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EVENT MODEL: A ROBUST BAYESIAN TOOL FOR CHRONOLOGICAL
MODELING.

PHILIPPE LANOS1 AND ANNE PHILIPPE2

Abstract
We propose a new modeling approach for combining dates through the Event model by using
hierarchical Bayesian statistics. The Event model aims to estimate the date of a context (unit of
stratification) from individual dates assumed to be contemporaneous and which are affected by
errors of different types: laboratory and calibration curve errors and also irreducible errors related
to contaminations, taphonomic disturbances, etc, hence the possible presence of outliers. The
Event model has a hierarchical structure which makes it possible to distinguish between date of
an Event and dates of the artifacts involved. Prior information on the individual irreducible errors
is introduced using a uniform shrinkage density with minimal assumptions about Bayesian param-
eters. The model is extended in the case of stratigraphic sequences which involve several Events
with temporal order constraints (relative dating). Calculations are based on MCMC numerical
techniques and can be performed using the ChronoModel software which is freeware, open source
and cross-platform. This modeling provides a very simple way to automatically penalize outlying
data without having to remove them from the dataset. This approach is compared to alternative
approaches implemented in Oxcal or BCal software: we show that the Event model is more robust
but generally yields less precise credibility intervals. Mathematical formulations are explained
in detail and comparisons are done thanks to synthetic examples. Three application examples
are shown: the radiocarbon dating of the shroud of Turin, the dating of a medieval potter’s kiln
in Lezoux (Auvergne, France) by using radiocarbon, archaeomagnetism and thermoluminescence,
and the OSL dating of the Shi’bat Dihya 1 sequence in Wadi Surdud middle paleolithic complex
(western Yemen).
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1. Introduction

Bayesian chronological modeling appears as an important issue in archeology and palaeo-
environmental sciences. It is now standard practice especially in England (Bayliss, 2009) where
the methodology has been developed since the 1990s. Internationally, Bayesian chronological mod-
eling has been adopted more slowly, but it is now beginning to be the method of choice for the
interpretation of radiocarbon dates, at least in the specialist literature. This can be illustrated,
for example, by statistical methods used for the interpretation of radiocarbon dates in papers
published in the journal “Radiocarbon” arising from the regular series of “Radiocarbon” and “14C
in Archaeology” conferences (Bayliss, 2015). Most applications are undertaken using the flexi-
ble software packages, BCal (Buck et al., 1999), Datelab (Nicholls and Jones, 2002) and OxCal
(Bronk Ramsey, 1995, 1998, 2001, 2008, 2009a,b; Bronk Ramsey et al., 2001, 2010; Bronk Ramsey
and Lee, 2013). Calibrated radiocarbon dates, or other date estimates on the calendar scale, are
combined with prior archeological information of various kinds to produce a combined chronology
that should be more reliable than its individual components. Chronological models are thus in-
terpretative constructions. The aim is to estimate the date of events or the chronological timing
of phases. In Bayesian chronological modeling, a phase is a group of contexts (units of stratifica-
tion) of similar age. This is an interpretative construct formulated with both stratigraphic and
non-stratigraphic information. Thus we can distinguish a stratigraphic phase and a chronological
phase (period) (Dye and Buck, 2015). The phase is characterized by a beginning, an end and
therefore a duration. We need to date depositional or interfacial contexts belonging to the phase
in order to be able to estimate these temporal parameters.

Contrary to the phase which suggests a duration, we define the Event as the date of an arche-
ological context determined from a collection of contemporaneous artifacts, which are dated by
using different dating methods such as radiocarbon, thermoluminescence, archaeomagnetism, etc
(Lanos and Philippe, 2015). The dating process provides measurements which are converted into
calendar dates using calibration reference curves. All the dates in an Event are assumed contem-
porary but they can be disturbed by errors of unknown origin which can arise from different type
of sources (Christen, 1994):

(1) the way of ensuring that the samples studied can realistically provide results for the events
that we wish to characterize (measurement or date),

(2) the care in sampling in the field, the care in sample handling, preparation and measure in
the laboratory,

(3) other non-controllable random factors that can appear during the process.

We propose a model of chronology called Event in the sense that:

• dates of assumed contemporaneous artifacts are embedded in one Event,
• in stratigraphic sequences, constraints of chronological order are defined between Events,

not between individual dates of the artifacts.

This paper concentrates on the Event model, considered alone or incorporated in the strati-
graphic sequence. Its statistical properties are described in Section 2. Alternative models devel-
oped by Christen (1994), Christen and Pérez (2009) and Bronk Ramsey (2009b) are presented
in Section 3 and compared with our chronological model. Application examples are discussed in
section 4.

2. The Event model

The Event model we propose for combining dates aims to be robust to outliers in the sense that
the estimates are not sensitive to the presence of outliers. Consequently, our approach does not
model the outliers, i.e. we do not estimate the posterior probability that a date is an outlier (See
Section 3 for such an approach). Generally such a robust approach leads to a loss of accuracy in
posterior estimates (for instance we obtain longer HPD intervals). Outlier modeling can provide
more accurate results, but it often requires two (maybe more) estimations of the model. Indeed
the outliers are identified after a first estimation and thus discarded from the dataset. Then the
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final model is estimated again from the new dataset. The Event model which is based on the
choice of robustness, avoids this two-step procedure. It is described in the following section.

2.1. The statistical model. The Event θ is estimated from n independent measurements (ob-
servations) Mi. Each measurement Mi, obtained from a specific dating technique, is related to
an individual date ti through a calibration curve gi and its error σgi (see Section 2 in Lanos and
Philippe, 2015). Here this curve is supposedly known with some known uncertainty. If we assume
that all the measurements can be calibrated with a common calibration curve (i.e. gi = g for all
i = 1, ..., n), for example when the same object is analyzed by different laboratories, the measure-
ments can be combined beforehand according to the R-combine model (Bronk Ramsey, 2009b).
On the contrary, if several calibration curves are involved, the R-combine model is no longer valid
and can be replaced by the Event model. The main assumption we make in the Event model is
the contemporaneity of the dates ti, i = 1..., n with the event date θ. Because of error sources of
unknown origin, there exists an ’overdispersion’ of the dates with respect to θ. This overdispersion
which corresponds to irreducible errors (Niu et al., 2013) is modeled by individual errors σi.

In this context the model with random effect can be written as follows

Mi = µi + siεi,

µi = gi(ti) + σgi(ti)ρi,

ti = θ + σiλi, (1)

where (ε1, ...εn, ρ1, ..., ρn, λ1, ..., λn) are independent and identically Gaussian distributed random
variables with zero mean and variance 1.
The random variables (λi)i and (εi)i are independent and satisfy the following properties:

• σiλi represents the error between ti and θ due to sampling problems external to the
laboratory (see error sources in Section 1),
• siεi + σgi(ti)ρi represents the experimental error provided by the laboratory and the cali-

bration error.
The joint distribution of the probabilistic model can be written according to a Bayesian hierarchical
structure:

p(M1, ...,Mn, µ1, ..., µn, t1, ..., tn, σ
2
1 , ..., σ

2
n, θ) = p(θ)

n∏
i=1

p(Mi|µi)p(µi|ti)p(ti|σ2
i , θ)p(σ

2
i ), (2)

where the conditional distributions that appear in the decomposition are given by:

Mi|µi ∼ N (µi, s
2
i ),

µi|ti ∼ N (gi(ti), σ
2
gi(ti)),

ti|σ2
i , θ ∼ N (θ, σ2

i ),

θ ∼ Uniform(T ),

σ2
i ∼ Shrink(s20). (3)

The parameter of interest θ is assumed to be uniformly distributed on an interval T = [θm, θM ].
This interval, called “study period”, is fixed by the user based on historical or archeological evi-
dences. This appears as an important a priori temporal information. Note that we do not assume
that the same information is available on the dates ti. Consequently their support is the set of
real numbers R.

The uniform shrinkage distribution for σ2
i , denoted Shrink(s20), admits as density

p(σ2
i ) =

s20
(s20 + σ2

i )
2
, (4)

where the parameter s20 must be fixed. The idea to be assumed is that, a priori, σ2
i should be of

the same order of magnitude as the variances of the latent variables ti (Lanos and Philippe, 2015).
One evaluates this magnitude through the n individual measurement calibrations. More precisely,
the parameter s20 is chosen as follows for each i = 1, ..., n:
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1 ) An individual calibration step is carried out for each measurement Mi. From the posterior
distribution of the individual calibration on the interval for which the calibration curve is
defined, we approximate its posterior variance var(ti|Mi) by wi the standard Monte Carlo
approximation.

2 ) Hence the shrinkage parameter s0 is given by:

1

s20
=

1

n

n∑
i=1

1

w2
i

. (5)

Remark 1. About numerical issues: the posterior distributions of the parameter of interest θ, the
dates ti and the individual variances σ2

i cannot be obtained explicitly. It is necessary to implement a
computational method to approximate the posterior distributions, its quantiles, the Bayes estimates
and the HPD regions. We adopt an MCMC algorithm and more precisely the Metropolis-within-
Gibbs strategy. The algorithm is implemented in the cross-plateform ChronoModel application,
which is free and open source software.

From an archeological point of view, it is important to note that the Event θ corresponds to
the date of a context determined from the dating of assumed contemporaneous artifacts. The
posterior date ti of an artifact is the calibrated date if considered alone. When integrated in an
Event model within a stratigraphic sequence, this posterior date ti corresponds to an updating
of the calibrated date by accounting for the once-whole model constraints. Thus, this conceptual
distinction between Event (date of a context) and the dating (date of an artifact or an interface)
leads to a new approach of the chronology. For instance, let us consider several radiocarbon
datings from charcoals retrieved in a pyroclastic flow emitted by a volcano. The deposit of this
flow is short in time: its Event (date of deposit) is then estimated from the charcoal dates. Some
of these dates can be disturbed for many reasons: old wood effects, subsequent contamination due
to erosion, etc., but it remains difficult to reject them because we are unable to decide (without
looking at the datings !) which of them are really unreliable. In other words, the date ti of the
artifact is good (it is an Event in itself), the Event of deposit θ is good, but some of the dates are
not well connected to the Event without knowing why. The Event model is constructed to manage
such a situation in a robust way so that the event remains insensitive to these “unknown” outliers.
Although the probability of a date to be an outlier is not estimated, it is however possible to assess
the outlying character of this date looking at the posterior density of the standard deviation σi.

2.2. Event model pertaining to relative dating. Relative dating based on stratigraphy as de-
fined in Harris (1979) and Desachy (2005, 2008), implies antero-posteriority relationships between
Events. In the Bayesian framework, this temporal order information can be taken into account in
the construction of the prior distribution and makes it possible to significantly improve chrono-
metric datings (see initial articles of Buck et al. (1991, 1992, 1994, 1996) and Christen (1994)). In
our modeling, the stratigraphic relationship is placed between the Events, no longer between the
dates as in Bcal (Buck et al., 1999) or Oxcal (Bronk Ramsey, 1995; Bronk Ramsey and Lee, 2013).
To estimate an Event, we need to incorporate several datings in it. However, it is possible to nest
only one dating per Event provided that the set of Events is constrained by temporal order.

To condense the writing, one defines an Event by the synthetic notation Ej which groups
measurements (observations) and variables (Mj, tj, σ

2
j , θj), with Mj = (Mji q)T for i = 1, ..., nj .

Here the dot symbol means that we can take several replicated measurementsMjik for one artifact.
Consequently, measurements are combined beforehand using the R-Combine model described in
Bronk Ramsey (2009b). For a set of r Events Ej submitted to temporal order, the probabilistic
model for Events chronology (see DAG in Figure 1) becomes:

p(E1, ..., Er) = p(θ1, ..., θr)

r∏
j=1

nj∏
i=1

p(Mji q|µji)p(µji|tji)p(tji|σ2
ji, θj)p(σ

2
ji), (6)
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where

Mji q|µji ∼ N (µji, s
2
ji q)

µji|tji ∼ N (gji(tji), σ
2
gji(tji))

tji|σ2
ji, θj ∼ N (θj , σ

2
ji)

σ2
ji ∼ Shrink(s20j)

(θ1, ..., θr) ∼ Uniform(C)

with C = S ∩ T r and
• T r = [θm, θM ]r the support which defines the study period,
• S = the set of r-uplets Events θj which respect total or partial order relationships.

The temporal order can be determined from a stratigraphic (or sequence) diagram. This di-
agram has a directed acyclic graph (DAG) structure (see Remark 2). The order relation (<)
is irreflexive, asymmetrical and transitive. Consequently, stratigraphic diagrams present neither
symmetry nor circularity. Note that it is not necessary to indicate transitivity relationships be-
tween Events because this indication is redundant. For each Event, it is sufficient to indicate what
is beneath and what is above (Dye and Buck, 2015).

Remark 2. Each Bayesian model can be described using a directed acyclic graph (DAG). Such a
graph describes the dependencies in the joint distribution of the probabilistic model. Each random
variable of the model (that is an observation or a parameter) appears as a node in the graph. Any
node is conditionally independent of its non-descendants given its parents. Hereafter, the circles
correspond to all the random variables of the model. With the color of the circles, we distinguish
between observations (red), parameters (blue) and exogenous variables (green).

It is not rare to encounter dating results which contradict the stratigraphic order: one speaks of
“stratigraphic inversion”. This situation often occurs when some artifact movements are provoked
for example by bioturbations or establishment of backfill soils. The Event model makes it possible
to manage such situations thanks to the individual variances σ2

i which automatically penalize the
dates that are inconsistent with the stratigraphic order. Applications to stratigraphic sequences
are shown in examples 2 and 5.
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j = 1 to r and θj ∈ S

i = 1 to nj

θj

tji

µji

Mji q

σ2
ji

s2ji q

Figure 1. DAG for the hierarchical Event model defined in (6).
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3. Alternative chronological models

It is important to compare the Event model properties with existing alternative models. First
of all, in the following, Event parameter θ directly coincides with date parameter ti. Each dating
is then representative of a singular event and thus, any irreducible error directly impacts either
the measurement Mi or the time ti.

Several outlier models have been implemented from the 90’s: A first approach was proposed by
Christen (1994) and developed thereafter by Bronk Ramsey (2009b). These models are typically
based on outlier modeling. We may cite Bronk Ramsey (2009b):

outlying samples are progressively down-weighted as they are more likely to be
outliers and so the results from the analysis are essentially an average between
a model in which the measurement is accepted and one in which it is rejected.
If we do not wish to have model averaging, but do wish to use outlier analysis
solely for outlier detection, we should first run a model with outlier analysis, see
which measurements are likely to be spurious and then run it again, without outlier
analysis but with some of the spurious results removed entirely.

An alternative approach has been proposed by Christen and Pérez (2009) for the analysis of
14C data where the associated variance is taken as the product of an unknown constant with the
sum of the variance reported by the laboratory and the variance of the calibration curve (that is,
an unknown error multiplier). These different models are discussed in the next three sub-sections.

3.1. Outlier model with respect to the measurement parameter. Christen’s (1994) ap-
proach to detect outliers basically consists in finding the posterior probability of a measurement
(i.e. radiocarbon determination) being an outlier (based on a shifted model for each determina-
tion). We describe this chronological modeling following Christen (1994) , Buck et al. (2003) and
the s- and r-type outlier models proposed by Bronk Ramsey (2009b). The corresponding model
with random effect can be written according to a global formulation as follows (see DAG in Figure
2):

Mj qk = µj q + sj qkεj qk + δj qkφj qksj qk10u,
µj q = g(tj q) + σg(tj q)ρj q (7)

where

• (εj q1, ...εj qn, ρ1 q, ..., ρr q) are independent and identically Gaussian distributed random vari-
ables with zero mean and variance 1.

• sj qkεj qk represents the experimental error provided by the laboratory and σg(tj q)ρj q the
calibration error.

• the prior on φj qk is the Bernoulli distribution with parameter pj . A priori, φj qk takes
the value 1 if the measurement requires a shift and 0 otherwise. In practice pj must be
chosen and the recommended values are 0.1 in Christen (1994); Buck et al. (2003) or 0.05
in Bronk Ramsey (2009b).

• δj qk corresponds to the shift on the measurement Mj qk if it is detected as an outlier.
The prior for δj qk is a Gaussian distribution N (0, σ2

δ ), or a Student distribution T with ν
degrees of freedom.

• u is a scale parameter to offset δj qk. Parameter u can be fixed (for instance 0) or prior
distributed as Uniform(0,4)

Remark 3. The date tj q and the Event θj characterize the same date. The dot symbol in tj q is
added to avoid any confusion with the dates tji. This notation makes it possible to keep the same
formalism in the sense that the same index position represents the same hierarchical level in the
different models throughout the paper.
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j = 1 to r and tj ∈ S

(i = q), k = 1 to mj q

tj q

µj q

Mj qk

δj qk φj qk
s2j qk

Figure 2. DAG for outlier model with respect to the measurement parameter
defined in (7) and (8).

For more simplicity, the parameter u is assumed known. In this case the joint distribution of
the probabilistic model can be written in the form:

p(M, µ, t, δ, φ) = p(t1 q, ..., tr q) r∏
j=1

p(µj q|tj q)mj q∏
k=1

p(Mj qk|µj q, δj qk, φj qk)p(δj qk)p(φj qk), (8)

where the conditional distributions that appear in the decomposition are given by:

Mj qk|µj q ∼ N (µj q + δj qkφj qksj qk, s2j qk)
µj q|tj q ∼ N (gj q(tj q), σ2

gj q (tj q))
(t1 q, ..., tr q) ∼ Uniform(C)

δj qk ∼ N (0, σ2
δ ) or ∼ T (ν)

φj qk ∼ Bernoulli(pj)

with C = S∩T r. T r = [tm, tM ]r is the study interval and S is the set of r-uplets of time tj q which
respect the total or partial order relationships between dates. This model becomes the r-type
model if we replace random error δj qkφj qksj qk by δj qkφj qk, that is without scaling by laboratory
error (Bronk Ramsey, 2009b, page 1038).

In Section 4, we compare this approach with the Event model by using the famous example of
the shroud of Turin (see Example 3)

3.2. Outlier model with respect to the laboratory variance parameter. Christen and
Pérez (2009) propose an alternative model that provides a robust approach for the analysis of 14C
data, without the need to detect outliers.

An uncertainty about the laboratory-reported variance s2j qk is introduced by considering the
product αj qs2j qk, where αj q is a strictly positive unknown constant. The meaning of αj q is that of
an unknown “variance multiplier” applied to the laboratory-reported variance. This formulation
is equivalent to a Normal model with unknown variance, but also considering the reported error
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sj qk as part of the data. Then, the modified statistical model for the measurement Mj qk, after
integration with respect to µj q, (see DAG in Figure 3) becomes:

Mj qk|µj q, αj q ∼ N (µj q, αj qs2j qk)
µj q|tj q, αj q ∼ N (gj q(tj q), αj qσ2

gj q (tj q)) (9)

j = 1 to r and tj ∈ S

(i = q), k = 1 to mj q

tj q

µj q

Mj qk

αj q

s2j qk

Figure 3. DAG for outlier model with respect to the experimental variance
parameter defined in (9).

Using this model, the effect of outlier observations is reduced in the posterior distributions,
without the need to include additional parameters or removing determinations from the data set.
The resulting posterior distribution for ti has a smoother shape in comparison to the previous
Normal model. The features of this modeling are somewhat similar to the Event model in the
sense that it is robust to outlier observations and other causes of overdispersed data, with far fewer
parameters than with Christen (1994) and Bronk Ramsey (2009b) models. However, this model
does not consider individual effects because αj q is not dependent of k, contrary to the Event model
where individual effects are carried out by the variances σ2

ji. Moreover, this model depends on the
choice of the inverse gamma prior with exogenous parameters a = 3 and b = 4 for the variance
multiplier. Christen and Pérez (2009) applied this outlier modeling to the shroud of Turin. In
Section 4, we compare this approach with the Event model (see Example 3)

3.3. Outlier model with respect to the time parameter. This chronological modeling, called
t-type outlier model, is proposed by (Bronk Ramsey, 2009b, see page 1035-1037). The model with
random effect becomes (see the DAG in Figure 4):

Mj qk = µj q + sj qkεj qk,
µj q = g(tj q + δj qφj q10u) + σg(tj q + δj qφj q10u)ρj q (10)

where parameters (εj q1, ...εj qn, ρ1 q, ..., ρr q) , δj q , φj q and u are defined in the same way as in
Section 3.1. When parameter u is fixed, the joint distribution of the probabilistic model can be
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j = 1 to r and tj ∈ S

(i = q), k = 1 to mj q

tj q

µj q

Mj qk

δj q φj q

s2j qk

Figure 4. DAG for outlier model with respect to the time parameter defined in
(10) and (11)

written in the form:

p(M,µ, t, δ, φ) = p(t1 q, ..., tr q) r∏
j=1

p(µj q|tj q, δj q, φj q)p(δj q)p(φj q) mj∏
k=1

p(Mj qk|µj q), (11)

where the conditional distributions that appear in the decomposition are given by:

Mj qk|µj q ∼ N (µj q, s2j qk)
µj q|tj q ∼ N (gj q(tj q + δj qφj q), σ2

gj q(tj q + δj qφj q))
(t1 q, ..., tr q) ∼ Uniform(C)

δj q ∼ N (0, σ2
δ ) or ∼ T (ν)

φj q ∼ Bernoulli(pj)

with C = S ∩ T r defined as in Section 3.1
This modeling can be compared to the Event model if we consider several dates i nested in the

Oxcal function “Combine” with t-type outlier model. The date tj q then becomes a common date
tj for measurements µji Consequently, (11) is transformed into:

p(M,µ, t, δ, φ) = p(t1, ..., tr)

r∏
j=1

nj∏
i=1

p(µji|tj , δji, φji)p(δji)p(φji)
mji∏
k=1

p(Mjik|µji), (12)

Applying the R-Combine procedure to measurements Mjik, we obtain:

p(M,µ, t, δ, φ) ∝ p(t1, ..., tr)
r∏
j=1

nj∏
i=1

p(Mji q|µji)p(µji|tj , δji, φji)p(δji)p(φji), (13)

Particular case for comparison:
If we consider linear calibration curves with constant errors, that is, by setting:



11

• gji(tji) = tji
• σgji(tji) = σgji ,

and knowing that
• δj qk ∼ N (0, σ2

δ )
• φj qk ∼ Bernoulli(pj),

it is possible to analytically integrate (13) with respect to δji , φji, and µji. The posterior
probability density of t is then given by:

p(t|M) ∝ p(t1, ..., tr)
r∏
j=1

nj∏
i=1

p(Mji q|tj), (14)

where the conditional distribution of Mji. given tj is a finite mixture distribution defined by

p(Mji.|tj) = pj
1√

2π(S2
ji q + σ2

δ )
e

1

−2(S2
ji q+σ2δ) (Mji q−tj)2

+ (1− pj)
1

Sji q√2π e
1

−2S2
ji q (Mji q−tj)2

(15)

with S2
ji q = s2ji q + σ2

gji .
On the other hand, posterior density of Event θ in (6) can be compared to density of time tj in

(14) after integration with respect to µji and σ2
ji. The posterior probability density of θ is given

by:

p(θ|M) ∝ p(θ1, ..., θr)
r∏
j=1

nj∏
i=1

p(Mji q|θj), (16)

where

p(Mji.|θj) =
∫ ∞
0

1√
2π(S2

ji q + σ2
ji)
e

1

−2(S2
ji q+σ2ji) (Mji q−θj)2 s20j

(s20j + σ2
ji)

2
dσ2

ji (17)

A graphical representation of the densities defined in (15) and (17) are shown in figure 5 with
the following parameter values: sji = 30 , σgji = 10, σδ = 102 and θj = tj = 1000. The density
(15) is plotted for three different values pj = 0.01, 0.05, 0.10 . We can observe that shrinkage
modeling in (17) leads to a more diffuse density making it possible to better take into account the
possible presence of outliers. This behaviour is illustrated in the five following examples.

800 900 1000 1100 1200

0.
00
0

0.
00
4

0.
00
8

0.
01
2

x

a

shrinkage
p= 0.01
p= 0.05
p= 0.1

Figure 5. Graphical representation of the densities defined in (15) and (17)
with the following parameter values: sji = 30 , σgji = 10, σδ = 102 and θj = tj =
1000
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3.4. Comparisons with synthetic data.

Example 1. Synthetic data with outlier
In order to illustrate these properties, we consider a synthetic (fictitious) Event example com-

posed of four Gaussian distributed measurements around 800, 850, 900 and 1500 with standard
deviation 30, and calibrated using the simple linear transformation M = g(t) = t. The time range
(study period) T is set equal to [0 , 2000], which widely includes the calibrated data. This example
(Fig. 6 ) shows the effect of an outlying date (here 1500) on the event θ. The 95% HPD interval
obtained with the four data is [795, 914] AD while the 95% HPD interval obtained with the three
well grouped data is [791, 909]. The outlying date has no influence on Event results in the sense
that both intervals stay centered around the same value. However we lose some precision in the
presence of the outlier.

In Figure 7, three of the posterior distributions of the standard deviations σi (i=1,..,3) remain
near zero while the standard deviation of the outlying data is high because of its outlying position.
This behavior demonstrates that the Event model appears to be a robust statistics for calculating
the posterior mean of the date θ with a very weak assumption on prior densities.

In Figure 6, right, the t-type outlier model is applied to the same data using the “Combine”
function and the outlier model ("General",T(5),U(0,5),"t") with prior outlier probability pj =
0.10. The calculation was performed with OxCal software V4.2. The combination yields to a
bimodal posterior density for t with a 95% HPD region equal to [800, 900] and [1450, 1540] AD.
The posterior outlier probabilities are respectively equal to 24, 21, 24 and 80%. According to
OxCal recommendations we remove the date “1500” and we rerun the estimation of the model.
Then the new 95% HPD interval is [810, 890] AD, a result included in the Event interval [795,
914]. This illustrates the fact that we lose in precision in order to have a robust estimation.

Figure 6. Synthetic data, Ex 1. [left] Event model: posterior densities ti
(white background) and posterior density for Event θ (gray background). The
individual posterior calibrated densities are superimposed in black. [right] t-type
outlier model: posterior densities obtained with Oxcal software V4.2.
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Figure 7. Synthetic data, Ex 1. Event model: posterior densities of the indi-
vidual standard deviations σi in the Event model.



14 LANOS ET PHILIPPE

Example 2. Synthetic data in a stratigraphic sequence with date inversion.
We consider a stratigraphic sequence composed of five Events such that:

F5 ≤ F4 ≤ F3 ≤ F2 ≤ F1
Each Event comprises two Gaussian distributed dates, having the same standard error 30 and

calibrated using the simple linear transformation M = g(t) = t:
Event(F5)

Date("D51",650,30)
Date("D52",600,30)

Event(F4)
Date("D41",350,30)
Date("D42",400,30)

Event(F3)
Date("D31",700,30)
Date("D32",750,30)

Event(F2)
Date("D21",250,30)
Date("D22",200,30)

Event(F1)
C-Date("D11",800,30)
C-Date("D12",850,30)

The time range (study period) T is set equal to [−1000 , 2000], which widely includes the
calibrated data. This example (Fig. 9, left) shows the effect of outlying dates which induce some
stratigraphic inversions between Events. A posteriori results show that Event F2 is well corrected
(dates F21 and F22 appear as clear outliers). Conversely, Events F4 and F5 show ambiguous
results, the posterior densities being bimodal. This result is not surprising because the dates
in both Events F4 and F5 are earlier than the dates in Event F3. Therefore the stratigraphic
relationship does not provide information making it possible to decide which of the Events F4 and
F5 is in stratigraphic inversion.

In Figure 9 [right], the t-type outlier model is applied to the same dataset using the “Com-
bine” function and the outlier model ("General",T(5),U(0,5),"t") with prior outlier probabil-
ity pj = 0.05. The calculation was performed with Oxcal software V4.2. The combination with the
stratigraphic order yields to monomodal posterior densities for t. Events F2 and F4 are corrected
in the same way and there is no ambiguity: only one stratigraphic scenario is retained.

However, if the prior outlier probability is modified, pj = 0.10, then some bimodal posterior
densities appear for Events F2 and F4 , leading to a similar result to example 1. Thus, the t-type
outlier model is sensitive to the choice of pj value, while the Event model does not depend on any
parameter choice.
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Figure 8. Synthetic stratigraphic sequence with date inversion, Ex 2. Dates are
Gaussian distributed with constant standard deviation equal to 30. Each Event
contains 2 dates.

Figure 9. Synthetic data in a stratigraphy with date inversion, Ex 2. [left]
Event model: posterior densities ti (white background) and posterior density
for Event θ (gray background). The individual posterior calibrated densities are
superimposed in black. [right] t-type outlier model: posterior densities obtained
with Oxcal software.
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4. Application examples

Archeological applications of the Event model are shown in this section: in a first example, the
model is applied to radiocarbon dating results from the shroud of Turin (Italy). In the second
example (Lezoux site, France), the Event is determined from a set of results involving radiocarbon,
thermoluminescence and archaeomagnetic dating techniques. The third example deals with the
question of Events constrained within a stratigraphic sequence (Shi’bat Dihya 1 site, Yemen).

Example 3. Shroud of Turin (Italy)
Twelve radiocarbon datings have been performed on a strip cut from the shroud of Turin (Da-

mon, 1989) and divided into three samples sent to Arizona, Oxford and Zurich AMS laboratories.
Four, three and five determinations were made respectively (see page 498-499 Christen, 1994).
The shroud belonging to the historical period, the prior time range T is set equal to [0 , 2000].

Figure 10 gives the posterior results with the Event model. The 95% HPD interval for the event
θ is equal to [1265 ; 1315] AD. Figure 11 gives the posterior densities of standard deviations σi.
All the densities are very similar, and thus they do not clearly indicate the presence of outliers in
this data set.
Comparison with outlier model with respect to the measurement parameter defined in(8) . The
HPD interval with the Event model is very close to the interval [1270 ; 1310] obtained by Christen
(Christen, 1994) after removing the determinations A1.1 and O1.1 identified as outliers. This
clearly shows that the event model can replace the R-Combine outlier model average.
Comparison with outlier model with respect to the laboratory variance parameter defined in (9).
According to Christen and Pérez (2009), the 95% HPD probability interval obtained in which the
organic matter in the Shroud of Turin died is [1281 ; 1302] AD. This interval is included in the one
obtained by the Event model. This is explained by the fact that the Christen and Perez model
considers a common parameter α for the dates of each laboratory (accordingly, the DAG in Figure
3 has to be slightly modified), while the Event model considers individual variances for all the
dates, thus leading to higher robustness but less precision.
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Figure 10. Shroud of Turin, Ex. 3. [white background ] Posterior densities of
ti and individual posterior calibrated densities (black line) obtained for 12 14C
dates. [gray background] Posterior density for Event θ.

Figure 11. Turin, Ex. 3 (Cont.) Posterior densities obtained for standard
deviations σi.

Example 4. Lezoux (Auvergne, France). Medieval potter’s kiln
The example of the medieval potter’s kiln of Maison-de-Retraite-Publique site (Mennessier-

Jouannet et al., 1995), in Lezoux (Auvergne, France), shows how to combine data from different
dating techniques using different calibration curves. Here, the Event corresponds to the last firing
of the kiln and is determined from baked clay (AM and TL dating) and from charcoals (14C
dating) of trees assumed to be felled at the same time as the last firing. More precisely, dating is
based on 3 TL datings (CLER 202a, 202b, 203), 2 AM datings (inclination and declination) and 1
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radiocarbon dating (Ly-5212) (Fig. 12). As the kiln belongs to the historical period, the prior time
range T is set equal to [0 , 2000]. Posterior densities ti (in color) obtained are greatly shrunken
compared to individual calibrated densities (in black line), especially for archaeomagnetic and
TL dates. Event model gives a 95% HPD interval equal to [575, 888] AD. Posterior densities for
standard deviations σi (Fig. 13) are much more spread than in the previous example of Turin.
This comes from the multimodality of AM calibrated dates obtained with inclination (Inc) and
declination (Dec). More generally, the parameter σi takes larger values when the associated date
ti is a possible outlier (see also examples in Lanos and Philippe, 2015).

Figure 12. Lezoux Ex. 4. [white background ] Posterior densities of ti and
individual posterior calibrated densities (black line) obtained for TL dates, for
14C dates and for AM dates. [gray background ] Posterior density for Event θ
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Figure 13. Lezoux, Example 4 (Cont.). Posterior densities obtained for standard
deviations σi.

In the previous examples 3 and 4, we can see that the Event model gives a very simple pro-
cedure to combine different dating results assumed to be conditionally independent to the Event
date. There is no need to model the outliers nor to adjust some specific parameters for outlier
detection. When the dates are coherent, posterior densities for standard deviations remain similar
and concentrated near zero. In the next example, we consider a stratigraphic sequence of sandy
silt deposits dated by OSL.

Example 5. Wadi Surdud paleolithic site (Yemen): OSL dating sequence. The Shi’bat Dihya
1 (SD1) site in Wadi Surdud middle paleolithic complex (western Yemen) (see Delagnes et al.
(2012)) has been dated by optical stimulated luminescence (OSL) to 55 ka, providing insight into
the Middle Paleolithic peopling of the Arabian Peninsula. The archeological layer is interstratified
within thick sandy silt floodplain deposits filling a piedmont basin. Luminescence dates, lack of
soil development, and gypsum precipitation indicate a high accretion rate of the floodplain during
Marine Isotope Stage 3. The chronology of SD1 sequence (noted Yemen-sequence hereafter) was
established by way of OSL dates determined on 498 single quartz grains (aliquots) from 16 sediment
samples taken throughout the stratigraphy. Age determinations are based on Analyst software
using the finite mixture model (FMM) (Roberts et al., 2000; Tribolo et al., 2010). Results for each
sample are presented in terms of age and are obtained by dividing the equivalent aliquot paleodose
by the dose rate (see Table 1 in supplementary material, p. 8, Delagnes et al., 2012). To convert
the ages A in calendar dates, we apply a linear calibration curve such that t = t0−age, where the
reference year t0 is set equal to zero. It corresponds to the year of measurement at the laboratory:
2008/2009. The dates are positive and thus the prior time range T is set equal to [0 , 500] in
order to largely include the data.

Following our modeling framework, each sample composed of a large set of dated quartz grains
corresponds to one deposit Event (in other words all the aliquots in a sample refer to a same age)
and the 16 Events are related to each other according to the stratigraphy, from the oldest sample
Yemen-20b ( θ1) to the youngest Yemen-2 (θ16) (Fig. 14). Thus their true dates (Event) have to
check the following relationship during the MCMC sampling:

θ1 < θ2 < ... < θ16.

The dispersion of the ages in each sample is important (see for instance Yemen-4 in Figures 17
and 18) and could be explained by grains which were properly bleached at the time of deposit, or
by some bioturbations which may occur and which are not easy to detect, or also by heterogenous
alpha and beta dose rates in the sediment. This implies a lot of chrono-stratigraphic inversions
as shown in Figure 15 when considering Events without any stratigraphic information. When
the stratigraphic information is taken into account as in Figure 16, the Events are considerably
improved and more precise. Extremal Events Yemen-20b and Yemen-2 are not changed but Events
in between are shifted in order to respect the stratigraphy and HPD intervals become more precise
as shown in Table 1. Typically, for Event Yemen-4, the 95% HPD age interval passes from [64.8,
75.5] without a stratigraphic relationship to [51.7, 54.6] with a stratigraphic order constraint.
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Figure 14. Yemen sequence, Ex. 5. Stratigraphic model for the 16 Events,
involving OSL dating on 498 single quartz grains.

Figure 15. Yemen sequence, Ex. 5. Posterior densities obtained for the events
θj , j = 1, ..., 16 when no stratigraphic information is put on the Events.
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Figure 16. Yemen sequence, Ex. 5. Posterior densities obtained for the events
θj , j = 1, ..., 16 with stratigraphic model defined in Fig. 14.

without stratigraphic with stratigraphic
order order

[46.8 , 40.6] [46.6 , 40.8]
[55.0 , 48.9] [53.1 , 48.7]
[61.4 , 52.5] [54.1 , 50.7]
[75.5 , 64.8] [54.6 , 51.7]
[56.5 , 50.0] [54.9 , 52.1]
[54.2 , 46.2] [55.1 , 52.3]
[61.6 , 46.5] [55.4 , 52.7]
[63.3 , 52.5] [55.8 , 53.0]
[59.2 , 49.4] [56.2 , 53.3]
[54.3 , 46.0] [56.7 , 53.6]
[56.4 , 48.5] [57.2 , 54.0]
[61.1 , 52.0] [58.1 , 54.5]
[68.6 , 56.9] [59.0 , 55.1]
[55.9 , 48.1] [62.6 , 56.3]
[62.2 , 50.3] [64.5 , 57.2]
[88.3 , 59.3] [84.9 , 61.6]

Table 1. Yemen sequence: 95% HPD intervals for Events with and without
stratigraphic relationship
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Figure 17. Yemen sequence, Ex. 5. Posterior densities of ti obtained for Event
Yemen-4, and individual posterior calibrated densities (black line) obtained for
39 OSL datings on single quartz grains.



23

Figure 18. Yemen, Ex. 5 (cont.). Posterior densities obtained for the standard
deviations in Event Yemen-4.
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5. Conclusion

The Bayesian Event model aims to estimate the date θ of a context (unit of stratification)
from individual dates ti which are affected by errors of different types: laboratory and calibration
curve errors and irreducible errors related to contaminations, taphonomic problems, etc, hence the
possible presence of outliers. The Event approach is robust to outliers in the sense that individual
variances σ2

i put on all the dates ti in an Event act as outlier penalization.
The Event model has a hierarchical structure which makes it possible to distinguish between

date θ of an Event (in the sense of something that occurs in a certain place at a given time)
and dates ti of the artifacts involved. Indeed, we assume that these artifacts, dated by different
methods (chronometric methods, typo-chronology, history), are all contemporaneous to the Event.
However some of them may be misallocated: the date can be reliable in itself because it corresponds
to, for instance, the making of the artifact, but at the same time may not be contemporaneous
to the target Event. The posterior distribution of the variance σ2

i indicates if an observation is
an outlier or not. However, it is not necessary to discard outliers because the corresponding high
values σ2

i will automatically penalize their contributions to the Event estimation.
Our outlier model can apply without having to decide whether the outlier comes from a lab-

oratory measurement error or from a dating error. Moreover, there are no exogenous or hyper
parameters to adjust according to the different data of submitted sets. The only parameter in-
volved in prior shrinkage, s20 , comes uniquely from the data analysis via the calibration process.
So, the approach is adapted to very different datasets. The good robustness properties of the
Event model are paid with less precision in the dates. However, this loss of precision is compen-
sated by better reliability of the chronology. Consequently, the Event model constitutes the basic
element in our chronological modeling approach. In “Chronomodel” software, dating of a context,
stratigraphic chronology or phasing are directly constructed by using the Event model.
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