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The Constitutive Relation Error Method:
A General Verification Tool

Pierre Ladevèze and Ludovic Chamoin

Abstract This chapter reviews the Constitutive Relation Error method as a general 
verification tool which is very suitable to compute strict and effective error bounds 
for linear and more generally convex Structural Mechanics problems. The review is 
focused on the basic features of the method and the most recent developments.

Keywords A posteriori error estimation · Constitutive relation error · Duality · 
Goal-oriented control · Nonlinear problems · PGD models

1 Introduction

Today, more than ever, modeling and simulation are central to any mechanical engi-

neering activity. A constant concern both in industry and in research has always been 
the verification of models which nowadays can attain very high levels of complexity. 
The novelty of the situation is that over the last thirty years truly quantitative tools 
for assessing the quality of a FE model have appeared; this topic is now known as 
model verification. Of course, the original continuum mechanics model remains the 
reference. The state of the art can be found in [1–5]. Until the late 90s, only global 
error estimators were available through three different families introduced by [6–8]. 
Besides error indicators, adaptive computational approaches related to the mesh, time 
and iteration parameters have been developed for nearly all problems in Structural 
Mechanics. The CRE-verification method could be seen as a unified method in this 
context.

Since 1990, a key issue has become the evaluation of the quality of outputs of 
interest resulting from a finite element analysis. This objective was beyond the reach
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of earlier error estimators, which provided only global information which was totally

insufficient for mechanical design purposes (design criteria involve local values of

stresses, displacements, stress intensity factors,…). Among the numerous works on

the linear case, we can mention [9–13] as the earliest ones; further references can

be found in [2–5]. The main idea which emerged then was that an output of interest

can be written globally, thus allowing the reuse of global error estimators; however,

accurate error estimation requires the finite element solution of what is called the

adjoint problem. Extensions to nonlinear time-dependent cases appeared in the late

90s [12, 14, 15]; these approaches consisted in getting back to the linear case through

linearization during each time step.

Unfortunately, most of these estimates are not guaranteed to be upper or lower

bounds, which is a very serious drawback for robust design. Consequently, one of

today’s research challenges is to derive upper error bounds for the calculated values

of outputs of interest. Even in the linear case, relatively few works have proposed

answers [1, 4, 9–11, 13, 16, 17]. Outside of the FE context, and only for the linear

case, there are a few early works on this subject, such as [18, 19]. These, which use

analytical Green functions, have serious limitations and seem quite remote from the

present concern, in which numerical aspects are central.

Recent papers [20–22] introduced new upper error bounds on a computed output

of interest for linear as well as time-dependent nonlinear problems, even in dynam-

ics. These were probably the first strict upper bounds published for nonlinear and

transient dynamics cases. Small-displacement problems without softening, such as

(visco-)plasticity, were included through the standard thermodynamics framework

involving internal state variables. Classical convexity properties were assumed. These

works completed the a posteriori error estimation method developed particularly at

LMT-Cachan, which was based on the concept of Constitutive Relation Error (CRE)

of the dissipation type and on quasi-explicit techniques for the construction of asso-

ciated admissible FE solutions.

The first key point of this approach was the integration of an output of interest

in terms of finite variations; this led to the introduction of what is called the mirror

problem at time T, which is very similar to the initial problem, as a substitute for the

adjoint problem. Of course, the mirror problem coincides with the adjoint problem

in the linear case. Another key point concerned the convexity properties, which

constitute the true “engine” of our approach for deriving upper error bounds. These

properties led to the basic relations between the dissipation-type constitutive relation

error and the solution error. Eventually, upper error bounds were derived on the basis

of the data and the FE solutions of both reference and mirror problems over the time-

space domain being studied. It is also important to note that these bounds take all

sources of error into account: time and space discretizations, ending of the iterations,

and also modeling errors.

The present chapter goes in two directions. First, we give the main features of the

CRE-method, going into details only for the linear case. Second, we introduce the

advances performed recently. They mainly concern key technical points [23–27] and

also various engineering problems [21, 22, 28–33]. Complex material models even

in dynamics are considered and Constitutive Relation Errors are developed in [4].

2



The idea is rather simple; all equations are satisfied by admissible fields except the

Constitutive Relation, so that the value of the residue related to the verification of the

constitutive relation is an error indicator of the quality of the approximate solution.

In other words, the approximate solution could be seen as the exact solution of

the problem with a modified constitutive relation; then we compare this modified

constitutive relation with the reference one. Here, we focus on upper error bounds and

therefore only a particular class of material models is investigated, class characterized

by convexity properties.

2 Reference Problem and Notations

Initially, the structure being studied occupies a domain Ω ⊂ R
d with boundary

∂Ω (Fig. 1). We assume small displacements, quasi-static loading and isothermal

conditions. The time interval of interest is denoted [0, T ]. At any time t belonging

to [0, T ], the structure is placed in an environment characterized by a displacement

Ud on a part ∂1Ω ⊂ ∂Ω , traction forces Fd on ∂2Ω (the part of ∂Ω complementary

to ∂1Ω), and body forces fd within the domain Ω .

The problem which describes the evolution of the structure over [0, T ] is:

Find the displacement field u(x, t) and the stress field σ(x, t), with t ∈ [0, T] and

x ∈ Ω , which verify:

• the kinematic constraints:

u ∈ U
[0,T ] ; u|∂1Ω = Ud on ]0, T [ (1)

• the equilibrium equations (principle of virtual work):

σ ∈ S
[0,T ] ; ∀t ∈]0, T [ ∀u∗ ∈ U ad,0

−
∫

�

σ : ε(u∗)dΩ +
∫

�

fd · u∗dΩ +
∫

∂2Ω

Fd · u∗dS =
∫

�

ρ
d2u

dt2
· u∗dΩ (2)

• the constitutive relation:

Fig. 1 Schematic representation of the environment (i.e. the prescribed conditions)
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∀t ∈ [0, T ] ∀x ∈ Ω σ|t = A
(
ε(u̇|τ ); τ ≤ t

)
(3)

ε(u) denotes the strain associated with the displacement
(
ε(u)i j = 1

2
(ui, j +

u j,i )
)
. U [0,T ] is the space containing the displacement field u defined over Ω×]0, T [,

and S
[0,T ] is the space containing the stresses, also defined over Ω ×]0, T [.

Finally, U ad,0 is the vector space of the prescribed virtual velocities. Operator A,

which is given and generally single-valued, characterizes the mechanical behavior

of the material. ρ is the density.

In the following we denote U
[0,T ]
ad the space of displacement fields which verify

(1), and S
[0,T ]
ad the space of stress fields which verify (2).

3 Use of CRE for Elasticity Problems

Let us start with the simplest family of mechanical problems, i.e. elasticity problems.

We focus on the final state of the structure at t = T ; thus, the problem to be solved

does not depend on time. Moreover, the constitutive relation (3) becomes:

σ = Kε(u) (4)

where K denotes the Hooke tensor, which is symmetric and positive definite. The

densities Ud , fd , and Fd are known at t = T . U = [H1(Ω)]d and S =
{second order symmetric tensor fields π ∈ [L2(Ω)]d(d+1)/2}. The spaces of the

admissible displacements and stresses are U ad and S ad , respectively.

3.1 Basics on CRE and Global Error Estimation

We assume that the finite element solution was calculated using a displacement

approach. Thus, the finite element displacement-stress pair (uh , σh) is known and

the stress σh is FE-equilibrated.

The principle behind our approach consists in associating a new and admissible

displacement-stress pair (i.e. belonging to U ad ×S ad ), denoted (ûh , σ̂h), to the data

and the finite element displacement-stress pair. This new entity also verifies what we

call the prolongation conditions, which are relations with the finite element solution.

The construction of (ûh , σ̂h) is achieved through a general quasi-explicit technique

which is now well-known [4, 34, 35], and which has several recent variants [26, 36];

an overview is given in the Appendix. For the displacement field, we generally take

ûh = uh ; for quasi-incompressible materials, a modification is shown in [37].

Let us first recall the Prager-Synge theorem [4, 38] which links the constitutive

relation error to the error in the solution. Introducing the constitutive relation error:
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[Eh
C RE ]2 ≡ Φ∗(σ̂h) + Φ(ε̂h) −

∫

�

σ̂h : ε̂hdΩ with ε̂h ≡ ε(ûh) (5)

where Φ and Φ∗ are the global potentials (dual convex functions) of the constitutive

relation:

Φ∗(σ ) ≡
∫

�

ϕ∗(σ )dΩ ; ϕ∗(σ ) ≡ 1

2
σ : K−1σ

Φ(ε) ≡
∫

�

ϕ(ε)dΩ ; ϕ(ε) ≡ 1

2
ε : Kε (6)

we have the following properties:

Φ∗(σ − σ̂h) + Φ(ε − ε̂h) = [Eh
C RE ]2

Φ∗(σ − σ̂h,m) = 1

4
[Eh

C RE ]2 with σ̂h,m ≡ 1

2

[
σ̂h + Kε̂h

]
(7)

The first relation in (7) leads to the guaranteed upper bound ||u − uh ||K ≤√
2Eh

C RE (uh, σ̂h) on the global discretization error (in the energy norm || • ||K),

and the quality of this bound depends on that of σ̂h . An illustration taken from [36]

is given in Fig. 2 and exhibits the distribution of the error estimate
√

2Eh
C RE (uh, σ̂h)

over the elements of the mesh. The structure is clamped on part of its boundary and

subjected to unit traction forces on the opposite boundary. The elastic material is

isotropic and linear with E = 1 and ν = 0.3.

t

t

t

t

x

z

y

Fig. 2 Reference problem (top left) with associated FE mesh (top right), magnitude of the FE Von

Mises stress (bottom left), and distribution of higher local contributions to the error (bottom right)
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3.2 Goal-Oriented Error Estimation

We now consider a local measure of the discretization error, defined on an output of

interest Q.

3.2.1 The Output of Interest

The quantity of interest Q is a goal-oriented quantity, such as the mean value of

a stress or displacement component over an element or a set of elements. Such an

output of interest can be written globally:

Q =
∫

�

σ : Σ̃dΩ (8)

where Σ̃ is the extractor which defines Q. Here, for the sake of simplicity, we do not

consider convex nonlinear functionals of the stress, but such extensions would not

involve serious difficulties. The Q-error is |Q − Qh | where Qh is the value obtained

from the finite element solution (uh, σh).

In order to get a relevant bound on |Q − Qh |, a common practice is to calculate

what is called the adjoint problem, which is very classical in this case: it consists in

an elasticity problem with a pre-strain Σ̃ . Its finite element solution, which can be

obtained with a refined mesh, is denoted (ũh , σ̃h), and an associated admissible FE

solution is ( ˆ̃uh , ˆ̃σh). The main result is [20]:

Theorem 1 The following guaranteed upper bound holds:

|Q − Qh − Qcorr | ≤ Eh
C RE .Ẽh

C RE (9)

where Eh
C RE and Ẽh

C RE are the constitutive relation errors related to the reference

problem and the adjoint problem, respectively. Qcorr is a correction term defined as:

Qcorr ≡
∫

�

(
σ̂h − Kε(ûh)

)
: K−1 ˆ̃σh,mdΩ +

∫

�

(
Kε(ûh) − σh

)
: Σ̃dΩ (10)

Proof The adjoint problem is here the previous elasticity one, the structure being

submitted to the pre-strain Σ̃ ; zero-value displacements and tractions are prescribed

on the boundary ∂Ω . The starting point is:

Q − Qh =
∫

�

Kε(u − ûh) : Σ̃dΩ +
∫

�

Kε(ûh − uh) : Σ̃dΩ (11)
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Noticing that:

∫

�

Kε(u − ûh) : Σ̃dΩ =
∫

�

ε(u − ûh) : Kε(ũ)dΩ

=
∫

�

ε(u − ûh) : (σ̃ − Kε( ˆ̃uh))dΩ +
∫

�

ε(u − ûh) : Kε( ˆ̃uh)dΩ (12)

=
∫

�

ε(u − ûh) : ( ˆ̃σh − Kε( ˆ̃uh))dΩ +
∫

�

(σ̂h − Kε(ûh)) : ε( ˆ̃uh)dΩ

and introducing σ̂h,m and ˆ̃σh,m as in (7), we get Q − Qh − Qcorr =
∫
�

(
σ − σ̂h,m

)
:

K−1
( ˆ̃σh − Kε( ˆ̃uh)

)
dΩ . Using the Cauchy-Schwarz inequality and (7), we obtain

the final upper bound.

Remark 1 The bound defined by the second member of (9) is half of the classical

bound (see [4]). Indeed, introducing σ̂h,m enables a more accurate bounding.

Remark 2 The value of the calculated error bound depends on the meshes used to

solve the reference and adjoint problems. It is always possible, by refining the mesh

of the adjoint problem alone, to control the value of the Q-error. In general, a local

refinement (near the domain of interest) of the mesh used to solve the adjoint problem

is very effective [23, 33].

Remark 3 The Galerkin orthogonality property related to the FE solution is not used

to derive Theorem 1.

Remark 4 Theorem 1 is based on the Cauchy-Schwarz inequality as nearly all error

bounds. In [27], a new bounding technique using the Saint-Venant principle and

homothetic domains is derived; this can give sharper bounds. The idea is to decom-

pose the domain Ω in two disjoint zones: (i) zone ωλ, parameterized with scalar value

λ, surrounding the zone where the quantity of interest is defined; (ii) complementary

zone Ω/ωλ. We can then write Q − Qh − Qcorr = qωλ
+ qΩ/ωλ

.

Bounding the term qΩ/ωλ
can be easily and accurately performed from the Cauchy-

Schwarz inequality applied over Ω/ωλ, as Ẽh
C RE |Ω/ωλ

remains small in practice.

Bounding the other term qωλ
is more technical; it leans on an inequality, related to

Saint-Venant’s principle, of the form:

||σ − σ̂h ||K−1|ωλ
≤ (

λ

λ
)1/k ||σ − σ̂h ||K−1|ω λ

+ γλ,λ (13)

where ω λ is a homothetic domain of ωλ, parameterized by scalar value λ ≥ λ (Fig. 3),

k is a computable constant that depends on the geometry of ωλ (and obtained analyt-

ically or numerically by solving an additional local eigenvalue problem), and γλ,λ is

a known term. In practice, λ is chosen the highest possible while ensuring ω λ ⊂ Ω ,

and λ the smallest possible with ωλ surrounding the zone of interest. The exponential

decrease with respect to λ/λ in (13) is the key point to avoid overestimation.
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Fig. 3 Homothetic domains ωλ and ω λ defined in a cracked structure when considering different

quantities of interest: local mean of a component of σ (left), and stress intensity factors in the

vicinity of the crack (right)

4 Use of CRE for Visco-Plasticity Problems

4.1 Basics on CRE and Global Error Estimation

We rewrite the reference problem (1)–(3) using some global notations within the

framework of classical thermodynamics with internal variables. Let us introduce the

following generalized quantities:

s =
[

σ

Y

]
ėp =

[
ε̇p

−Ẋ

]
ėe =

[
ε̇e

Ẋ

]
(14)

where additional internal variables are gathered in the n-vectors X and Y. The dis-

sipation bilinear form over the time-space domain is:

(ėp, s) 
−→
∫ T

0

∫

�

s · ėp dΩ dt =
∫ T

0

∫

�

(
σ : ε̇p − Y · Ẋ

)
dΩ dt (15)

The reference problem is thus to find (ėp, s) ∈ S
[0,T ] such that:

• ė = ėe + ėp is kinematically admissible

• s is statically admissible

• ee = Λ(s) (state equations) (16)

• ėp = B(s) (evolution laws)

• s = 0, e = 0 at t = 0 (initial conditions)

Λ is assumed to be linear; most viscoplastic materials are in this category (see [3, 39])

and this material description is called normal. B could be nonlinear and multivalued,

as in plasticity, but here we consider the family of standard materials whose state

evolution laws can be expressed with two potentials, which are dual (in the Legendre-

Fenchel sense) convex functions ϕ and ϕ∗ such that for (t, x) ∈ [0, T ] × Ω:
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∀(ėp, s) ∈ S
[0,T ] ϕ∗(s) + ϕ(ėp) − s · ėp ≥ 0

ϕ∗(s) + ϕ(ėp) − s · ėp = 0 ⇐⇒ ėp = B(s) (17)

Then, the constitutive relation (dissipation) error related to (ėp, s) ∈ S
[0,T ] is:

[EC RE ]2 =
∫ T

0

∫

�

[
ϕ∗(s) + ϕ(ėp) − s · ėp

]
dΩ dt (18)

4.1.1 The Associated Admissible FE Solution

In the dissipation error framework, the concept of admissibility must be modified [3]:

Definition 1 A pair (ėp, s) ∈ S
[0,T ] is admissible if:

(i) the state equations are verified
(
ee = Λ(s)

)

(ii) ė = ėe + ėp and s verify the kinematic constraints and the equilibrium

equations.

To go further, let us assume that the calculated solution was obtained using the

FE method. Thus, at discrete time points tm belonging to [0, T ], we know:

[ėh, sh]t ; t ∈ [0, t1, . . . , tn = T ] (19)

and [ėh, sh]t verifies the kinematic constraints and equilibrium equations in the FE

sense at these discrete time points. Assuming that the evolution of the data during

each time step is linear, we can extend the FE solution across the whole time-space

domain. Thus, we get (ėh, sh) ∈ S [0,T ] which verifies the kinematic constraints and

the equilibrium equations in the FE sense at any time t ∈ [0, T ].
In order to get an associated admissible solution, we use the same technique

as in elasticity to define a displacement-stress pair (ûh, σ̂h) which is admissible

in the classical sense i.e. which verifies the kinematic constraints, the equilibrium

equations and the initial conditions over [0, T ] × Ω . Let us note that in the case of

(visco-)plasticity with the constraint Tr[ε̇p] = 0, the previous displacement must

be modified so that Tr[ ˙̂εp] = 0. The additional internal variables (X̂h, Ŷh) which

must verify the state equations can be easily constructed by solving local problems

related to the minimization of the constitutive relation error of the dissipation type.

Finally, we obtain an admissible solution ( ˙̂ep, ŝ) ∈ S [0,T ] of the reference model.

More details can be found in [4, 39].

The differences between the computerized structural model and the reference

model are not limited to numerical aspects like time and space discretizations; models

can differ in their state evolution laws. For example, the reference can be a viscoplastic

material model while the calculations are performed with an elastic model.
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4.1.2 Link Between the Constitutive Relation Error and the Error

in the Solution

Let us first introduce what we call the ϕ-tangent potential at x :

ϕ(x ′ − x) ≡ ϕ(x ′) − ϕ(x) − y · (x ′ − x) ≥ 0 (20)

where ϕ, ϕ∗ are two dual convex functions and (x, y) is such that ϕ(x) + ϕ∗(y) −
x · y = 0; ϕ = ϕ for quadratic potentials. We give a new version of the fundamental

link between the constitutive relation error and the error in the solution derived in [3]:

Theorem 2 Let (ėp, s) be the exact solution and ( ˙̂ep,h, ŝh) an arbitrary admissible

solution to the reference problem. We have:

Φ
∗(

s − B−1( ˙̂ep,h)
)
+ Φ

(
ėp − B(ŝh)

)
+

∫ T

0

|ȧ|EF (s − ŝh)dt = [Eh
C RE ]2 (21)

with : • Φ ≡
∫ T

0

∫

�

a(t)ϕ dΩ dt Φ
∗ ≡

∫ T

0

∫

�

a(t)ϕ∗dΩ dt

• [Eh
C RE ]2 =

∫ T

0

∫

�

a(t)
[
ϕ∗(ŝh) + ϕ( ˙̂ep,h) − ŝh · ˙̂ep,h

]
dΩ dt (22)

• EF : free energy

• a(t) : arbitrary function such that a(t) ≥ 0 ȧ ≤ 0 a(T ) = 0

In some applications, it is interesting to restrict the time interval to a subinterval

[T ′, T ]. An identity similar to (21) holds, with the additional term a(T ′)E+
F |T ′ on

the right-hand side, where E+
F is an upper bound on EF (s − ŝh)|T ′ .

Proposition 1 An upper bound on the free energy EF (s − ŝh) at t is E+
F (t), solution

to:

E+
F (0) = 0 ; d

dt
(E+

F )+ω(E+
F , t) =

∫

�

[
ϕ∗(ŝh)+ϕ( ˙̂ep,h)− ŝh · ˙̂ep,h

]
dΩ (23)

where ω is a function such that:

ω
(
E+

F
(�s), t

)
≤ inf

�s∈Sad,0

∫

�

[
ϕ∗(

�s + ŝh − B−1( ˙̂ep,h)
)
+ ϕ

(
B(�s + ŝh) − B(ŝh)

)]
dΩ

(24)

S ad,0 being the space of statically admissible generalized stress fields under homo-

geneous conditions.

The proof of Proposition 1 essentially uses Theorem 2, written locally in time.
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4.2 Goal-Oriented Error Estimation

The output of interest can be defined as:

Q =
∫ T

0

∫

�

[
σ : δ

˙̃
Σ − Y · δ

˙̃
X

]
dΩ dt =

∫ T

0

∫

�

s · δ ˙̃eΣ dΩ dt (25)

where the extractor is δ ˙̃eΣ =
[

δ
˙̃

Σ

−δ
˙̃
X

]
with δ ˙̃eΣ = 0 at t = T .

Here, δ is a symbol indicating that δ ˙̃eΣ must be interpreted as a finite, but relatively

small, variation. However, we do not carry out any linearization. The classical adjoint

problem is replaced by what we call the mirror problem, which is similar to the

reference problem except that time goes backwards: τ ≡ T − t . This mirror problem,

written with δ-quantities, is defined as:

Find (δ ˙̃ep, δs̃) ∈ S
[0,T ] such that:

• δ ˙̃e = δ ˙̃ee + δ ˙̃ep is kinematically admissible

• δs̃ − δs̃Σ is statically admissible

• δẽe = Λ(δs̃) (state equations) (26)

• δ ˙̃ep = B̃(δs̃) ≡ B(sh + δs̃) − B(sh) (evolution laws)

• δs̃ = 0, δ ˙̃e = 0 at τ = 0 (initial conditions)

where sh(τ ) is the FE solution to the reference problem and δ ˙̃eΣ = B̃(δs̃Σ )+Λ(δ ˙̃sΣ ).

Let ( ˙̃eh, s̃h) be the FE solution to the mirror problem and (
˙̃̂
eh, ˆ̃sh) the associated

admissible FE solution over [0, T ] × Ω . From now on, all these quantities will be

defined with respect to the initial time t .

4.2.1 Upper Error Bound for an Output of Interest

The starting point is the following relation, which can be easily proven.

Proposition 2 Using the previous notations, the Q-error is equal to:

−Q + Qh + Qcorr =
∫ T

0

∫

�

(
s − ŝh,m

)
·
(
B̃(δ ˆ̃sh)−δ

˙̃̂
ep,h

)
dΩ dt +C(s − sh, δs̃Σ )−C(s − sh, δ ˆ̃sh)

(27)
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where : • Qcorr ≡ −
∫ T

0

∫

�

[( ˙̂eh − ėh

)
·
(
δs̃� − δ ˆ̃sh

)
−

(
ŝh − sh

)
· δ

˙̃̂
eh

+
(
ŝh,m − sh

)
·
(
B̃(δ ˆ̃sh) − δ

˙̃̂
ep,h

)]
dΩ dt

• ėh = Λ(ṡh) + B(sh) ; δ
˙̃̂
ep,h|t =

[
δẽh,τ − Λ(δŝh,τ )

]
|τ=T −t

• C(�s, δs) =
∫ T

0

∫

�

[�s · δėp − �ėp · δs]dΩ dt with �ėp = B̃(�s)

(28)

Remark 5 The idea behind this relation is related to the C-terms: these are very small

if the finite variations (s − sh) and δs̃Σ are small. Moreover, if the material model is

linear, the C-terms are equal to zero. C is called the model nonlinearity indicator.

Remark 6 The generalized stress ŝh,m is similar to the mean stress introduced in (7).

In practice, we take an approximation of the minimization problem related to the

cost function g:

g(s − ŝh,m) =
∫ T

0

[
a ϕ∗(s − B−1( ˙̂ep,h)

)
+ a ϕ

(
B(s) − B(ŝh)

)
+ |ȧ|EF (s − ŝh)

]
dt

(29)

Remark 7 The Galerkin orthogonality conditions related to the FE solution are not

used.

We now derive upper bounds on the two terms in the right-hand side of (27). We

only give the results here, but more details can be found in [20, 29].

Proposition 3 Let be I1 =
∫ T

0

∫
�

(
s − ŝh,m

)
·
(
B̃(δ ˆ̃sh) − δ

˙̃̂
ep,h

)
dΩ dt. We have:

I1 ≤ 2
[
[Eh

C RE ]2 − [Eh
C RE,m]2

] 1
2 ·

[
F2(μ ˙̃ah)

] 1
2 + F1( ˙̃ah) (30)

with : • [Eh
C RE,m ]2 =

∫

�

[ min
y∈F [0,T ]

g(y)]dΩ ˙̃ah = B̃(δ ˆ̃sh) − δ
˙̃̂
eh

• f (ẋ) ≡ sup
y∈F [0,T ]

[ ∫ T

0

y · ẋ dt − g(y)
]

∀ẋ ∈ E
[0,T ] (Legendre-Fenchel transform of g)

• f (μ ẋ) = f (0) + μ f 1(ẋ) + f 2(μ ẋ) with μ ≥ 0 lim
μ→0+

f 2(μ ẋ)

μ
= 0 (31)

• F(·) =
∫

�

f (·)dΩ 1 =
[
[Eh

C RE ]2 − [Eh
C RE,m ]2

]

F2(μ ˙̃ah)

An alternative bound for I1 consists in using the Legendre-Fenchel transform for

the dissipation bilinear form written at (t, x) ∈ [0, T ] × Ω . This bound is easier to

obtain, but it is less effective. Another option is to work globally over [0, T ] × Ω .
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Let us now consider I2 ≡ C(s − sh, δs̃Σ ) − C(s − sh, δŝh). We introduce

g�(�s) ≡ g(�s + ŝh,m − sh) and define analytically, or at least numerically:

f�(ȧ,−b) = sup
�s∈F

[0,T ]

�ėp=B̃(�s)

∫ T

0

[
�s · ȧ − �ėp · b − g�(�s)

]
dt (32)

Writing F�(μδ ˙̃a,−μδb̃) = F�(0, 0) + μF1
�(δ ˙̃a,−δb̃) + F2

�(μδ ˙̃a,−μδb̃), the fol-
lowing bound can be proved:

I2 ≤
[
[Eh

C RE ]2−[Eh
C RE,m ]2

] 1
2
[
F2

�(μδ ˙̃a, −μδb̃)
] 1

2 +F1
�(δ ˙̃a, −δb̃) ; 1 =

[
[Eh

C RE ]2 − [Eh
C RE,m ]2

]

F2
�(μδ ˙̃a, −μδb̃)

(33)

F� is small if the finite variations �s and δs are small. A similar technique can be

derived to get a strict lower bound.

Finally, from previous results, we obtain strict upper bounds on |Q − Qh −
Qcorr |. Illustrations of such bounds can be found in the literature: viscoelasticity

(taking history effects into account) was addressed in [23], dynamics problems were

considered in [22, 31], and nonlinear viscoplasticity problems were studied in [21].

Furthermore, the general case where the material operator B is not defined using

two dual potentials (convex functions) but is simply maximum monotonous is given

in [29].

In the following section, we focus on some recent advances for the computation

of both accurate and practical bounds, in addition to be guaranteed, using the CRE

framework.

5 Getting Accurate and Practical Error Bounds on Outputs

of Interest

5.1 Non-intrusive Approach for the Adjoint Solution

As noticed in Sect. 3.2, the accuracy of the error bounds on Q can be controlled

solving the adjoint problem with a locally refined mesh. However, this has the draw-

back to require remeshing of the structure. An alternative, qualified as non-intrusive

as the initial mesh is not changed, was proposed in [24, 25]. It consists in a local

enrichment of the adjoint solution, using PUM, with known handbook functions that

aim at representing the high gradient part of (ũ, σ̃ ); the approach is thus similar to

that proposed in XFEM or GFEM [40, 41] except that no additional dof is intro-

duced here (the singularity comes from the adjoint loading). We present the method

in the linear elasticity case, but extensions to time-dependent problems can be found

in [22, 24].
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Fig. 4 Quasi-exact stress field in a (quasi-) infinite domain subjected to a local prestress in a squared

region: σ̃ hand
xx (left), σ̃ hand

yy (center), σ̃ hand
xy (right)

Enrichment functions which are used, denoted (ũhand , σ̃ hand) in the following,

correspond to generalized Green’s functions and represent the (quasi-)exact adjoint

solution in a (semi-)infinite domain subjected to the adjoint loading. These functions

are obtained either analytically (when possible) or pre-computed numerically with a

fine mesh an sufficiently large domain. An example of such a function, corresponding

to a localized prestress loading σ̃� , is given on Fig. 4. Handbook functions are inserted

in the adjoint solution using the partition of unity defined by linear FE shape functions

Ni associated to vertices i of the initial mesh (Ni (x j ) = δi j ). The enrichment is

introduced locally, and consequently only a set of n PU M vertices are used. The

enrichment region Ω PU M ⊂ Ω is defined as {x ∈ Ω,
∑n PU M

i=1 Ni (x) �= 0}; it can be

divided in two disjoint subregions Ω PU M
1 and Ω PU M

2 such that:

n PU M∑

i=1

Ni (x) =

⎧
⎨
⎩

1 in Ω PU M
1

a ∈ ]0, 1[ in Ω PU M
2

0 in Ω/(Ω PU M
1 ∪ Ω PU M

2 )

(34)

In practice, Ω PU M
1 is such that it contains the zone of interest ΩΣ in which quantity

Q is defined, i.e. the region that supports extraction functions.

Therefore, the displacement solution to the adjoint problem is searched under the

form:

ũ(x) =
n PU M∑

i=1

ũhand(x)Ni (x) + ũres(x) (35)

where ũres is a residual solution, usually very regular, to be computed. The enrich-

ment part
∑n PU M

i=1 ũhand Ni enables to reproduce local high gradients of ũ whereas

the residual part ũres enables to correct the enrichment part in order to verify bound-

ary conditions of the adjoint problem on ∂Ω . The new expression of σ̃ is deducted

from (35):

σ̃ (x) = σ̃ hand
PU M (x) + σ̃ res(x) (36)

with σ̃ hand
PU M = Kε(

∑n PU M

i=1 ũhand Ni ) and σ̃ res = Kε(ũres); of course, σ̃ hand
PU M =

σ̃ hand in Ω PU M
1 .

14



Once the set of n PU M enriched vertices are defined, the new adjoint problem

consists in finding ũres ∈ Uad,0 such that:

a(v, ũres) = Q(v) − a(v,

n PU M∑

i=1

ũhand Ni ) ∀v ∈ Uad,0 (37)

The residual stress field σ̃ res = Kε(ũres) then verifies the following balance equa-
tion:

∫

�

σ̃ res : ε(v)dΩ =
∫

�

(
σ̃� : ε(v) + f̃� · v

)
dΩ −

∫

Ω

σ̃ hand
PU M : ε(v)dΩ

=
∫

Ω PU M
1

(
σ̃� : ε(v) + f̃� · v − σ̃ hand : ε(v)

)
dΩ −

∫

Ω PU M
2

σ̃ hand
PU M : ε(v)dΩ

(38)

= −
∫

∂Ω PU M
1

σ̃ hand n12 · vdS −
∫

Ω PU M
2

σ̃ hand
PU M : ε(v)dΩ ∀v ∈ Uad,0

where n12 is the outgoing normal from Ω PU M
1 to Ω PU M

2 . The loading consists in

tractions −σ̃ handn12 on ∂Ω PU M
1 and a prestress −σ̃ hand

PU M in Ω PU M
2 .

A fine approximation (ũres
h , σ̃ res

h ) of the residual solution can be obtained with

the initial mesh; the enrichment technique is thus non-intrusive in the sense where

operators (stiffness matrix, mesh connectivities) defined for the primal problem can

be reused without any change to solve the adjoint problem; only the loading has to

be modified. The computation of an admissible stress field ˆ̃σh is also performed in

a non-intrusive way: one first defines a stress field ˆ̃σ res
h that verifies (38), with the

same method as that used to compute σ̂h ; we then get:

ˆ̃σh(x) = σ̃ hand
PU M (x) + ˆ̃σ res

h (x) (39)

Eventually, we obtain the following bounding:

|Q − Qh − Qcorr | ≤ Eh
C RE .Ẽh

C RE,res (40)

where the right-hand side is independent of the enrichment (ũhand , σ̃ hand). In prac-

tice, the error on the residual solution Ẽh
C RE,res is small, and (40) provides for very

accurate bounds on the local error without remeshing.

5.2 Application to Pointwise Quantities

When considering a quantity of interest which is pointwise in space (and/or in time),

the loading of the adjoint problem is defined from Dirac functions. Consequently,

the corresponding adjoint solution is highly singular and possibly infinite energy;
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consequently, it is useless to compute an approximate solution with the FEM. A

classical alternative method consists in regularizing the quantity of interest, using

for instance weighting functions (molifiers) [11], in order to preserve the regularity

of the adjoint solution; the initial quantity of interest is then replaced with a weighted

local average.

The non-intrusive enrichment technique presented previously enables, with direct

extension, to consider the evaluation of the discretization error for truly pointwise

quantities, without resorting to regularization. For that, Green functions have to be

chosen as enrichment functions. Under some assumptions, these functions can be

determined analytically in a (semi-)infinite domain [42, 43]; an example of such

a function is given in Fig. 5. In more complex situations (anisotropic material for

instance), Green functions can sometimes be obtained implicitly [44].

Bounding (40) is still valid for pointwise quantities Q and bounds can be calcu-

lated despite of the fact that (ũhand , σ̃ hand) may be infinite energy; indeed, only the

residual part (ũres
h , ˆ̃σ res

h ) of the admissible adjoint solution is used to obtain error

bounds. Nevertheless, technical numerical tools (numerical integration) are required

to compute Qcorr and the loading term of the adjoint problem that imply the singular

handbook solution (ũhand , σ̃ hand).

In [22], the non-intrusive approach was conducted for visco-elastodynamics prob-

lems. Dealing with the singularity of the adjoint solution in space and time was per-

formed by means of a local enrichment with Green’s function associated to Q. Such

a function can be calculated in a (semi-)infinite medium from the correspondence

principle and Laplace transform. It was shown that local error bounds deteriorate

when the model tends to a pure elastodynamics model; in this case, the influence

zone of the Green function occupies the whole domain Ω and one needs to represent

correctly this function after reflection on the boundary ∂Ω; when viscous effects

are important, this zone remains localized as the magnitude rapidly tends to zero

(see Fig. 6 where we observe wave fronts P and S without or with 20 % damping,

with Dirac loading in space and time). Local error bounds also deteriorate when the

quantity of interest becomes more and more localized in time; this illustrates that

considering a pointwise quantity in time for dynamics problems does not make real

sense.

Eventually, and in addition to the non-intrusive approach, a technique was intro-

duced in [25] in order to conserve guaranteed error bounds on nonlinear pointwise

σ̃hand

xx
σ̃hand

yy
σ̃hand

zz

Fig. 5 Stress field associated to a pointwise prestress in a 3D infinite domain
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ELASTODYNAMICS

VISCOELASTODYNAMICS

Fig. 6 Evolution of the xx component of handbook stress field for a model without (top) or with

(bottom) damping

quantities of interest (such as the Von Mises equivalent stress). This technique is

based on a decomposition of Q with projection properties in order to take higher

order terms into account in the bounds. It leads to the introduction of a set of extrac-

tors, and therefore to the solution to a set of adjoint problems.

6 Control of Various Computational Approaches

6.1 Stochastic Approach

Currently, numerous models involving stochastic parameters are used to take hazards

or lack of knowledge into account in numerical simulations. The verification of such

models using the CRE concept has been investigated in [28, 45]; it requires: (i) the

construction of admissible fields in a stochastic framework; (ii) the splitting between

two error sources, coming from discretizations in the physical and stochastic spaces,

in order to drive an adaptive process effectively.

Considering a linear elastic material with fluctuating properties, the Hooke tensor

is modeled as a stochastic field K(x, θ) ∈ [L2(�, C0(Ω))]d4
; (�,F , P) is the

Kolmogorov probability space, with � the set of possible outcomes, F a σ -algebra

of events (subspaces of �), and P : F → [0, 1] a probability measure. We assume

that field K(x, θ) is bounded and uniformly coercive, i.e. ∃(Kmin, Kmax ) ∈ ]0,+∞[2

such that:

0 < Kmin ≤ |K(x, θ)| ≤ Kmax ∀x ∈ Ω, almost surely (41)
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In practice, following the Karhunen-Loeve decomposition, the stochastic description

of K is restricted to a finite number M of independent stochastic variables ξi (θ) :
� → R such that:

K(x, θ) ≈ K(x) +
M∑

i=1

√
λiξi (θ)Zi (x) (42)

where K(x) = E�[K(x)] =
∫
�

K(x)dP is the mathematical expectation of K(x),

whereas couples {Zi , λi } are eigenvectors/eigenvalues of covariance operator asso-

ciated to K. We define the L2 inner product 〈α1(θ), α2(θ)〉 ≡
∫
�

α1(θ)α2(θ)dP over

�, as well as following notations over Ω × �:

〈u1, u2〉K,� = E�

[ ∫

�

Kε(u1) : ε(u2)dΩ
]

; ||u||2K,� = 〈u, u〉K,�

〈σ1, σ2〉K−1,� = E�

[ ∫

�

K−1σ1 : σ2dΩ
]

; ||σ ||2
K−1,�

= 〈σ, σ 〉K−1,� (43)

Kinematic and static admissibility conditions thus respectively read:

u ∈ U ; u|∂1Ω = ud almost surely (44)

σ ∈ S ; E�

[∫

�

σ : ε(v)dΩ −
∫

�

fd · vdΩ −
∫

∂2Ω

Fd · vdS

]
= 0 ∀v ∈ Uad,0

(45)

with U = [L2(�, H1(Ω))]d and S =
{
π;π = πT , π ∈ [L2(�, L2(Ω))]d2

}
.

An approximate solution (uh,s, σh,s), with σh,s = Kε(uh,s), is computed using

FEM; without lost of generality, we consider here a non-intrusive technique on the

stochastic domain, based on interpolation (discretization parameter s) of a set of

computed realizations:

uh,s(x, θ) =
∑

k

uk
h,s(x).�k (θ) ; σh,s(x, θ) =

∑

k

σ k
h,s(x).�k (θ) (46)

where �k is a polynomial basis associated to the set {ξi (θ)}M
i=1 of stochastic variables,

defined as �k =
∏M

i=1 Hki
(ξi ) with Hki

(ξi ) some orthogonal polynomials.

The definition of CRE in the stochastic framework:

EC RE (û, σ̂ ) = ||σ̂ − Kε(û)||K−1,� (47)

associated with an admissible solution in the sense of (44) and (45) enables to

naturally extend properties of Sect. 3.1. An admissible solution (ûh,s, σ̂h,s) can be

recovered by a post-processing of (uh,s, σh,s). In particular, from σ k
h,s(x), we can

construct an associated equilibrated field σ̂ k
h,s(x) using the same techniques as those

defined in the deterministic case [26, 36].
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For goal-oriented error estimation, defining the output of interest in a global form:

Q = E�

[∫

�

σ : Σ̃dΩ

]
(48)

we compute an approximate solution (ũh,s , σ̃h,s) of the associated (stochastic) adjoint

problem, then an admissible solution. We thus get the following bound:

|Q − Qh,s − Qcorr | ≤ E
h,s
C RE .Ẽ

h,s
C RE (49)

the proof of (49) being similar to the deterministic case. Another bounding consists

in applying the Cauchy-Schwarz inequality over the space domain alone, before

integrating over the stochastic dimension; the obtained bound is sharper but is more

complex to compute.

The discretization error Q−Qh,s comes from two sources: (i) space discretization

using a FE mesh; (ii) discretization of the stochastic domain. We can estimate the

contribution of each source; indeed the local error can be recast as:

Q − Qh,s = [Q − Qh] + [Qh − Qh,s] = �Qspa + �Qsto (50)

where �Qspa (resp. �Qsto) is the contribution to the local error due to discretization

in the physical (resp. stochastic) space.

On the one hand, �Qsto can be estimated with the CRE framework considering a

semi-discretized reference model, already discretized in space (exact solution uh). In

the sense of this new model, an admissible solution denoted (ûs, σ̂s) is constructed

from a post-processing of (uh,s, σh,s); in particular, σ̂s should verify the FE equi-

librium over �. A similar construction is used to construct an admissible solution

( ˆ̃us, ˆ̃σs) for the adjoint problem. Consequently, �Qsto can be assessed from the

bound E s
C RE · Ẽ s

C RE . On the other hand, �Qspa ≈ Qs − Qh,s can be assessed

considering a semi-discretized reference problem, already discretized over the sto-

chastic dimension (exact solution us). An admissible solution denoted (ûh, σ̂h) is

constructed in the sense of this new model; in particular, σ̂h should verify equi-

librium for each computed realization in �. After computing a similar admissible

solution ( ˆ̃uh, ˆ̃σh) for the adjoint problem, �Qspa can be assessed from the bound

Eh
C RE · Ẽh

C RE .

6.1.1 XFEM Approach

We consider here the XFEM method in a two-dimensional setting. Introduced in [40]

as a generalization of FEM, XFEM enables to capture local solution features in a

cracked domain (Fig. 7). In order to improve the convergence rate and use a non-

conforming mesh with respect to a crack Γ (supposed free of charge), the XFEM

method consists in enriching the classical FE approximation by means of the partition
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Fig. 7 2D cracked structure (left), sets NH and NF of enriched nodes in a regular mesh (center),

and definition of the crown ω surrounding the crack tip (right)

of unity defined by shape functions Ni (x), and implying two kinds of enrichment

functions:

• the Heaviside function H(x) that enables to represent displacement jumps across

Γ . This function is ±1 on the two edges of the crack and is in practice obtained

with level-set functions. The enrichment with H(x) is applied to the set NH of

nodes associated to elements which are cut by the crack (Fig. 7);

• the set {F j (x), 1 ≤ j ≤ 4} of basis functions that generate the singular asymptotic

solution in the vicinity of the crack tip P:

{√
r cos(

θ

2
),

√
r sin(

θ

2
),

√
r cos(

θ

2
) sin(

θ

2
),

√
r sin(

θ

2
) sin(

θ

2
)

}
(51)

Enrichment with functions F j (x) is applied to the set NF of nodes associated to

elements surrounding the crack tip (Fig. 7).

Therefore, noticing N the set of nodes in the mesh, the approximate XFEM

displacement solution is searched under the form:

uh(x) =
∑

i ∈N

Ni (x)ui +
∑

i ∈NF

Ni (x)
(

F j (x)a
j
i

)
+

∑

i ∈NH

Ni (x)H(x)bi (52)

where {ui } is the set of standard FE dofs whereas {a j
i , bi } is the set of additional

dofs.

In most cases, compared to classical FEM, the enrichment introduced by XFEM

improves the accuracy of the approximate solution as well as values of related quanti-

ties of interest. Nevertheless, estimating the discretization error remains fundamental

for robust computations. For fracture Mechanics, verification with respect to outputs

of interest was addressed in [46, 47] in the context of classical FEM. In the XFEM

framework, a guaranteed procedure for local error estimation was introduced and

analyzed in [33]. Based on CRE, the technical point of this procedure is again the

construction of admissible fields from the XFEM formulation, and it is easy to show

that this construction can be carried out by generalizing the classical procedure

detailed in the Appendix.
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We choose as quantities of interest the stress intensity factors K I and K I I , and

use asymptotic extraction functions proposed in [48] and defined over a crown ω

surrounding the crack tip:

Kα =
∫

ω

ε(u) :
(
Kε(φvα) − φσα

)
dω −

∫

ω

u · (σα∇φ)dω α = I, I I (53)

In (53), vα and σα are singular solutions of the reference problem whereas φ is a

continuous function, defined in the crown ω, that vanishes along the internal boundary

C1 and is 1 along the external boundary C2. In the following, we consider a circular

crown and we use a linear function φ defined in polar coordinates as:

{
φ(r, θ) = R2−r

R2−R1
for R1 ≤ r ≤ R2

= 0 otherwise
(54)

R1 and R2 are radii of circles C1 and C2, respectively (Fig. 7).

The error estimate (9) remains valid provided admissible solutions (ûh, σ̂h) and

( ˆ̃uh, ˆ̃σh) are constructed from XFEM approximate solutions. On the one hand, the

admissible kinematic field ûh (resp. ˆ̃uh) is chosen equal to the approximate displace-

ment uh (resp. ũh). On the other hand, the construction of σ̂h (or ˆ̃σh) is performed

dividing the structure Ω into two complementary zones Ω1 and Ω2 in order to take the

two kinds of enrichment used in XFEM into account separately. A similar approach

was investigated in [32] with a mesh conforming to the crack.

Zone Ω2, that surrounds the crack tip, contains the set of nodes which are enriched

with functions F j (x). In this zone, σ̂h is built from Airy functions, i.e. expressing

components of σ̂h in the polar basis as:

⎧
⎨
⎩

σ̂h,rr = 1
r2 φ,θθ + 1

r
φ,r

σ̂h,θθ = φ,rr

σ̂h,rθ = −( 1
r
φ,θ ),r

; φ(r, θ) =
n∑

i=1

rβi +2γi (θ) (55)

with βi = 1
2
(i − 2). Functions γi (i = 1, . . . , n), that correspond to asymptotic

solutions, read:

γi (θ) = Ai sin(βiθ) + Bi cos(βiθ) + Ci sin((βi + 2)θ) + Di cos((βi + 2)θ) (56)

and constants Ai , Bi , Ci and Di verify:

{
Bi + Di = 0 and Ai i + Ci (i + 2) = 0 for βi = 0, 1, 2, . . .

Ai + Ci = 0 and Bi (i + 1/2) + Di (i + 5/2) = 0 for βi = −1/2, 1/2, . . .

(57)

Optimal values of constants Ai , Bi , Ci and Di are then determined by solving a

minimization problem over Ω2:
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{Ai , Bi , Ci , Di } = argmin{A′
i ,B′

i ,C
′
i ,D′

i }||σ̂h({A′
i , B ′

i , C ′
i , D′

i }) − σh ||K−1|Ω2
(58)

In practice, we only keep the first order term β = −1/2 (i = 1) so that only 4

constants need to be determined. At the end of this step, in order to ensure the

continuity of the stress vector at the interface Γ12 between Ω1 and Ω2, we solve over

Ω1 a new problem with Neumann boundary conditions Fd = σ̂h|Ω2 n over Γ12.

In zone Ω1, the construction of σ̂h is performed by extending to XFEM the

classical procedure [4] based on a prolongation condition and using FE properties

of σh (see Appendix). In particular, we take into account discontinuities introduced

with the enrichment by function H(x).

The classical procedure used in FEM, that consists in constructing equilibrated

tractions F̂h over the boundary ∂ E of each FE element E before solving local ele-

mentary problems, can be directly extended to the XFEM framework noticing that

XFEM merely consists in adding new basis functions {Ni (x)}. The prolongation

condition for enriched elements thus becomes:

∫

E

(σ̂h − σh)∇Ni dE = 0 ;
∫

E

(σ̂h − σh)∇(Ni H)dE = 0 (59)

and leads to two relations:

∫

∂ E

ηE F̂h Ni dS =
∫

E

(σh∇Ni − fd Ni )dE = QE (i)

∫

∂ E

ηE F̂h Ni HdS =
∫

E

(σh∇(Ni H) − fd Ni H)dE = QH
E (i) (60)

Writing (60) for all elements connected to node i defines a local problem. This

is illustrated in Fig. 8 for a 2D mesh where two of the four quadrangle elements

connected to node i are cut by the crack; we thus obtain in this case:

⎧
⎪⎪⎨
⎪⎪⎩

b14 − b21 = QE1(i)

b21 − b32 = QE2(i)

b32 − b43 = QE3(i)

b43 − b14 = QE4(i)

and

{
b14 − bH

21 = QH
E1

(i)

bH
21 − b32 = QH

E2
(i)

(61)

with unknowns bkl =
∫
Γkl

ηEk
F̂h Ni dS and bH

kl =
∫
Γkl

ηEk
F̂h Ni HdS. Properties of

σh imply that
∑

E QE (i) =
∑

E QH
E (i) = 0 and ensure that local problems of type

(61) are well-posed.

After computing projections bi j and bH
i j , we construct tractions along element

edges. In the case of edges cut by the crack (for instance Γ12 in Fig. 8), tractions are

searched under the form:

F̂h = F̂i Ni + F̂ j N j + F̂H
i Ni H + F̂H

j N j H (62)
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Fig. 8 Patch of elements around node i , with elements E1 and E2 cut by the crack, and framed

enriched nodes (left); local problem to be solved over each element E (right)

i.e. as a sum of a continuous part and a discontinuous part. Quantities F̂i , F̂ j , F̂H
i , and

F̂H
j can be easily determined by inverting a small linear system implying previously

computed projections. Eventually, an admissible stress field σ̂h|E is constructed solv-

ing a local problem over each element E with Neumann boundary conditions defined

by tractions F̂h . Here again, an enrichment with H Ni functions is used for elements

cut by the crack (Fig. 8).

As an illustration, we consider the cracked structure of Fig. 9 clamped on its

bottom side and submitted to a uniform shear force density τ on its top side (mixed

mode). Parameters are τ = 1, E = 210, ν = 0.3, L = 16, and w = 7. The structure

is discretized using a regular mesh with 1071 Q4 elements.

We consider the quantity of interest K I . We report in Fig. 9 the values of bounds

obtained on this quantity of interest. Quantity K I,corr is a correction term, whereas

K ±
I are upper and lower bounds on the exact value of K I . The reference value,

computed using an overkill mesh, is K I,re f = 33.93.

w
L/2

L/2

τ

number of elements KI,h KI,h +KI,corr K−

I K+
I

1071 33.3374 33.6305 32.5714 34.6896

2975 33.3390 33.9100 33.3398 34.4803

5831 33.8579 33.8742 33.5845 34.5845

Fig. 9 Structure with mixed mode loading (left), and bounds on K I for the mixed problem solved

with XFEM (right)
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6.2 PGD-Reduced Models

6.2.1 Context and PGD Strategy

Considering parameterized models (stochastic, optimization), classical approxima-

tion methods (mesh grid) lead to an exponential increase in the number of dofs with

respect to the number of parameters. This is known as the curse of dimensionality,

and this rapidly leads to unaffordable computations. Model reduction techniques are

alternative tools to address such problems; they have been the object of increas-

ing interest during the previous decade. In particular, an attractive technique called

Proper Generalized Decomposition (PGD) recently emerged and is currently the

topic of various research works [49]. The technique, which leans on ideas initially

developed in [50] to solve nonlinear time-dependent problems, is based on variable

separation in a spectral approach. The main assets are that no information on the solu-

tion is required (contrary to POD) and that the computational cost increases linearly

with respect to the number of parameters. PGD basis functions (or modes) are com-

puted on the fly, once for all and in an offline process, solving a set of mono-parameter

problems with classical techniques. The obtained PGD approximation, that explicitly

depends of all model parameters, can then be used in an online process for analysis

or optimization.

Performances of PGD have been shown in many applications exhibiting changes

in loading, boundary or initial conditions, material parameters, geometry, …taken

into account by means of additional coordinates in the model [49]. However, a main

difficulty for the transfer and intensive use of PGD reduced models in industry is

the control of their reliability. Indeed, certifying the PGD solution is fundamental

to perform robust design. The control of the PGD solution requires to master the

number of modes which are computed (truncation), but also the numerical methods

which are employed in the computation of modes.

There are currently very few works addressing the control of PGD approxima-

tions. Basic results on a priori error estimation for separated variable representations

are given in [50], whereas a pioneering work dedicated to adaptivity can be found

in [51]. A first robust approach for the verification of PGD, using the CRE concept,

was proposed in [30]. It applies to linear elliptic or parabolic problems depending on

parameters, and provides for certified PGD reduced models with respect to global

error or error on outputs of interest. Furthermore, the approach enables to assess con-

tributions of the various error sources (space/time discretizations, PGD truncation),

which constitutes relevant information to effectively improve the accuracy of the

PGD solution. Performances were shown in [30, 52–54] on several numerical exper-

iments implying a transient thermal model with fluctuating material parameters; we

provide in the following basic ideas on the approach.

We consider a transient thermal problem defined on domain Ω ⊂ Rd (d =
1, 2, 3), with boundary ∂Ω , over the time interval I = [0, T ]. A zero tempera-

ture is prescribed on boundary ∂1Ω �= ∅ of ∂Ω and the time-dependent thermal

loading consists of: (i) a given thermal flux rd(x, t) on the complementary boundary
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∂2Ω ⊂ ∂Ω; (ii) a source term fd(x, t) in Ω . Initial boundary conditions are homoge-

neous. The material that composes Ω is supposed to be heterogeneous and partially

unknown. Therefore, the diffusion tensor K and the thermal capacity c depend on

space variable x but also on a set of N parameters p = [p1, p2, . . . , pN ] belonging

to a given bounded domain � = �1 × �2 × · · · × �N .

We denote by (u,ϕ) the temperature/flux solution of the problem. Defining Uad =
H1

0 (Ω) = {v ∈ H1(Ω), v|∂1Ω = 0}, the weak formulation in space of the problem

reads for all (t, p) ∈ I × �:

Find u(x, t, p) ∈ Uad such that b(u, v) = l(v) ∀v ∈ Uad (63)

with u|t=0+ = 0. The bilinear form b(•, •) and linear form l(•) are defined as:

b(u, v) =
∫

�

{
c
∂u

∂t
v + K∇u · ∇v

}
dΩ ; l(v) =

∫

�

fdvdΩ −
∫

∂2Ω

rdvdS

(64)

We now introduce functional spaces T = L2(I ), Pi = L2(�i ), and

L2(I ,�;Uad) = Uad ⊗ T ⊗N
n=1 Pn . The full weak formulation of the prob-

lem consists in searching u ∈ L2(I ,�;Uad), with
∂u

∂t
∈ L2(I ,�; L2(Ω)), such

that:

B(u, v) = L(v) ∀v ∈ L2(I ,�;Uad) (65)

with

B(u, v) =
∫

�

[∫

I

b(u, v)dt +
∫

�
cu(x, 0+)v(x, 0+)dΩ

]
dp ; L(v) =

∫

�

∫

I

l(v)dtdp

(66)

The approximate solution of (65), from the FEM in space associated to a given time

integration scheme and a given grid in the parameter space �, can be very costly

when the number of parameters increases.

The alternative PGD technique consists in constructing a priori a separated vari-

able representation of the solution u of (65). The approximate PGD solution is

searched under the form:

u(x, t, p) ≈ um(x, t, p) ≡
m∑

i=1

ψi (x)λi (t)Γi (p) with Γi (p) =
N∏

n=1

γi,n(pn) (67)

m is the order (i.e. the number of modes) of the representation, while space functions

ψi (x), time functions λi (t), and parameter functions γi,n(pn) respectively belong to

Uad , T and Pn .

The construction of modes does not require any particular knowledge on u, it is

performed on the fly when solving. We give here a classical version of this construc-

tion, called progressive Galerkin and inspired from classical fixed point algorithms.

We suppose an order s − 1 PGD approximation has been computed. The order s

PGD approximation is then defined as:
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us(x, t, p) = us−1(x, t, p) + ψ(x)λ(t)Γ (p) with Γ (p) =
N∏

n=1

γn(pn) (68)

ψ , λ, and γn (n = 1, . . . , N ]) are a priori unknown functions respectively belonging

to discretized subspaces Uad,h , Th , and Pnh ; we assume that Uad,h and Th verify

kinematic constraints and initial conditions, respectively. Starting from initializa-

tion ψ (0)(x)λ(0)(t)Γ (0)(p) for mode s, we construct a new modal representation

ψ (1)(x)λ(1)(t)Γ (1)(p) by means of a Galerkin approach that leads to the following

sub-iteration:

→ find λ(1) ∈ Th such that:

B(us−1 + ψ (0)λ(1)Γ (0), ψ (0)λ∗Γ (0)) = L(ψ (0)λ∗Γ (0)) ∀λ∗ ∈ Th (69)

→ for n0 = 1, . . . , N , find γ
(1)
n0

∈ Pn0h such that:

B(us−1 + ψ (0)λ(1)γ (1)
n0

Γ
(1,0)
/n0

, ψ (0)λ(1)γ ∗Γ (1,0)
/n0

) = L(ψ (0)λ(1)γ ∗Γ (1,0)
/n0

) ∀γ ∗ ∈ Pn0h

(70)

with Γ
(1,0)
/n0

=
n0−1∏

n=1

γ (1)
n ×

N∏

n=n0+1

γ (0)
n ;

→ find ψ (1) ∈ Uad,h such that:

B(us−1 + ψ (1)λ(1)Γ (1), ψ∗λ(1)Γ (1)) = L(ψ∗λ(1)Γ (1)) ∀ψ∗ ∈ Uad,h (71)

The sub-iteration consists in solving a set of simple problems: the ODE in time

coming from (69) is solved with an explicit Euler scheme (time step �t), the space

problem coming from (71) is solved with the FEM (mesh size h), while the solution

to problems coming from (70) is explicit.

A few sub-iterations are performed in practice. Moreover, the time function λ( j)(t)

and parameter functions γ
( j)
n (pn) are normalized at each sub-iteration. Let us note

that a sub-iteration terminates with space problem (71), which is fundamental for the

error estimation technique shown in the following. Optimizations, such as updating

of the set {λi } (resp. {Γi }) of time functions (resp. parameter functions) or orthogo-

nalization of space modes, are possible.

6.2.2 Construction of Equilibrated Fields and Error Estimation

The proposed verification strategy uses the CRE concept. Let (û, ϕ̂) be an admissible

solution to the problem i.e. verifying (in addition to initial conditions) kinematic

constraints and balance equations for all (t, p) ∈ I × �. The CRE measure in the

space-time domain, that depends on p, thus reads:
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E2
C RE (p) = 1

2

∫

I

∫

�

K−1[ϕ̂ − K∇û] · [ϕ̂ − K∇û]dΩdt ≡ 1

2
|||ϕ̂ − K∇û|||2

K−1

(72)

with ||| • |||K−1 the energy norm in the space-time domain, and the extension of the

Prager-Synge theorem reads:

|||ϕ − ϕ̂m |||2
K−1 + 1

2

∫

�

c(u − û)2
|T dΩ = 1

2
E2

C RE ; ϕ̂m = 1

2
[ϕ̂ + K∇û] (73)

Again, the technical point is the construction of an admissible solution; we explain

here how such as solution, denoted (ûm, ϕ̂m), can be obtained with a post-processing

of all available information from the computation of the PGD solution um .

Constructing an admissible kinematic field ûm(x, t, p) is simple, and we choose it

equal to um(x, t, p). Obtaining ϕ̂m(x, t, p) is more technical; in order to use classical

tools that enable to compute equilibrated tractions (in particular the prolongation

condition), we should first build a field ϕm(x, t, p) that satisfies the FE equilibrium

for all (t, p) ∈ I × �:

∫

�

ϕm · ∇vdΩ =
∫

�

( fd − c
∂ ûm

∂t
)vdΩ −

∫

∂2Ω

rdvdS ∀v ∈ Uad,h (74)

We first assume that the external loading can be written under the radial form:

( fd(x, t), rd(x, t)) =
J∑

j=1

α j (t)
(

f
j

d (x), r
j

d (x)
)

(75)

We then compute, for each couple ( f
j

d , r
j

d ), a field ϕ
j
d(x) verifying the FE equilib-

rium: ∫

�

ϕ
j
d · ∇vdΩ =

∫

�

f
j

d vdΩ −
∫

∂2Ω

r
j

d vdS ∀v ∈ Uad,h (76)

This computation is in practice performed with the FEM in displacement. This yields,

introducing ϕd =
∑J

j=1 α j (t)ϕ
j

d(x) in (74), that ϕm should verify for all (t, p) ∈
I × �:

∫

�

(ϕm − ϕd) · ∇vdΩ = −
∫

�

c
∂ ûm

∂t
vdΩ = −

m∑

i=1

cλ̇iΓi

∫

�

ψi vdΩ ∀v ∈ Uad,h

(77)

On the other hand, at the end of sub-iterations to compute each PGD mode m0 ∈
[1, m], the condition (71) gives:

B(um0 , ψ
∗λm0Γm0) = L(ψ∗λm0Γm0) ∀ψ∗ ∈ Uad,h (78)

This last relation can be recast under the form:
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∫

�

Hm0 · ∇ψ∗dΩ =
∫

�

m0∑

i=1

[
Gm0,iψi

]
ψ∗dΩ ∀ψ∗ ∈ Uad,h (79)

with

Hm0 ≡
∫

�

∫

I

λm0Γm0(ϕd − K∇um0)dtdp ; Gm0,i ≡
∫

�

∫

I

cλm0Γm0 λ̇iΓi dtdp

(80)

Consequently, for all m0 ∈ [1, m], the term Hm0 equilibrates
∑m0

i=1 Gm0,iψi in the FE

sense. A simple inversion thus generates terms of the form

m∑

j=1

Ri j H j that equilibrate

each function ψi (i = 1, . . . , m) in the FE sense. A field ϕm that satisfies the FE

equilibrium (74) (or (77)) thus reads:

ϕm = ϕd −
m∑

i=1

m∑

j=1

cλ̇iΓi Ri j H j (81)

From ϕm , usual techniques can then be used to compute a flux ϕ̂m that verifies strict

equilibrium:

∫

�

ϕ̂m · ∇vdΩ =
∫

�

( fd − c
∂ ûm

∂t
)vdΩ −

∫

∂2Ω

rdvdS ∀v ∈ Uad (82)

This flux reads ϕ̂m = ϕ̂d −
m∑

i=1

m∑

j=1

cλ̇iΓi Ri j Ĥ j where ϕ̂d and Ĥ j are computed

solving local problems on each element.

Remark 8 In the case of a stationary problem, terms Hm0 =
∫
�

Γm0(ϕd −
K∇um0)dp (m0 = 1, . . . , m) are self-equilibrated in the FE sense. Therefore, ϕm

and ϕ̂m can be defined as:

ϕm(x, p) = ϕd (x) +
m∑

m0=1

βm0 (p)Hm0 (x) ; ϕ̂m(x, p) = ϕ̂d (x) +
m∑

m0=1

βm0 (p)Ĥm0 (x)

(83)

where coefficients βm0 , functions of p, are explicitly obtained minimizing∫
�

E2
C RE (p)dp.

From the global error estimate E2
C RE (p) previously defined, it is then easy to con-

struct a local error estimate from adjoint-based techniques. Let Q(p) be a quantity

of interest defined by extractors (ϕ̃�, f̃�):

Q(p) =
∫

I

∫

�

(
∇u(p) · ϕ̃� + u(p) f̃�

)
dΩdt (84)
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Fig. 10 Representation of the multi-parameter 2D problem (left), and relative local error estimate

and indicators on the various error sources with respect to the number m of PGD modes for Q�

(right)

We introduce the associated adjoint problem, and we compute an approximate (resp.

admissible) PGD solution (ũm̃, ϕ̃m̃) (resp. ( ˆ̃um̃, ˆ̃ϕm̃)) for this problem. In practice,

the PGD solution to the adjoint problem is performed with an order m̃ poten-

tially different from m, and introducing enrichment functions locally. We obtain the

bounding:

|Q(p) − Qm(p) − Qcorr (p)| ≤ EC RE (p).ẼC RE (p) (85)

where Qcorr (p) is a computable correction term, and EC RE (p) (resp. ẼC RE (p))

is the constitutive relation error for the reference problem (resp. adjoint problem).

Therefore, guaranteed bounds on the local error Q(p)− Qm(p) (or directly on Q(p))

can be obtained for any value p of the model parameters.

As an example, we consider the 2D structure represented on Fig. 10. It is a cross

section Ω with two rectangular holes in which a fluid circulates. Using symmetries,

only a quarter of the structure is considered. A flux rd(t) = −1 is applied on hole

boundaries whereas a source term fd(x, y) = 200xy is applied in Ω . A zero temper-

ature is imposed on the remainder of ∂Ω . We consider that the diffusion coefficient

K (isotropic behavior) fluctuates but remains piecewise homogeneous, i.e. homoge-

neous in each of the four subdomains Ωi (i = 1, 2, 3, 4) defined on Fig. 10 and such

that Ωi ∩ Ω j = ∅, Ω1 ∪ Ω2 ∪ Ω3 ∪ Ω4 = Ω . The thermal capacity c is assumed to

be homogeneous in the whole domain Ω . These two material coefficients are thus

defined by 5 parameters (θ1, θ2, θ3, θ4, θ5) such that:

K (x, θi ) = 1 +
4∑

i=1

gi IΩi
(x)θi c(x, θ5) = 1 + 0.2 θ5 (86)

with [g1, g2, g3, g4] = [0.1; 0.1; 0.2; 0.05], and IΩi
(x) referring to the indicatrix

function of subdomain Ωi .

The resulting solution u(x, t, p), with p = [θ1, θ2, θ3, θ4, θ5], is searched using

the PGD technique; with an initial discretization made of 50 Q4 elements in space

and 1000 time steps.
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We consider that parameters θi are reduced centered (truncated) stochastic vari-

ables, with θi ∈ [−2, 2] (i = 1, . . . , 5). We choose as the quantity of interest the

mathematical expectation of the mean temperature in the local zone ω ⊂ Ω (Fig. 10)

at final time T :

Q(p) = 1

|ω|

∫

ω

u(p)|T dΩ ; Q� = E�

[
Q(p)

]
(87)

The relative local error
∫
�

EC RE .ẼC RE dp/(Q�,m + Q�,corr ) associated to Q�, as

well as relative indicators on discretization and truncation errors, are given in Fig. 10

with respect to m.

6.2.3 Adaptive Strategy

The error on Q comes from two sources: (i) the order m truncation of the PGD repre-

sentation (67); (ii) the space-time discretization used to compute modes numerically.

We can write:

Q − Qm = [Q(u)− Q(uh,�t )]+ [Q(uh,�t )− Q(um)] = �Qdis +�Qtrunc (88)

with �Qtrunc (resp. �Qdis) the part on the error on Q coming from the PGD

truncation (resp. from the discretization). uh,�t is the solution to the problem arising

from the discretization of (65) and seen as the reference problem to define the error

�Qtrunc.

To effectively control the process of PGD computation, we introduce an error

indicator for each error source. The evaluation of �Qtrunc is performed from CRE

taking as the reference problem the discretized problem (with solution uh,�t ) which

can be put under the form:

U1
h = 0 ; M(p)

Uk+1
h − Uk

h

�t
+ K(p)Uk

h = Fk
h ∀k ≥ 1 (89)

with Uk
h the vector of nodal unknowns of u at time point k. An admissible solution

is reconstructed in the sense of the discretized problem by direct post-processing of

available information. The evaluation of �Qdis is then obtained by the difference

between those of Q − Qm and of �Qtrunc.

From then on, a simple adaptive strategy consists in evaluating, after the compu-

tation of each PGD mode, the various error sources on Q and to adapt with respect

to the dominating source: if |�Qdis | is dominating, we define a finer discretization

(up to obtaining |�Qdis | < |�Qtrunc|); if |�Qtrunc| is dominating, we compute the

next PGD mode without modifying the discretization parameters.

For the same test case, we perform the adaptive procedure (greedy algorithm)

coming from the evaluation of error sources. The convergence of the relative local

error obtained for Q� is shown in Fig. 11. Vertical evolutions of the curves indicate
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Fig. 11 Convergence of the relative error with respect to the number m of PGD modes in the

adaptive strategy for Q� (left), and refined mesh used for the computation of PGD mode m = 8

after applying the adaptive strategy (right)

mesh refinement. We observe that the procedure enables to effectively decrease the

error on Q�. Up to mode 4, the initial coarse discretization is sufficient to compute

the PGD solution, and the local error decreases when computing a new mode. After

m = 4, PGD modes represent finer details that require the modification of the

discretization parameters. This is illustrated in Fig. 11 where we represent the refined

mesh (quad-tree structure) used for the computation of the eighth PGD mode, for

the adaptive strategy related to Q�.

7 Conclusions and Prospects

We have presented the main aspects and capabilities of error estimation techniques

based on the CRE concept. These robust techniques provide for bounds which are

both guaranteed and accurate for a large class of mechanical problems, as well as

relevant information to drive adaptive processes. Several remaining research issues

will be addressed in the near future, such as accurate bounds for complex nonlinear

material behavior (with possible softening, instabilities, or large deformations).

Appendix: Construction of Equilibrated Stress Fields

The construction of a statically admissible field is a key point of error estimation

methods based on CRE. It particularly enables to obtain guaranteed error bounds for

a large set of mechanical problems. A general construction approach, based on a post-

processing of the FE stress field σh , has been introduced in [4, 35]. This approach,

recently named EET (Element Equilibration Technique), can be decomposed in

two steps:
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1. tractions F̂h , equilibrated with the external loading, are built on element edges;

2. in each element E , a stress field σ̂h|E that verifies equilibrium:

div σ̂h + fd = 0 in E ; σ̂hn = ηE F̂h on ∂ E (90)

is computed, with ηE = ±1 a scalar value ensuring the continuity of the stress

vector. The associated local problem is in practice solved with a quasi-explicit

technique and polynomial basis, or with a dual approach with p enrichment (shape

functions of degree p + k).

The first step leans on the following prolongation (energy) condition:

∫

E

(σ̂h − σh)∇φi dE = 0 =⇒
∫

∂ E

σ̂h · nφi dS =
∫

E

(σh∇φi − fd · φi )dE ∀i

(91)

where φi is the FE shape function associated to node i . This condition, which ensures

equilibration of F̂h over E (as
∑

i φi |E = 1), leads to the solution to a system of the

form:
Rn∑

r=1

br
n(i) = QEn (i) ∀n = 1, . . . , N (92)

over the set of N elements connected to each node i . Rn is the number of edges for

element En connected to node i , QEn (i) =
∫

En
(σh∇φi − fdφi )dE , and unknowns

br
n(i) are projections of tractions defined as b̂r

n(i) =
∫
Γ r

En

ηEn F̂hφi dS. Existence of

a solution for each system is ensured by the equilibrium property (in the FE sense)

verified by σh , and uniqueness may be obtained minimizing a cost function.

In [26], a new hybrid method called EESPT (Element Equilibration + Star Patch

Technique) was introduced for the construction of admissible stress fields. As an

intermediary between EET and SPET (flux-free [55, 56]) methods, it enables a nice

compromise between accuracy of the computed stress fields, computational cost, and

practical implementation in engineering softwares. The EESPT method still has two

steps and leans on the construction of equilibrated tractions F̂h on element edges. The

main change is in the way the tractions are constructed, with an increasing flexibility

brought by a Partition of Unity Method (PUM); this leads to patch problems solved

in an automatic and non-intrusive manner, from classical FE tools. The computation

of σ̂h , over each element and from tractions F̂h , remains unchanged and can be

parallelized.

A comparison between EET, SPET and EESPT methods was performed in [36] on

several industrial applications, one of them being the structure presented in Fig. 2. It

was observed that the SPET method is more accurate than EET and EESPT methods,

but it requires higher computational cost. The EESPT method, which provides results

comparable to those of the EET method, seems to be a nice compromise between

accuracy, computational cost and implementation issues.
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(d)(c)

(b)(a)

Fig. 12 Norm of the FE stress field (a), and admissible stress fields computed with EET (b),

standard SPET (c), and enhanced SPET (d) methods

In [57], an improved version of the EESPT method was studied. It uses ideas

developed in [58] by considering a weak prolongation condition applied to high

degree shape functions (non-vertex nodes). This results in a local minimization of

the complementary energy and leads to optimized tractions in selected regions, par-

ticularly those with distorted elements or high gradients. The improved version of the

EESPT method having a higher computational cost, criteria were introduced to select

zones in which this version should be employed to get a nice compromise between

accuracy and cost. One example is that of a plate with a hole subjected to a unit trac-

tion force (see Fig. 12). EET, standard EESPT, and enhanced EESPT methods were

used to compute, from σh , a SA stress field σ̂h and derive the associated CRE error

estimate. Two criteria were introduced to detect zones in which the enhanced SPET

method should be used; the first criterion is based on the element shape (distorsion

level) and thus relies on the local quality of the mesh, whereas the second criterion

considers local error contributions.
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