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Abstract—How would a cellular network designed for high
energy efficiency look like? To answer this fundamental ques-
tion, we model cellular networks using stochastic geometry and
optimize the energy efficiency with respect to the density of
base stations, the number of antennas and users per cell, the
transmit power levels, and the pilot reuse. The highest efficiency
is neither achieved by a pure small-cell approach, nor by a pure
massive MIMO solution. Interestingly, it is the combination of
these approaches that provides the highest energy efficiency; small
cells contributes by reducing the propagation losses while massive
MIMO enables multiplexing of users with controlled interference.

I. INTRODUCTION

Two key goals for the fifth generation (5G) cellular net-
works are improved spectral efficiency (SE) and higher energy
efficiency (EE) [1]. These performance metrics are coupled and
cannot be treated separately in the design of future networks
[2]. The key to improve the SE and EE is higher spatial reuse;
that is, more parallel transmissions per km2. There are two
main densification approaches: 1) smaller cell radius [3] and
2) massive MIMO (multiple input, multiple output) technology
[4]. The purpose of this paper is to show that these approaches
are fundamentally non-competing; in fact, both are needed to
make future wireless networks truly energy efficient.

The EE is defined as the benefit-cost ratio of the network:

EE=
Area Spectral Efficiency [bit/symbol/km2]

Transmit + Circuit Power per Area [Joule/symbol/km2]

This definition reveals that there are three main factors that can
be modified when optimizing the EE of a cellular network.

Smaller cells are obtained by densifying the base station
(BS) deployment. This has a positive effect on the EE in terms
of increasing the SE and reducing the transmit power (due to
lower propagation losses). However, the negative effect is the
increased circuit power due the larger amount of hardware
infrastructure. Small-cell deployments need to be modeled
in an asymmetric fashion since the users are non-uniformly
distributed over the coverage area. This makes Poisson point
processes (PPPs) suitable and tractable analytic models [5].

In contrast, massive MIMO evolves the conventional BS
technology by replacing the bulky high-gain vertical antennas
with arrays comprising hundreds of small dipole antennas.
Contrary to what the term “massive” suggests, massive MIMO
arrays are rather compact; 160 dual-polarized antennas at 3.7
GHz fit into the form factor of a flat-screen television [6]. By
processing the antennas coherently, the array can receive and
transmit a multitude of signals for users at different spatial
locations. The positive effects on the EE comes from higher
SE and less transmit power (due to an array gain), but the
circuit power increases with the number of BS antennas.
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Fig. 1. Illustration of one realization of BS positions from the PPP Ψλ with
K users uniformly distributed in the corresponding Poisson-Voronoi cells.

Both approaches to improve EE are associated with non-
trivial tradeoffs. In this paper, we optimize the deployment of a
cellular network for higher EE on the uplink. The optimization
variables are the BS density, the number of antennas and active
users per BS, the transmit powers, and the pilot reuse. We
prove the fundamental interplay between these parameters and
show how to achieve high EE. Some previous works are the
analytic single-cell analysis in [7], [8] and the numerical multi-
cell analysis in [8], [9]. This is a continuation of our prior work
in [10], which was limited to perfect channel state information.

II. SYSTEM MODEL

We consider a cellular network that is designed to serve
users from a heterogeneous user distribution. To this end, we
adopt the stochastic geometry model in [5], where the BSs
are distributed in R2 according to a homogeneous PPP Φλ of
intensity λ [BSs per km2]. More precisely, this means that in
any area of size A km2, the number of BSs is a random number
from a Poisson distribution with mean value λA. These BSs
are uniformly and independently distributed over the area.

Each BS has M antennas and serves K single-antenna user
equipments (UEs). Each UE connects to its closest BS, hence
the coverage area of a BS is its Poisson-Voronoi cell; see
Fig. 1. The UEs are assumed to be uniformly distributed in the
cells. Since there are K UEs per cell, small cells have higher
user density (per km2) than larger cells, giving a judicious
deployment based on a heterogenous user distribution.1

We consider uplink transmission where the time-frequency
resources are divided into blocks of Tc seconds and Wc Hz.
This leaves room for a total number of S = TcWc transmission
symbols for pilots and data. The channel response between
BSl ∈ Φλ and UE k in cell j is modeled in each block as

1Alternatively, the UEs could have been distributed according to an inde-
pendent homogeneous PPP. This is less sensible since smaller cells would on
average have fewer UEs than larger cells, which contradicts the main principle
of densifying networks mainly at places with high user loads.
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a random Rayleigh fading vector hljk ∼ CN (0, ω−1d−αljk IM ).
The variance is given by the Euclidean distance dljk [km], the
pathloss exponent α > 2, and the parameter ω that determines
the propagation loss at the reference distance of 1 km.

The translation invariance of PPPs allows to perform statis-
tical performance analysis for a typical UE at the origin, which
is statistically representative for any other UE in the network
[11]. Assume that this typical UE has the arbitrary index k
and is connected to a typical BS, denoted as BS0 ∈ Φλ. Then,
the following basic properties hold (see for example [12]):

Lemma 1. The distance from the typical UE to its serving BS
is d00k ∼ Rayleigh

(
1√
2πλ

)
. The BSs of the other cells form a

homogeneous PPP Ψλ = Φλ\{BS0} in {x ∈ R2 : ‖x‖≥d00k}.
The received signal y0 ∈ CM at BS0 is modeled as

y0 =

K∑
i=1

√
p0is0ih00i +

∑
j∈Ψλ

K∑
i=1

√
pjisjih0ji + n0 (1)

where n0 ∼ CN (0, σ2IM ) accounts for the receiver noise. The
arbitrary symbol transmitted by UE i in cell j is denoted by
sji ∈ C and is normalized to unit power (i.e., E{|sji|2} = 1),
while the corresponding transmit power pji ≥ 0 is selected
as pji = ρωdαjji with ρ ≥ 0 being a power-control coefficient
that will be optimized later on. This is a power-control policy
based on statistical channel-inversion that gives an average
effective channel gain of E

{
pji‖hjji‖2

}
= Mρ for all UEs

(irrespective of their locations), which is necessary to avoid
near-far blockage in uplink multi-user MIMO systems.

Pilot transmission is used to estimate channels. We assume
that there are B pilot symbols per block, where K ≤ B ≤ S.
Each BS selects K different pilots uniformly at random in
each block and we call β = B

K ≥ 1 the pilot reuse factor.
Hence, the probability that BSj has a UE (with index k for
convenience) that reuses the pilot of the typical UE is 1/β. Let
χ0kj ∈ {0, 1} be the corresponding random variable, where
χ0kj = 1 has probability 1/β and means that cell j reuses the
pilot of the typical UE, then BS0 receives the signal

z0k =
√
p0kh00k +

∑
j∈Ψλ

χ0kj
√
pjkh0jk + n0 (2)

during pilot transmission from the typical UE. The minimum
mean-squared error (MMSE) estimate of h00k is [13]

ĥ00k =

√
1

ρωdα00k

1
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dαjjk
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+ σ2

ρ
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and the estimation error ∆h00k = h00k − ĥ00k is distributed
as ∆h00k ∼ CN (0,C00k) with

C00k =
1

ωdα00k

(
1− 1

1 +
∑
j∈Ψλ

χ0kj
dαjjk
dα0jk

+ σ2

ρ

)
IM . (4)

We assume that the BSs use the estimated channels for
maximum ratio combining (MRC). In particular, the data
symbols transmitted by the typical UE are detected at BS0 by
correlating the received signal in (1) with the MMSE estimate
as r0k = ν00kĥ

H

00ky0, where ν00k ∈ C is a scaling factor [13].

III. PROBLEM FORMULATION

In this section, we formulate the EE maximization prob-
lem considered in this paper. Since the ergodic capacity of
a network with imperfect channel knowledge and inter-cell
interference modeled as a shot-noise process is not known yet
[12], the first step towards formulating the EE is thus to obtain
a tractable SE expression. We derive the following lower bound
using the approach from [14] and Jensen’s inequality.

Proposition 1. If MRC is employed, a lower bound on the UL
average SE [bit/symbol/user] is

SE =
(

1− βK

S

)
log2(1 + SINR) (5)

where SINR is given by (6) at the top of the page.

This lower SE bound holds for any β ≥ 1 such that βK ≤
S, since the pilot signals need to be contained in a coherence
block. Observe that βK does not need to be an integer since
an arbitrary βK can be achieved by switching (for appropriate
fractions of time) between the closest smaller integer and the
closest larger integer.

This work aims at maximizing the EE with respect to the
optimization variables θ = (β, ρ, λ,K,M). The area spectral
efficiency (ASE) [bit/symbol/km2] is computed as

ASE(θ) = λK
(

1− βK

S

)
log2(1 + SINR) . (7)

The area energy consumption (AEC) [Joule/symbol/km2] ac-
counts for radiated signal energy, dissipation in analog hard-
ware, digital signal processing, backhaul signaling, and various
overhead costs (e.g., cooling and power supply losses). A
detailed model of these factors was given in [8]:

AEC(θ) = (8)

λ

(
S−βK+1

S

ρω

η

Γ(α2 + 1)

(πλ)α/2
K+C0+C1K+D0M+D1MK

)
where we have used that

E{pji} = ρω
Γ(α/2 + 1)

(πλ)α/2
(9)

and that each UE transmits S−βK data symbols and one pilot
symbol per block [13]. The amplifier efficiency is η ∈ (0, 1],
C0 models the static energy consumption of a BS, and D0M
models the energy consumption of the BS transceiver chains.
Moreover, C1K+D1MK accounts for the energy consumed by
a UE and the BS signal processing. The forthcoming analysis
holds for any positive value of these parameters, but examples
are given in Table I.

The objective of this paper is to solve the following
constrained EE maximization problem:

maximize
θ∈Θ

EE(θ) =
ASE(θ)

AEC(θ)

subject to SINR ≥ γ
(10)

where Θ = {θ : ρ ≥ 0, λ ≥ 0, β ≥ 1, (M,K)∈Z+,Kβ ≤ S}
is the set of feasible optimization variables and the parameter



γ > 0 imposes an average SE constraint of log2(1 + γ)
[bit/symbol/user], where the average is computed with respect
to both BS and UE locations. The need for such a constraint
comes from the observation that an unconstrained EE maxi-
mization may lead to very low SEs per UE.

IV. ENERGY-EFFICIENCY MAXIMIZATION

In this section, we solve the EE maximization problem
in (10). The proofs of all theorems are omitted due to space
limitations but can be found in [13].

A. Optimal Pilot Reuse Factor β
We begin by deriving the optimal value of the pilot reuse

factor β when the other optimization variables are fixed. As
stated in the following theorem, the EE-optimal value of β is
such that the SINR constraint is met with equality.

Theorem 1. Consider any set {ρ, λ,M,K} for which the
problem (10) is feasible for some β. The SINR is an increasing
function of β and the SINR constraint in (10) is satisfied by
selecting

β? =
B1γ

M −B2γ
(11)

where

B1 =
4K

(α− 2)2
+
K +M

α− 1
+

2(K + σ2

ρ )

α− 2
(12)

B2 =

(
K +

σ2

ρ
+

2K

α− 2

)(
1 +

σ2

ρ

)
. (13)

This theorem explains how the EE-optimal pilot reuse
factor β? depends on the other system parameters. Recall
that larger β leads to higher estimation accuracy. From (11)–
(13), it is easily seen that, to guarantee a certain SINR, β?
increases with K (since the interference increases with more
UEs) whereas β? decreases with ρ as well as with M (as
it follows from taking the derivative of β? with respect to
M ). This is because both ρ and M amplify the desired signal,
which as consequence improves channel estimation and makes
the system operate in a less noise limited regime.

B. Optimal BS Density and Radiated Power
Based on β? in Theorem 1, the optimal values for the BS

density λ and the power control coefficient ρ are as follows.

Theorem 2. Define ρ = λρ̃ for ρ̃ > 0 and consider any set
of {ρ̃,M,K} for which the problem (10) is feasible using β?.
The EE is then a monotonically increasing function of λ and
is maximized as λ→∞.

This theorem proves that from an EE perspective it is
preferable to have as high BS density as possible. This might
sound counterintuitive at first, since the inter-cell interference
typically grows as the cells become smaller. However, for any
α > 2 the adopted power control policy reduces the average
transmit power as ρ̃/λα/2−1 with the BS density λ (as it
follows from (9)). Thus, the desired and interfering signals
are amplified equally much on average; in other words, it is
only the impact of noise that vanishes as λ increases.

It is clearly unreasonable to have an infinitely high BS
density, but the numerical results in Section V show that the
asymptotic limit is approached already at λ = 10 BS/km2,
which is a modest number. In ultra-dense deployments, λ is

expected to be one or several orders of magnitude larger than
this. Hence, we can proceed the EE maximization analysis by
actually letting λ→∞ without loss of realism.

C. Optimal Number of Antennas and UEs per BS
By using Theorems 1 and 2, the original EE maximization

problem in (10) has been reduced to2

maximize
M,K∈Z+

K(1− K
S

B̄1γ
M−B̄2γ

) log2(1 + γ)

C0 + C1K +D0M +D1MK
(14)

subject to
B̄1γ

M − B̄2γ
≥ 1 (15)

where we have defined (as obtained from (12) and (13) when
ρ→∞)

B̄1 = K

(
4

(α− 2)2
+

1

α− 1
+

2

α− 2

)
+

M

α− 1
(16)

B̄2 = K

(
1 +

2

α− 2

)
. (17)

To find the optimal values for M and K, an integer-relaxed
version of (14) is first considered where M and K can be any
positive real-valued scalars. The integer-valued solutions are
extracted from the relaxed problem. For analytic tractability,
we first fix the number of BS antennas per UE, c̄ = M/K,
and find the EE-maximizing value of K as follows.

Theorem 3. Consider the optimization problem (14) where M
and K are relaxed to be real-valued variables. For any fixed
c̄ = M/K > 0 such that the relaxed problem is feasible for
some K, the EE is maximized by

K? =

√
(GC0)

2
+ C0D1c̄+ C0G (C1 +D0c̄)−GC0
D1c̄+G (C1 +D0c̄)

(18)

where

G =
1

S

4γ
(α−2)2 + γ

α−1 + 2γ
α−2 + γ

α−1 c̄

c̄−
(

1 + 2
α−2

)
γ

. (19)

Similarly, if K is fixed, then the EE-maximizing value of
M is obtained as follows.

Theorem 4. Consider the optimization problem (14) where M
and K are relaxed to be real-valued variables. For any fixed
K > 0 such that the relaxed problem is feasible, the EE is
maximized by M? in (20), at the top of the next page, if it
satisfies the constraint in (15). Otherwise, it is maximized by

M? =
Kγ

(
1 + 4

(α−2)2 + 1
α−1 + 4

α−2

)
1− γ

α−1

. (21)

The following parameters are used in these expressions:

a0 =
γ

S(α− 1)
(22)

a1 =
1

S

(
4γ

(α− 2)2
+

γ

α− 1
+

2γ

α− 2

)
(23)

a2 =

(
1 +

2

α− 2

)
γ. (24)

2We have also dropped the constraint β? ≤ S/K since the EE becomes
negative when this is not satisfied, thus the maximal EE is not affected.



M? = K
a1K + a2 +

√
a1a2K + a2

1K
2 + (1− a0K)(a1K + a0a2K) C0+C1K

D0K+D1K2 + a0a1a2K2 + a0a2
2K

1− a0K
(20)

Theorems 3 and 4 show how K and M are related at the
EE-optimal points. We notice that that M? increases with K,
and vice versa. An important question is whether the EE is
maximized at K = 1 (single-user transmission) or at K > 1
(multi-user transmission). The answer is ultimately determined
by the hardware characteristics: From (18) it is found that
K? increases with the static energy consumption C0, while
it decreases with C1, D0, and D1 that are the terms of the
AEC that increase with K and M . Similarly, M? increases
with C0 and C1, but decreases with D0 and D1. The intuition
is that more hardware should be turned on (i.e., BS antennas
and UEs per cell) only if the increase in circuit power has a
marginal effect on the total AEC. Similarly, with a larger static
consumption we can afford to turn on more BS antennas and
UEs since the relative power cost is lower. In addition, we note
that M∗ is an increasing function of γ, since deploying more
antennas is a reliable way to achieve higher rates.

We can now devise an alternating optimization algorithm
that solves the integer-relaxed EE maximization problem:

1) Find a feasible starting point (M,K) to (14);
2) Optimize K for a fixed c̄ = M/K using Theorem 3;
3) Optimize M for a fixed K using Theorem 4;
4) Repeat 2)–3) until convergence is achieved.
This algorithm can be shown to converge to the global

optimal solution (K??,M??) ∈ R2 of the integer-relaxed
version of the EE maximization problem (14); see [13] for
details. It is hard to find an equally strong result for the integer-
valued global optimum to (14), but (K??,M??) is a good
starting point for finding the best integers K and M . In fact,
one can show that the EE is quasi-concave with respect to K
and M , which implies that the integer-solution is contained in
a convex level set around (K??,M??), which effectively limits
the distance from the solution to the relaxed problem.

To summarize, the EE maximization problem in (10) was
solved by selecting β such the SINR constraint is satisfied with
equality, letting λ→∞ (which removes the impact of ρ), and
devising an alternating optimization algorithm that provides
the real-valued K and M that maximize the EE. The final
solution (K?,M?) is then found by searching through the
integer points in the vicinity of the real-valued solution, and
capitalizing on the quasi-concavity. In the process of solving
(10), Theorems 1–4 have also exposed the fundamental inter-
play between the optimization variables and how they depend
on the hardware characteristics and propagation parameters.

V. NUMERICAL EXAMPLES

In this section, we provide numerical results that illustrate
and validate the analytic results of previous sections. The
optimization problem in (10) depends on a number of parame-
ters that describe the propagation and hardware characteristics.
Table I provides the parameter values used in the simulations.

Fig. 2 shows the EE as a function of λ, when the other
variables are optimized numerically for each given value of λ.
We show results for the lower bound on the SE in Proposition
1 and an upper bound obtained by numerical averaging over
the BS and UE positions for a finite number of interferers. We
consider the SINR constraints γ ∈ {1, 3, 7} and in all three

TABLE I. SIMULATION PARAMETERS

Parameter Symbol Value
Pathloss exponent α 3.76

Coherence block length S 400

Propagation loss at 1 km ω 130 dB

Power amplifier efficiency η 0.39

Symbol time τ 1
2·107

[s/symbol]

Static energy consumption C0 10 W · τ [J/symbol]

Circuit energy per active user C1 0.1 W · τ [J/symbol]

Circuit energy per BS antenna D0 1 W · τ [J/symbol]

Signal processing coefficient D1 1.56 · 10−10 [J/symbol]

Noise variance σ2 10−20 [J/symbol]
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cases there is only a small gap between the lower and upper
bounds. The important message from Fig. 2 is that the EE
increases with λ, but begins to saturate around λ = 10. Hence,
EE maximization based on letting λ → ∞ gives realistic
results in both contemporary and future urban deployments.

Fig. 3 shows the EE for γ = 3 as a function of M and K,
when λ, ρ, and β are optimized. The maximal EE is 10.156
Mbit/Joule and is achieved by (M?,K?, β∗) = (89, 10, 7.24).
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Fig. 5. Optimized BS density (in BS/km2) as a function of the UE density
(in UE/km2). The system is optimized in the same way as in Fig. 4.

This solution is a massive MIMO configuration with a high
pilot reuse factor. The rationale is that large M and β give
good interference suppression, while the large K is a way to
share the energy costs associated with a BS between UEs.

The alternating optimization algorithm is also illustrated
in Fig. 3. It is initiated at (M,K) = (20, 1) and converges
in three iterations to the real-valued solution (M??,K??) =
(91.2, 10.2) with an EE of 10.375 Mbit/Joule, which is 0.013%
higher than the EE at the integer-valued solution. Hence, the
EE performance is quite flat around the global optimum; it
decreases quickly with K but slowly with M .

A. EE Maximization for a Given UE Density
Next, we study the tradeoff between massive MIMO and

small cells when a cellular network is deployed to cover a
heterogeneous UE density of µ UE/km2. Mathematically, this
amounts to solving (10) with the additional constraint µ = Kλ,
which can be easily solved numerically. We consider the range
µ ∈ [102, 105] since the METIS project report [15] predicts
future UE densities from µ = 102 UE/km2 (in rural areas) to
µ = 105 UE/km2 (in shopping malls).

Fig. 4 shows the EE as a function of the UE density µ
for the average SINR level γ = 3, while Fig. 5 shows the
corresponding BS density. Apart from the optimal solution, we
consider two reference cases: single-user single-input multiple-
output (SIMO) transmission with (M,K) = (10, 1); and
massive MIMO with (M,K) = (89, 10).

We notice that the EE level is roughly independent of the
UE density for µ ≥ 100, which includes all the cases predicted
in [15]. Single-user transmission is attractive for very low UE
densities, while massive MIMO transmission is the best choice
in the practical cases: Fig. 4 shows how it improves the EE
by a factor 3 and Fig. 5 shows that for a given UE density
we can have 10 times fewer BSs per km2. The latter has the
benefit of greatly reducing the deployment costs.

VI. CONCLUSION

Massive MIMO and small cells are two approaches to
improve the energy efficiency of wireless networks. The main
benefit of small cells is the reduced propagation losses, while
the main benefit of massive MIMO is the interference suppres-
sion among the UEs that share the energy costs associated with
the serving BS. Hence, these techniques are not competing
but have complementary features that should be combined to
achieve the maximal EE in future wireless networks; massive
MIMO and small cells are a perfect match for marriage.
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