclude this section by an empirical evaluation by
Monte Carlo simulations of P[‖R̂T −RT ‖ > x] (curves la-
beled Biased and Unbiased), with R̂T ∈ {R̂bT , R̂uT }, T = 2N ,
x = 2. This is shown in Figure 1 against the theoretical
exponential bounds of Theorems 1 and 2 (curves labeled
Biased theory and Unbiased theory). We observe that the rates
obtained in Theorems 1 and 2 are asymptotically close to
optimal.

10 15 20 25 30 35 40
−0.2

−0.15

−0.1

−0.05

0

N

T
−
1
lo
g
( P
[∥ ∥ ∥R̂

T
−
R

T

∥ ∥ ∥>
x
])

Biased theory
Biased
Unbiased theory
Unbiased

Figure 1. Error probability of the spectral norm for x = 2, c = 0.5,
[RT ]k,l = a|k−l| with a = 0.6.

III. COVARIANCE MATRIX ESTIMATORS FOR THE
“SIGNAL PLUS NOISE” MODEL

A. Model, assumptions, and results

Consider now the following model:

YT = [yn,t]0≤n≤N−1
0≤t≤T−1

= PT + VT (19)
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where the N × T matrix VT is defined in (1) and where PT
satisfies the following assumption:

Assumption 3. PT , hTs
H
TΓ

1/2
T where hT ∈ CN is a

deterministic vector such that supT ‖hT ‖ < ∞, the vector
sT = (s0, . . . , sT−1)T ∈ CT is a random vector independent
of WT with the distribution CN (0, IT ), and ΓT = [γij ]

T−1
i,j=0

is Hermitian nonnegative such that supT ‖ΓT ‖ <∞.

We have here a model for a rank-one signal corrupted with
a Gaussian spatially white and temporally correlated noise
with stationary temporal correlations. Observe that the signal
can also be temporally correlated. Our purpose is still to
estimate the noise correlation matrix RT . To that end, we use
one of the estimators (2) or (3) with the difference that the
samples vn,t are simply replaced with the samples yn,t. It
turns out that these estimators are still consistent in spectral
norm. Intuitively, PT does not break the consistence of these
estimators as it can be seen as a rank-one perturbation of the
noise term VT in which the subspace spanned by (Γ1/2)HsT is
“delocalized” enough so as not to perturb much the estimators
of RT . In fact, we even have the following strong result.

Theorem 3. Let YT be defined as in (19) and let Assump-
tions 1–3 hold. Define the estimates

r̂bpk,T =
1

NT

N−1∑
n=0

T−1∑
t=0

yn,t+ky
∗
n,t10≤t+k≤T−1

r̂upk,T =
1

N(T − |k|)

N−1∑
n=0

T−1∑
t=0

yn,t+ky
∗
n,t10≤t+k≤T−1.

and let

R̂bpT = T (r̂bp−(T−1),T , . . . , r̂
bp
(T−1),T )

R̂upT = T (r̂up−(T−1),T , . . . , r̂
up
(T−1),T ).

Then for any x > 0,

P
[∥∥∥R̂bpT −RT∥∥∥ > x

]
≤ exp

(
−cT

( x

‖Υ‖∞
− log

(
1 +

x

‖Υ‖∞

)
+ o(1)

))
and

P
[∥∥∥R̂upT −RT∥∥∥ > x

]
≤ exp

(
− cTx2

4 ‖Υ‖2∞ log T
(1 + o(1))

)
.

Before proving this theorem, some remarks are in order.

Remark 1. Theorem 3 generalizes without difficulty to the
case where PT has a fixed rank K > 1. This captures the
situation of K � min(N,T ) sources.

Remark 2. Similar to the proofs of Theorems 1 and 2, the
proof of Theorem 3 uses concentration inequalities for func-
tionals of Gaussian random variables based on the moment
generating function and the Chernoff bound. Exploiting in-
stead McDiarmid’s concentration inequality [11], it is possible
to adapt Theorem 3 to sT with bounded (instead of Gaussian)
entries. This adaptation may account for discrete sources met
in digital communication signals.

B. Main elements of the proof of Theorem 3

We restrict the proof to the more technical part that concerns
R̂upT . Defining

Υ̂up
T (λ) ,

T−1∑
k=−(T−1)

r̂upk,T e
ikλ

and recalling that ΥT (λ) =
∑T−1
k=−(T−1) rke

ikλ,
we need to establish a concentration inequality on
P
[
supλ∈[0,2π) |Υ̂

up
T (λ)−ΥT (λ)| > x

]
. For any λ ∈ [0, 2π),

the term Υ̂up
T (λ) can be written as (see Lemma 7)

Υ̂up
T (λ) = dT (λ)H

(
Y H
T YT
N

�BT
)
dT (λ)

= dT (λ)H
(
V H
T VT
N

�BT
)
dT (λ)

+ dT (λ)H
(
PH
T VT + V H

T PT
N

�BT
)
dT (λ)

+ dT (λ)H
(
PH
T PT
N

�BT
)
dT (λ)

, Υ̂u
T (λ) + Υ̂cross

T (λ) + Υ̂sig
T (λ)

where BT is the matrix defined in the statement of Lemma 7.
We know from the proof of Theorem 2 that

P

[
sup

λ∈[0,2π)

|Υ̂u
T (λ)−ΥT (λ)| > x

]

≤ exp

(
− cTx2

4 ‖Υ‖2∞ log T
(1 + o(1))

)
. (20)

We then need only handle the terms Υ̂cross
T (λ) and Υ̂sig

T (λ).
We start with a simple lemma.

Lemma 13. Let X and Y be two independentN (0, 1) random
variables. Then for any τ ∈ (−1, 1),

E[exp(τXY )] = (1− τ2)−1/2.

Proof:

E[exp(τXY )] =
1

2π

∫
R2

eτxye−x
2/2e−y

2/2 dx dy

=
1

2π

∫
R2

e−(x−τy)2/2e−(1−τ2)y2/2 dx dy

= (1− τ2)−1/2.

With this result, we now have

Lemma 14. There exists a constant a > 0 such that

P

[
sup

λ∈[0,2π)

|Υ̂cross
T (λ)| > x

]
≤ exp

(
− axT√

log T
(1 + o(1))

)
.

Proof: We only sketch the proof of this lemma. We show
that for any λ ∈ [0, 2π],

P[|Υ̂cross
T (λ)| > x] ≤ exp

(
− axT√

log T
+ C

)
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where C does not depend on λ ∈ [0, 2π]. The lemma is then
proven by a discretization argument of the interval [0, 2π]
analogous to what was done in the proofs of Section II. We
shall bound P[Υ̂cross

T (λ) > x], the term P[Υ̂cross
T (λ) < −x]

being bounded similarly. From Lemma 8, we get

Υ̂cross
T (λ) = Tr

(
DT (λ)H

PH
T VT + V H

T PT
N

DT (λ)BT

)
= Tr

DT (λ)H(Γ
1/2
T )HsTh

H
TWTR

1/2
T DT (λ)BT

N

+ Tr
DT (λ)H(R

1/2
T )HWH

T hTs
H
TΓ

1/2
T DT (λ)BT

N

=
2

N
<(hH

TWTGT (λ)sT )

where GT (λ) = R
1/2
T DT (λ)BTDT (λ)H(Γ

1/2
T )H. Let

GT (λ) = UTΩT Ũ
H
T be a singular value decomposition of

GT (λ) where Ω = diag(ω0, . . . , ωT−1). Observe that the
vector xT , WH

T hT = (x0, . . . , xT−1)T has the distribution
CN (0, ‖hT ‖2IT ). We can then write

Υ̂cross
T (λ)

L
=

2

N
<xH

TΩTsT =
2

N

T−1∑
t=0

ωt(<xt<st + =xt=st)

where < and = stand respectively for the real and the
imaginary parts. Notice that {<xt,=xt,<st,=st}T−1

t=0

are independent with <xt,=xt ∼ N (0, ‖hT ‖2/2)
and <st,=st ∼ N (0, 1/2). Letting 0 < τ <
(supT ‖hT ‖)−1(supλ ‖GT (λ)‖)−1 and using Markov’s
inequality and Lemma 13, we get

P
[
Υ̂cross
T (λ) > x

]
= P

[
eNτΥ̂crossT (λ) > eNτx

]
≤ e−NτxE

[
e2τ

∑
t ωt(<xt<st+=xt=st)

]
= e−Nτx

T−1∏
t=0

(
1− τ2ω2

t ‖hT ‖2
)−1

= exp

(
−Nτx−

T−1∑
t=0

log(1− τ2ω2
t ‖hT ‖2)

)
.

Mimicking the proof of Lemma 9, we can establish that∑
t ω

2
t = O(log T ) and maxt ωt = O(

√
log T ) uniformly

in λ ∈ [0, 2π]. Set τ = b/
√

log T where b > 0 is small
enough so that supT,λ(τ‖hT ‖ ‖GT (λ)‖) < 1. Observing that
log(1− x) = O(x) for x small enough, we get

P[Υ̂cross
T (λ) > x] ≤ exp

(
−Nbx/

√
log T + E(λ, T )

)
where |E(λ, T )| ≤ (C/ log T )

∑
t ω

2
t ≤ C. This establishes

Lemma 14.

Lemma 15. There exists a constant a > 0 such that

P

[
sup

λ∈[0,2π)

|Υ̂sig
T (λ)| > x

]
≤ exp

(
− axT√

log T
(1 + o(1))

)
.

Proof: By Lemma 8,

Υ̂sig
T (λ) = N−1 Tr(DH

TP
H
T PTDTBT )

=
‖hT ‖2

N
s∗TGT (λ)sT

where GT (λ) = Γ
1/2
T DT (λ)BTDT (λ)H(Γ

1/2
T )H. By the

spectral factorization GT (λ) = UTΣTU
H
T with ΣT =

diag(σ0, . . . , σT−1), we get

Υ̂sig
T (λ)

L
=
‖hT ‖2

N

T−1∑
t=0

σt|st|2

and

P[Υ̂sig
T (λ) > x] ≤ e−NτxE

[
eτ‖hT ‖

2 ∑
t σt|st|

2
]

= exp
(
−Nτx−

T−1∑
t=0

log(1− σtτ‖hT ‖2)
)

for any τ ∈ (0, 1/(‖hT ‖2 supλ ‖GT (λ)‖)). Let us show that

|TrGT (λ)| ≤ C
√

log T + 1

T
.

Indeed, we have

|TrGT (λ)| = N−1|TrDTBTD
H
TΓT |

=
1

N

∣∣∣∣∣∣
T−1∑
k,`=0

e−ı(k−`)λγ`,k
T − |k − `|

∣∣∣∣∣∣
≤
( 1

N

T−1∑
k,`=0

|γk,`|2
)1/2( 1

N

T−1∑
k,`=0

1

(T − |k − `|)2

)1/2

=
(Tr ΓTΓH

T

N

)1/2( 2

N
(log T + C)

)1/2

≤ C
√

log T + 1

T
.

Moreover, similar to the proof of Lemma 9, we can show that∑
t σ

2
t = O(log T ) and maxt |σt| = O(

√
log T ) uniformly in

λ. Taking τ = b/
√

log T for b > 0 small enough, and recalling
that log(1− x) = 1− x+O(x2) for x small enough, we get
that

P[Υ̂sig
T (λ) > x] ≤ exp

(
− Nbx√

log T
+
b‖hT ‖2√

log T
TrGT (λ)+E(T, λ)

)
where |E(T, λ)| ≤ (C/ log T )

∑
t σ

2
t ≤ C. We therefore get

P[Υ̂sig
T (λ) > x] ≤ exp

(
− Nbx√

log T
+ C

)
where C is independent of λ. Lemma 15 is then obtained by
the discretization argument of the interval [0, 2π].

Gathering Inequality (20) with Lemmas 14 and 15, we get
the second inequality of the statement of Theorem 3.

IV. APPLICATION TO SOURCE DETECTION

Consider a sensor network composed of N sensors im-
pinged by zero (hypothesis H0) or one (hypothesis H1) source
signal. The stacked signal matrix YT = [y0, . . . , yT−1] ∈
CN×T from time t = 0 to t = T − 1 is modelled as

YT =

{
VT , H0

hTs
H
T + VT , H1

(21)

where sHT = [s∗0, . . . , s
∗
T−1] are (hypothetical) independent

CN (0, 1) signals transmitted through the constant channel
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hT ∈ CN , and VT = WTR
1/2
T ∈ CN×T models a stationary

noise matrix as in (1).
As opposed to standard procedures where preliminary pure

noise data are available , we shall proceed here to an online
signal detection test solely based on YT , by exploiting the
consistence established in Theorem 3. The approach consists
precisely in estimating RT by R̂T ∈ {R̂bpT , R̂

up
T }, which is

then used as a whitening matrix for YT . The binary hypothesis
(21) can then be equivalently written

YT R̂
−1/2
T =

{
WTRT R̂

−1/2
T , H0

hTs
H
T R̂
−1/2
T +WTRT R̂

−1/2
T , H1.

(22)

Since ‖RT R̂−1
T − IT ‖ → 0 almost surely (by Theorem 3 as

long as infλ∈[0,2π) Υ(λ) > 0), for T large, the decision on the
hypotheses (22) can be handled by the generalized likelihood
ratio test (GLRT) [12] by approximating WTRT R̂

−1/2
T as a

purely white noise. We then have the following result.

Theorem 4. Let R̂T be any of R̂bpT or R̂upT strictly defined in
Theorem 3 for YT now following model (21). Further assume
infλ∈[0,2π) Υ(λ) > 0 and define the test

α =
N
∥∥∥YT R̂−1

T Y H
T

∥∥∥
Tr
(
YT R̂

−1
T Y H

T

) H0

≶
H1

γ (23)

where γ ∈ R+ satisfies γ > (1 +
√
c)2. Then, as T →∞,

P [α ≥ γ]→
{

0 , H0

1 , H1.

Recall from [12] that the decision threshold (1 +
√
c)2

corresponds to the almost sure limiting largest eigenvalue
of 1

TWTW
H
T , that is the right-edge of the support of the

Marčenko–Pastur law.
Simulations are performed hereafter to assess the perfor-

mance of the test (23) under several system settings. We
take here hT to be the following steering vector hT =√
p/T [1, . . . , e2iπθ(T−1)] with θ = 10◦ and p a power pa-

rameter. The matrix RT models an autoregressive process of
order 1 with parameter a, i.e. [RT ]k,l = a|k−l|.

In Figure 2, the detection error 1 − P[α ≥ γ|H1] of the
test (23) for a false alarm rate (FAR) P[α ≥ γ|H0] = 0.05
under R̂T = R̂upT (Unbiased) or R̂T = R̂bpT (Biased) is
compared against the estimator that assumes RT perfectly
known (Oracle), i.e. that sets R̂T = RT in (23), and against
the GLRT test that wrongly assumes temporally white noise
(White), i.e. that sets R̂T = IT in (23). The source signal
power is set to p = 1, that is a signal-to-noise ratio (SNR) of
0 dB, N is varied from 10 to 50 and T = N/c for c = 0.5
fixed. In the same setting as Figure 2, the number of sensors
is now fixed to N = 20, T = N/c = 40 and the SNR (hence
p) is varied from −10 dB to 4 dB. The powers of the various
tests are displayed in Figure 3 and compared to the detection
methods which estimate RT from a pure noise sequence called
Biased PN (pure noise) and Unbiased PN. The results of the
proposed online method are close to that of Biase/Unbiased
PN, this last presenting the disadvantage to have at its disposal
a pure noise sequence at the receiver.

Both figures suggest a close match in performance between
Oracle and Biased, while Unbiased shows weaker perfor-
mance. The gap evidenced between Biased and Unbiased
confirms the theoretical conclusions.

10 20 30 40 50
10−4

10−3

10−2

10−1

100

N

1
−

P[
α
>
γ
|H

1
]

Biased
Unbiased
White
Oracle

Figure 2. Detection error versus N with FAR= 0.05, p = 1, SNR= 0 dB,
c = 0.5, and a = 0.6.

−10 −8 −6 −4 −2 0 2 4
0

0.2

0.4

0.6

0.8

1

SNR (dB)

P[
α
>
γ
|H

1
]

Biased
Unbiased
Biased PN
Unbiased PN
Oracle

Figure 3. Power of detection tests versus SNR (dB) with FAR= 0.05,
N = 20, c = 0.5, and a = 0.6.

APPENDIX

A. Proofs for Theorem 1

1) Proof of Lemma 3: Developing the quadratic forms
given in the statement of the lemma, we get

dT (λ)H
V H
T VT
N

dT (λ) =
1

NT

T−1∑
l,l′=0

e−ı(l
′−l)λ[V H

T VT ]l,l′

=
1

NT

T−1∑
l,l′=0

e−ı(l
′−l)λ

N−1∑
n=0

v∗n,lvn,l′

=

T−1∑
k=−(T−1)

e−ıkλ
1

NT

N−1∑
n=0

T−1∑
t=0

v∗n,tvn,t+k10≤t+k≤T−1

=

T−1∑
k=−(T−1)

r̂bke
−ıkλ = Υ̂b

T (λ),
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and

E
[
dT (λ)H

V H
T VT
N

dT (λ)

]
= dT (λ)H(R

1/2
T )H

E[WH
TWT ]

N
R

1/2
T dT (λ)

= dT (λ)HRT dT (λ).

B. Proofs for Theorem 2

1) Proof of Lemma 7: We have

dT (λ)H
(
V H
T VT
N

�BT
)
dT (λ)

=
1

NT

T−1∑
l,l′=−(T−1)

ei(l−l
′)λ[V H

T VT ]l,l′
T

T − |l − l′|

=

T−1∑
k=−(T−1)

eikλ
1

N(T − |k|)

N−1∑
n=0

T−1∑
t=0

v∗n,tvn,t+k10≤t+k≤T−1

=

T−1∑
k=−(T−1)

r̂uke
ikλ = Υ̂u

T (λ).

2) Proof of Lemma 9: We start by observing that

TrB2
T =

T−1∑
i,j=0

[BT ]
2
i,j =

T−1∑
i,j=0

(
T

T − |i− j|

)2

= 2

T−1∑
i>j

(
T

T − |i− j|

)2

+ T

= 2

T−1∑
k=1

(
T

T − k

)2

(T − k) + T

= 2T 2
T−1∑
k=1

1

T − k
+ T = 2T 2 (log T + C) .

Inequality (10) is then obtained upon noticing that ‖BT ‖ ≤√
TrB2

T .

We now show (11). Using twice the inequality Tr(FG) ≤
‖F‖Tr(G) when F,G ∈ Cm×m and G is nonnegative definite

[10], we get
T−1∑
t=0

σ2
t (λi) = TrQT (λi)

2

= TrRTDT (λi)BTDT (λi)
HRTDT (λi)BTDT (λi)

H

≤ ‖RT ‖TrRT (DT (λi)BTDT (λi)
H)2

≤ T−2 ‖RT ‖2 Tr(B2
T )

≤ 2 ‖Υ‖2∞ log T + C.

Inequality (12) is immediate since ‖QT ‖2 ≤ TrQ2
T .

As regards (13), by the Cauchy–Schwarz inequality,

T−1∑
t=0

|σ3
t (λi)| =

T−1∑
t=0

σ2
t (λi)|σt(λi)| ≤

√√√√T−1∑
t=0

σ4
t (λi)

T−1∑
t=0

σ2
t (λi)

≤

√√√√(T−1∑
t=0

σ2
t (λi)

)2 T−1∑
t=0

σ2
t (λi)

=

(
T−1∑
t=0

σ2
t (λi)

)3/2

= C((log T )3/2 + 1).
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