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Abstract—In this paper, a novel approach for joint power control
and user scheduling is proposed for optimizing energy efficiency
(EE), in terms of bits per unit power, in ultra dense small cell
networks (UDNs). To address this problem, a dynamic stochastic
game (DSG) is formulated between small cell base stations (SBSs).
This game enables to capture the dynamics of both the queues
and channel states of the system. To solve this game, assuming
a large homogeneous UDN deployment, the problem is cast as a
mean field game (MFG) in which the MFG equilibrium is analyzed
with the aid of low-complexity tractable two partial differential
equations. User scheduling is formulated as a stochastic optimization
problem and solved using the drift plus penalty (DPP) approach in
the framework of Lyapunov optimization. Remarkably, it is shown
that by weaving notions from Lyapunov optimization and mean
field theory, the proposed solution yields an equilibrium control
policy per SBS which maximizes the network utility while ensuring
users’ quality-of-service. Simulation results show that the proposed
approach achieves up to 18.1% gains in EE and 98.2% reductions
in the network’s outage probabilities compared to a baseline model.

I. INTRODUCTION

The exponential growth of wireless devices and their applica-
tions during the last decade persuades service providers to seek
1000x data rate by 2020 alongside improvements in capacity,
reliability, energy efficiency and latency compared to existing
systems [1], [2]. In this regard, 5G systems are expected to be
ultra-dense in nature rendering network optimization highly com-
plex [2]. Thus, resource management including power control and
user equipment (UE) scheduling in ultra-dense networks (UDNs)
is significantly more challenging due to the spatio-temporal traffic
demand fluctuations in the network, and the increasing overhead
due to the need for coordination. Here, the uncertainties in terms
of queue state information (QSI) and channel state information
(CSI) as well as their evolution over time play a pivotal role
in resource optimization. Unlike sparse network deployments,
optimizing UDNs based on current state-of-the-art approaches
face some challenges such as power control and cell deployment
for interference mitigation and optimizing UE associations and
scheduling of large number of devices [3]–[5]. Most of these
works either ignore uncertainties in QSI or focus on power control
or user scheduling.

Recently, mean field games (MFGs) received significant at-
tention in the context of cellular networks with large number
of players [6]–[8]. In MFGs, players make their own decisions
based on their own state while abstracting other players’ strategies
using a mean field (MF). As a result, the MF regime allows to
cast the multi-player problem into a more tractable single player
problem. The works in [6], [7], investigate systems under the
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uncertainties of different states (QSI, CSI, battery power levels)
as MFGs. However, these works assume either one user per cell
or based on a proportional-fair (PF) baseline.

The main contribution of this paper is to propose a novel
decentralized joint power control and user scheduling mechanism
for ultra-dense small cell networks with large number of small
cell base stations (SBSs). Due to the severe coupling in inter-
ference, SBSs compete with each other in order to maximize
their own energy efficiency (EE) in terms of transmitted bit per
unit power while ensuring UEs’ quality-of-service (QoS). The
problem is cast as a dynamic stochastic game (DSG) in which
players are the SBSs and their actions are their control vector
including transmit power and user scheduling. Due to the non-
tractability of the DSG, we study the problem in the mean field
regime reflecting a very dense small cell deployment. Thus, the
solution of the DSG is obtained by solving a set of coupled
partial differential equations (PDEs) known as Hamilton-Jacobi-
Bellman (HJB) and Fokker-Planck-Kolmogorov (FPK) [8]. The
UE scheduling procedure is modeled as a stochastic optimization
problem and solved via the drift plus penalty (DPP) approach
in Lyapunov optimization framework [3], [9]. An algorithm is
proposed in which each SBS schedules its UEs as a function
of CSI, QSI and the mean field of interferers. Remarkably, it
is shown that combining the power allocation policy obtained
from MFG and the DPP-based scheduling policy enables SBSs
to autonomously determine their optimal transmission parameters
without coordination with other neighboring cells. To the best
of our knowledge, this is the first work combining MFG and
Lyapunov frameworks within the scope of UDNs.

The rest of this paper is organized as follows. Section II
presents the system model and formulates the DSG with finite
number of players. In Section III, using the assumptions of large
number of players the DSG is cast as a MFG and solved. The
solution for UE scheduling at each SBS based on DPP framework
is examined in Section IV. The results are discussed in Section V
and finally, conclusions are drawn in Section VI.

II. SYSTEM MODEL AND PROBLEM DEFINITION

Let us consider the downlink transmission of an ultra-dense
deployment of small cells consisting of a set of SBSs B using a
common spectrum with bandwidth ω. SBSs serve a set of UEs
M = M1 ∪ . . . ∪ M|B| where Mb is the set of UEs served
by SBS b ∈ B. For UE scheduling, we use a scheduling vector
λb(t) =

[
λbm(t)

]
∀m∈Mb

for SBS b with λbm(t) = 1 to denote
that UE m ∈ Mb is served by SBS b at time t and λbm(t) = 0
otherwise. The channel gain between UE m ∈Mb and SBS b at
time t is denoted by hbm(t) and an additive white Gaussian noise
with zero mean and σ2 variance is assumed. The instantaneous



data rate of UE m is given by:

rbm(t) = ωλbm(t) log2

(
1 +

pb(t)|hbm(t)|2
Ibm(t) + σ2

)
, (1)

where pb(t) ∈ [0, pmax
b ] is the transmission power of SBS

b, |hbm(t)|2 is the channel gain between SBS b and UE m,
Ibm(t) =

∑
∀b′∈B\{b} pb′(t)|hb′m(t)|2 is the interference term.

We assume that SBS b sends qbm(t) bits to UE m ∈Mb. Thus,
the evolution of the b-th SBS queue, qb(t) =

[
qbm(t)

]
m∈Mb

, is
given by:

dqb(t) = ab(t)− rb
(
t,Y (t),h(t)

)
dt, (2)

where ab(t) and rb(·) are the vectors of arrivals and serving
data rates at SBS b and h(t) =

[
hbm(t)

]
m∈M,b∈B denotes the

channel vector. Moreover, the vector of control variables Y (t) =[
yb(t),y−b(t)

]
is defined such that yb(t) =

[
λb(t), pb(t)

]
is

the SBS local control vector and y−b(t) is the control vector
of interfering SBSs. The evolution of the channels are assumed
to vary according to the following known stochastic model [10]:

dhbm(t) = G
(
t, hbm(t)

)
dt+ ζdzbm(t), (3)

where the deterministic part G
(
t, hbm(t)

)
considers path loss

and shadowing while the random part zbm(t) with positive
constant ζ includes fast fading and channel uncertainties. The
evolution of the entire system can be described by the QSI
and the CSI as per (2) and (3), respectively. Thus, we define
x(t) =

[
xb(t)

]
b∈B ∈ X as the state of the system at time t with

xb(t) =
[
qb(t),hb(t)

]
over the state space X = (X1∪. . .∪X|B|).

The feasibility set of SBS b’s control at state x(t) is defined as
Yb(t,x) = {λbm(t) ∈ {0, 1}, 0 ≤ pb(t) ≤ p

max}. As the system
evolves, UEs need to be scheduled at each time slot based on QSI
and CSI. The service quality of UE m ∈Mb is ensured such that
q̄bm = limt→∞

1
t

∫ t
0
qbm(τ)dτ ≤ ∞.

The objective of this work is to determine the control policy per
SBS b which maximizes a utility function fb(·) while ensuring
UEs’ quality of service (QoS). Let Ȳ = limt→∞

1
t

∑t−1
τ=0 Y (τ)

be the limiting time average expectation of the control variables
Y (t). Formally, the utility maximization problem for SBS b is
given as follows:

maximize
ȳb

fb(ȳb, ȳ−b), (4a)

subject to q̄bm ≤ ∞ ∀m ∈Mb, (4b)
(2), (3), (4c)
yb(t) ∈ Yb(t,x) ∀t. (4d)

Furthermore, we assume that SBSs serve their scheduled UEs
for a time period of T . Therefore, we use the notion of time
scale separation, hereinafter. For SBS b ∈ B, the transmit power
allocation pb(t) is determined for each transmission and thus, is a
fast process. However, UE scheduling λb(t) is fixed for a duration
of T to ensure a stable transmission. Therefore, UE scheduling
is a slower process than power allocation.

A. Dynamic stochastic game among |B| players

We focus on finding a control policy which solves (4) over
a time period [0, T ] for a given set of scheduled UEs con-
sidering the state transitions x(0) → x(T ). Therefore, we

define a time-and-state-based utility for SBS b as Γb
(
0,x(0)

)
=

Γb
(
0,x(0),Y (0)

)
= E

[ ∫ T
0
fb(τ)dτ

]
. The goal of each SBS is

to maximize the above utility over yb(τ) =
[
λ?b(τ), pb(τ)

]
for a

given UE scheduling λ?(τ) subject to the system state dynamics
dx(t) = Xtdt+Xzdz(t), ∀b ∈ B,∀m ∈M where:

Xt =
(
abm(t)− rbm

(
t,Y (t),h(t)

)
, G
(
t, hbm(t)

))
,

and Xz = diag(0|M|, ζ1).
As the network state evolves as a function of QSI and CSI,

the strategies of SBSs need to be adaptive accordingly. Thus,
maximizing the utility Γb

(
0,x(0)

)
for b ∈ B under the evolution

of the network states can be modeled as a DSG.
Definition 1: The formulated power control DSG

for a given set of scheduled UEs is defined as
G = (B, {Yb}b∈B, {Xb}b∈B, {Γb}b∈B) where:

• B is the set of players which are the SBSs.
• Yb is the set of actions of player b ∈ B which are the choices

of transmit power pb for given scheduled UEs λb.
• Xb is the state space of player b ∈ B consists of QSI qb and

CSI hb.
• Γb is the average utility of player b ∈ B depends on the state

transition x(t)→ x(T ) as follows:

Γb
(
t,x(t)

)
= Γb

(
t,x(t),Y (t)

)
= E

[ ∫ T
t
fb(τ)dτ

]
. (5)

One suitable solution for the defined DSG is the Nash equilibrium
(NE) defined as follows:

Definition 2: The control variables Y ?(t) ∈ Y constitute a
closed-loop Nash equilibrium if,

Γb
(
t,x(t),y?b(t),y

?
−b(t)

)
≥ Γb

(
t,x(t),yb(t),y

?
−b(t)

)
,

is satisfied ∀ b ∈ B, ∀ Y (t) ∈ Y and ∀ x(t) ∈ X .
We denote the trajectories of the utilities induced by the NE
by Γ?

(
t,x(t)

)
=
[
Γ?b
(
t,x(t)

)]
b∈B. The existence of the NE

is ensured by the existence of a joint solution Γ
(
t,x(t)

)
=[

Γb
(
t,x(t)

)]
∀b∈B to the following |B| number of coupled HJB

equations [8]:

∂
∂t [Γb

(
t,x(t)

)
] + maxyb(t)

[
Xt

∂
∂x [Γb

(
t,x(t)

)
] + fb(t)

+ 1
2 tr
(
X2
z
∂2

∂x2 [Γb
(
t,x(t)

)
]
)]

= 0,

defined for each SBS b ∈ B and tr(·) is the matrix trace operation.
Solving |B| mutually coupled HJB equations is complex when
|B| > 2. Furthermore, it requires gathering QSI and CSI from
all the SBSs throughout the network which incurs a tremendous
amount of information exchange. However, it is impractical for
UDNs with large |B|. In order to tackle this problem using the
concept of MF, we assume |B| is extremely large. MF allows to
approximate a stochastic differential game, by a more tractable
model. The mean field utility of a player only depends on his
own action and state, and depends on the others through a mean
field. Thus, we cast the |B|-player DSG as a MFG.



III. OPTIMAL CONTROL POLICY VIA MEAN FIELD

As the number of SBSs becomes large (|B| → ∞), we assume
that the interference tends to be bounded in order to have non-
zero rates as observed in [6], [7], [11] and each SBS implements a
transmission policy based on the knowledge of its own state. SBSs
in such an environment are indistinguishable from one another
resulting in a continuum of players. This allows us to simplify the
solution of the |B| HJB equations by reducing it to two equations
as discussed below.

At a given time and state
(
t,x(t)

)
and for a scheduled UE m,

the impact of other SBSs on the choice of a given SBS b ∈ B
appears in the interference term, where:

Ibm
(
t,x(t)

)
=
∑
∀b′∈B\{b} pb′(t)|hb′m(t)|2.

As the number of SBSs grows large, we assume that the interfer-
ence is bounded in which a normalization factor is introduced
for the channels [11]. Let η/|B| be the normalization factor
where η is SBS density and thus, the channel gain becomes
hbm(t) =

√
ηh̃bm(t)√
|B|

with E [|h̃bm(t)|2] = 1. Thus, the interference

can be rewritten as follows:

Ibm
(
t,x(t)

)
=

η

|B|
∑

∀b′∈B\{b}

pb′(t)|h̃b′m(t)|2.

which ensures a bounded interference for increasing |B| with a
fix η.

As |B| → ∞, all SBSs become a continuum and thus, we can
focus on a generic SBS with the state x̆(t) at time t. The density
of the continuum in state x̆(t) is given by a limiting distribution
ρ
(
t, x̆):

ρ
(
t, x̆) = lim

|B|→∞

1

|B|
|B|∑
b=1

δ
(
xb(t) = x̆

)
, (6)

where δ(·) is the Dirac delta function. Thus, the original problem
can be reformulated as a MFG using the continuum of players
and the limiting distribution of the states which is defined as the
MF. Therefore, the interference with respect to the MF ρ(t) =[
ρ(t, x̆)

]
x∈X is given by,

I
(
t,ρ(t)

)
= η

∫

X
p
(
t, x
)
|h̃
(
t, x
)
|2ρ(t, x̆)dx, (7)

with all control variables being defined based on both time and
state. Note that we have omitted the subscript b and m since the
interest is on a generic SBS. Therefore, the utility maximization
problem and the evolution of the states are reformulated for a
generic SBS as follows:

maximize(
p(t)|λ?(t)

)
,∀t∈[0,T ]

Γ
(
0,x(0)

)
, (8a)

subject to dx̆(t) = Xtdt+Xzdz(t), (8b)
y(t) ∈ Y(t,x) ∀t ∈ [0, T ], (8c)

where Xt =
[
D
(
t, y(t)

)
, G
(
t, h̃(t)

)]
and a diagonal matrix Xz =

diag(0, ζ1). Here, D
(
t,y(t)

)
= a(t) − r(t,y(t), h̃(t),ρ(t)

)
.

Similarly, the utility of a generic SBS Γ
(
t, x̆(t)

)
follows (5)

with the necessary modifications. The formal definition of the
MF equilibrium is as follows:
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Fig. 1. Inter-relation between the MFG and the Lyapunov framework.

Definition 3: The control vector y? = (λ?, p?) ∈ Y consti-
tutes a mean-field equilibrium if, for all y ∈ Y with the MF
distribution ρ?, it holds that,

Γ(y?,ρ?) ≥ Γ(y,ρ?).

In the MF framework, the MF equilibrium given by the solution[
Γ?
(
t, x̆(t)

)
, ρ?
(
t, x̆(t)

)]
of (8) is equivalent to the NE of the |B|-

players DSG [8]. Moreover, the optimal trajectory Γ?
(
t, x̆(t)

)
is

found by applying backward induction to a single HJB equation
and the MF (limiting distribution) ρ?

(
t, x̆(t)

)
is obtained by

forward solving the FPK equation as follows:




∂
∂t [Γ

(
t, x̆(t)

)
] + maxp(t)

[
D
(
t,y(t)

)
∂
∂q [Γ

(
t, x̆(t)

)
]

+f(t) +
(
G(t, h̃) ∂

∂h̃
+ ζ2

2
∂2

∂h̃2

)
Γ
(
t, x̆(t)

)]
= 0,

∂
∂h̃

[
G(t, h̃)ρ

(
t, x̆(t)

)]
− ζ2

2
∂2

∂h̃2
[ρ
(
t, x̆(t)

)
]

+ ∂
∂q

[
D
(
t,y?(t)

)
ρ
(
t, x̆(t)

)]
+ ∂tρ

(
t, x̆(t)

)
= 0,

(9)

respectively. The optimal transmit power strategy is given by,

p?(t) = arg maxp(t)

[
Xt

∂
∂x [Γ

(
t, x̆(t)

)
] + f(t)

+ 1
2 tr
(
X2
z
∂2

∂x2 [Γ
(
t, x̆(t)

)
]
)]
. (10)

Solving (9)-(10) yields the behavior of a generic SBS in terms of
transmission power, utility and state distribution.

IV. UE SCHEDULING VIA LYAPUNOV FRAMEWORK

By using the time scale separation, the scheduling variables are
decoupled from the mean field game and thus, can be optimized
separately. Some of the baselines for UE scheduling are propor-
tional fair (PF) scheduling in terms of rates, best-CSI based UE
scheduling, and scheduling based on highest QSI. PF scheduling
ensures the fairness among UEs in terms of their average rates
(history) while the latter methods exploit the instantaneous CSI
or QSI. Using conventional schedulers for solving (4) fails to take
advantage of the inherent CSI and QSI dynamics over space and
time, thus yielding poor performance. Therefore, we solve the



original utility maximization problem of SBS b ∈ B with respect
to the scheduling variables as follows;

maximize(
λ̄b|p?,ρ?

) fb(ȳb, ȳ−b), (11a)

subject to (4b), (4c), (11b)
λb(t) ∈ L(t,x) ∀t. (11c)

Here, the feasible set L(t,x) consists of all the vectors with
λbm(t) ∈ [0, 1] and 1†λb(t) = 1. Note that the scheduling
variables are relaxed from integers to real numbers for the ease
of analysis. Using the transmit power profile and the MF limiting
distribution obtained from the MFG, the rate becomes:

r̂bm(t) = ωλbm(t) log2

(
1 +

∫
X p(t−1,x)ρ(t−1,x)dx

I
(
t−1,ρ(t−1)

)
+σ2

)
.

In order to solve the stochastic optimization problem (11) per
SBS b, the drift plus penalty approach in Lyapunov optimization
framework can be applied. The Lyapunov DPP approach decom-
poses the stochastic optimization problem into sub-policies that
can be implemented in a distributed way. Therefore, |B| copies
of problem (11) are locally solved at each SBS and, thus, the
proposed solution can apply for a large number of SBSs i.e., as
|B| → ∞.

First, a vector of auxiliary variables υb(t) =
[
υbm(t)

]
m∈Mb

is
defined to satisfy the constraints (11c). These additional variables
are chosen from a set V independent from both time and state.
Thus, (11) is transformed as follows;

maximize
λ̄b,ῡb

fb(ȳb, ȳ−b), (12a)

subject to (11b), (11c), (12b)
ῡb = λ̄b, (12c)
υb(t) ∈ V ∀t. (12d)

To ensure the equality constraint (12c), we introduce a set of
virtual queues Υbm(t) for each associated UE m ∈ Mb. The
evolution of virtual queues follow [9];

Υbm(t+ 1) = Υbm(t) + υbm(t)− λbm(t). (13)

Consider the combined queue Ξb(t) =
[
qb(t),Υb(t)

]
and its

quadratic Lyapunov function L
(
Ξb(t)

)
= 1

2Ξ†b(t)Ξb(t). Mod-
ifying (2) considering a chunk of time, the evolution of the
queue of UE m ∈ Mb can be reformulated as qbm(t + 1) =
max

(
0, qbm(t) + abm(t) − r̂bm(t)

)
. Thus, one-slot drift of Lya-

punov function ∆L = L
(
Ξ(t+ 1)

)
− L

(
Ξ(t)

)
is given by,

∆L=

(
q†b(t+1)qb(t+1)−q†b(t)qb(t)

)
+
(
Υ†

b(t+1)Υb(t+1)−Υ†
b(t)Υb(t)

)
2 .

Neglecting the indexes b, m and t for simplicity and using,

([q + a− r̂]+)2 ≤ q2 + (a− r̂)2 + 2q(a− r̂),
(Υ + υ − λ)2 ≤ Υ2 + (υ − λ)2 + 2Υ(υ − λ),

the one-slot drift can be simplified as follows:

∆L ≤ K + q†b(t)
(
ab(t)− r̂b(t)

)
+ Υ†b(t)

(
υb(t)− λb(t)

)
,

where K is a uniform bound on the term
(
ab(t)−r̂b(t)

)†(
ab(t)−

r̂b(t)
)

+
(
υb(t) − λb(t)

)†(
υb(t) − λb(t)

)
. The conditional ex-

pected Lyapunov drift at time t is defined as ∆
(
Ξ(t)

)
=

Algorithm 1 UE Scheduling Algorithm Per SBS
1: Input: qb(t) and Υb(t) for t = 0 and SBS b ∈ B.
2: while true do
3: Observation: queues qb(t) and Υb(t), and running averages

λ
avg

b (t).
4: Auxiliary variables: υb(t) = arg minν∈V Υ†b(t)ν.
5: Scheduling: λb(t) = arg maxδ∈L(t,x) q

†
b(t)r̂b(t) +

Υ†b(t)δ − V∇
†
δf
(
λ

avg

b (t)
)
δ.

6: Update: qb(t+ T ), Υb(t+ T ) and λ
avg

b (t+ T ).
7: t→ t+ T
8: end while

E [L
(
Ξ(t + 1)

)
|Ξ(t + 1)] − L

(
Ξ(t)

)
. Let V ≤ 0 be a parameter

which control the tradeoff between queue length and the accuracy
of the optimal solution of (12) and λ

avg

b (t) = 1
t

∑t−1
τ=0 λb(τ)

be the current running time averages of scheduling variables.
Introducing a penalty term V∇†λb

f
(
λ

avg

b (t)
)
E [
(
λb(t)

)
|Ξ(t)] to

the expected drift and minimizing the upper bound of the drift
DPP, K + V∇†λb

f
(
λ

avg

b (t)
)
E [
(
λb(t)

)
|Ξb(t)] + E [q†b(t)

(
hb(t) −

r̂b(t)
)
|Ξb(t)]+E [Υ†b(t)

(
υb(t)−λb(t)

)
|Ξb(t)], yields the control

policy of SBS b. Thus, the objective of SBS b is to minimize the
below expression given by,

[
penalty︷ ︸︸ ︷

V∇†λb
f
(
λ

avg

b (t)
)
λb(t)−

QSI and CSI︷ ︸︸ ︷
q†b(t)r̂b(t)−

Impact of virtual
queue and scheduling︷ ︸︸ ︷

Υ†b(t)λb(t)
]

#1

+
[

Υ†b(t)υb(t)︸ ︷︷ ︸
Impact of virtual
queue and auxiliaries

]
#2
,

at each time t. The terms K and q†b(t)ab(t) are neglected
since they do not depend on λb(t) and υb(t). Note that terms
#1 and #2 have decoupled the scheduling variables and the
auxiliary variables, respectively. Thus, the respective variables can
be found independently by minimizing the individual terms. The
UE scheduling algorithm which solves (12) is given in Algorithm
1.

It is worth to mention that the resulting scheduling vector
λb(t) is a standard unit vector due to the affine nature of the
corresponding maximization objective with respect to λb(t), i.e.
λbm′(t) = 1 only if m′ = arg maxm∈M qbm(t)r̂bm(t)+Υbm(t)−
V ∂
∂λbm

[f
(
λ

avg

b (t)
)
]. Thus, scheduling a single UE at a given time

instance is held, i.e. relaxing boolean schedule variable to a
continuous variable does not violate the scheduling policy. The
interrelation between the MFG and the Lyapunov optimization is
illustrated in Fig. 1.

V. NUMERICAL RESULTS

For the simulations, the problem needs to be simplified in
order to solve the coupled PDEs using a finite element method.
We used the MATLAB PDEPE solver for the above purpose.
We assume that channels are not time-varying and thus, the
state is solely defined by the QSI. Moreover, the QSI and the
scheduling time window T are assumed to be normalized. The
initial limiting distribution, ρ

(
0,x(0)

)
, are assumed to follow a

superposition of two truncated Gaussian distributions with means
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(b) Transmit power at the MF equilibrium as a function of
time and QSI.

Fig. 2. Evolution of limiting distribution ρ?(t, q) and transmit power p?(t, q)
at the MF equilibrium.

0.4, 0.75 and variance 0.1, respectively. The choice of the final
utility, the boundary condition, Γ

(
T,x(T )

)
= −4 exp

(
x(T )

)
is

to encourage the scheduled UE to obtain an almost empty queue
by the end of its scheduled period T . The arrival rate A(t) for a
UE is modeled as a Poisson process with a mean of Ā = 0.2. The
utility of a SBS at time t is its EE r(t)/

(
p(t) + p0). Here, p0 is

the fixed circuit power consumption at an SBS [12]. Due to fact
that the PDEPE solver is modeled with normalized parameters
in terms of queue and time, for the purpose of simulation we
assume that the transmit power is p ∈ [0, 20] and the variance of
Gaussian noise is σ2 = 1. Here, the SBSs and UEs are randomly
distributed over the area following a uniform distribution.

The proposed method is compared to a baseline system in
which the SBS transmit powers are fixed and PF UE scheduling
is used. For a fair comparison, we consider that both models
use a same average transmit power and thus, the fixed transmit
power for the baseline model is set to 10 units. The SBS density
of the system is defined by the average inter-site-distance (ISD)
normalized by the half of minimum ISD, i.e. minimum ISD is
2 unit. The average load per SBS is k = |M|/|B|. Once a UE
is scheduled, 100 transmissions will take place within the time
period of T = 1.

A. Mean field equilibrium of the proposed model

Fig. 2 shows the MF distribution ρ?(t, q), i.e. evolution of the
QSI distribution of scheduled UEs over time, and transmit power
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Fig. 3. Comparison of the behavior of EE and probability of data drops for
different SBS densities.

policy at the MF equilibrium. During the period of T = 1, SBSs
transmit to their scheduled UEs and expect to achieve QSI close
to zero by t = T as shown in Fig. 2(a). It can be noted that by
the end of transmission phase, the number of scheduled UEs with
high QSI diminishes allowing SBSs to schedule new set of UEs
by the next UE scheduling phase. In Fig. 2(a), we can see that
the fraction of queues with q(t) = {0.4, 0.8} vanishes before the
transmission duration ends. As time evolves, the queues get empty
based on the rates prior to new arrivals and thus, a non-monotonic
increment is observed for the queue fractions with q(t) = 0.

The transmit power policy at the MF equilibrium is shown in
Fig. 2(b). It can be observed that a higher transmit power is used
when QSI is high and it is lowered at low QSI, showing the
overall EE of the proposed approach. Here, we recall that the
choice of Γ

(
T,x(T )

)
= −4 exp

(
x(T )

)
forces SBSs to obtain

smaller QSI at t = T . Thus, as time evolves, SBSs increase their
transmit power for UEs with high QSI as illustrated in Fig. 2(b)
thereby improving the final utility.

B. Energy efficiency and outage comparisons

In Fig. 3, we show the EE of the system in terms of transmit
bits per unit power and outage probability as a function of the
ISD. Here, the outage probability is defined as the fraction of
unsatisfied UEs whose arrivals are dropped due to limitations of
the queue capacity. We can see that, for low ISD (i.e., ultra-
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Fig. 4. Comparison of the behavior of EE and probability of data drops for
different loads.

dense scenario), due to the presence of high interference, SBSs
consume high transmit power and significant amount of outages
can be observed for both baseline and proposed methods. As ISD
increases, the network becomes sparse and interference reduces,
resulting in increased EE and decreased outages. The choice of
fixed power for the baseline model, mean power obtained by
the proposed model, yields almost equal EE in both systems as
illustrated in Fig. 3(a). However, the proposed method optimizes
its power over time and QSI along DPP based UE scheduling
and thus, higher energy efficiency compared to the baseline are
obtained. For a low load, the average gain in EE of the proposed
method is about 3.6% higher compared to the baseline while
it reaches up to 18.1% for a high load scenario. Although the
EE gains of the proposed model are small compared to the
baseline, the reductions in outage probability are significant. From
Fig. 3(b), we note that the proposed method yields 58.5% and
98.2% reductions in outages compared to the baseline model for
both high and low loads, respectively, in UDNs. For a sparse
network, the outage reductions are 98.7% and 95.8% for high
and low loads, respectively.

Fig. 4 shows the EE and outrage probabilities as the loads vary.
As the load per SBS increases, UEs are scheduled with much less
frequency which decreases the average rate per UE. Therefore, a
degradation in EE is observed in both methods as illustrated in
Fig. 4(a). However, due to the adaptive nature of transmit power,

the proposed method exhibits about 6.4% and 11.9% gains in
EE compared to the baseline for ultra-dense and sparse networks,
respectively. According to Fig. 4(b), higher outage can be seen for
increasing load. These outages are low for sparse networks while
significantly large for UDNs due to the increased interference
and low rates. Moreover, for a low load scenario, Fig. 4(b)
illustrates that the proposed method reduces the outages by 98.2%
and 95.7% compared to the baseline model for ultra-dense and
sparse networks, respectively. As the load increases, although both
models experience high outages, the proposed model displays
45.3% and 93.6% outage reductions compared to the baseline
model with high loads and for ultra-dense and sparse scenarios,
respectively.

Based on the above comparisons, it can be observed that the
transmit power policy obtained by solving the MFG and the QSI
aware UE scheduling developed on Lyapunov framework allows
SBSs to improve their EE while providing a high UEs’ QoS.

VI. CONCLUSIONS

In this paper, the problem of joint power control and user
scheduling for ultra-dense small cell deployment is formulated
as a MFG under the uncertainties of QSI and CSI. The goal is
to maximize a time-average utility (energy efficiency in terms
of bits per unit power) while ensuring users’ QoS concerning
outages due to queue capacity. Under appropriate assumptions,
the equilibrium of the MFG is analyzed with the aid of low-
complex tractable two partial differential equations (PDEs). While
the MFG provides the optimal transmit powers, the stochastic
optimization problem of user scheduling is solved via Lyapunov
framework. Numerical results have shown that the proposed
method provides considerable gains in EE and massive reductions
in outages compared to a baseline model. This work is to be
extended including the analytical study on the MF equilibrium
along more numerical verifications.
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