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Performance Evaluation of Cloud Computing
Centers with General Arrivals and Service

Tulin Atmaca,Thomas Begin,Alexandre Brandwajn, and Hind Castel-Taleb

Abstract—Cloud providers need to size their systems to determine the right amount of resources to allocate as a function of
customer’s needs so as to meet their SLAs (Service Level Agreement), while at the same time minimizing their costs and energy use.
Queueing theory based tools are a natural choice when dealing with performance aspects of the QoS (Quality of Service) part of the
SLA and forecasting resource utilization. The characteristics of a cloud center lead to a queueing system with multiple servers (nodes)
in which there is potentially a very large number of servers and both the arrival and service process can exhibit high variability. We
propose to use a G/G/c-like model to represent a cloud system and assess expected performance indices. Given the potentially high
number of servers in a cloud system, we present an efficient, fast and easy-to-implement approximate solution. We have extensively
validated our approximation against discrete-event simulation for several QoS performance metrics such as task response time and
blocking probability with excellent results. We apply our approach to examples of system sizing and our examples clearly demonstrate
the importance of taking into account the variability of the tasks arrivals and thus expose the risk of under- or over-provisioning if one
relies on a model with Poisson assumptions.

Index Terms—Cloud computing, performance evaluation, quality of service, blocking probability, response time, approximation,
queueing model, general distribution.

F

1 INTRODUCTION

C LOUD-BASED services have become ubiquitous and
permeate our every-day life. Unlike the traditional

approach where companies rely on their own computing,
storage and network resources to handle the user’s de-
mands, cloud computing provides their users with on-
demand services that are accessed over a network (most
often Internet) [DIK09, ARM10, XU12]. SaaS (Software as
a Service) environments, in which software is hosted cen-
trally in a cloud, is a case in point, and has become a
standard model for a number of business and multimedia
applications. Other approaches to cloud computing include
IaaS (Infrastructure as a Service) and PaaS (Platform as a
Service). In either case, the cloud architecture offers many
advantages including economies of scale, fast deployment
of new features, quick bug fixes and potential cost-saving
through the “pay-as-you-go” model.

A cloud computing center typically consists of many
computing nodes that process the tasks (sometimes also
called transactions or requests) initiated by users as illus-
trated in Figure 1.

The cloud provider and the user agree together on a
contract, referred to as the SLA (Service Level Agreement),
which formally defines the expected scope and quality
of service. The issues addressed by this contract include
security, reliability, availability and performance. The per-
formance obligations are often expressed in terms of such
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Fig. 1: Overview of a cloud center providing service to
remote users.

QoS indicators as the average delay before being served,
i.e., the expected waiting time for a task, the task blocking
probability, the no-wait probability, etc.

On the other hand, cloud providers have a degree of
control over the management of their resources and can
tune some parameters. They strive to make the cloud as
elastic as possible in order to provision the right amount
of resources for each user according to the user’s demand.
In other words, cloud providers attempt to avoid over-
provisioning while at the same time striving to meet their
negotiated SLAs. In this perspective, the resource utilization
becomes a key parameter that reflects how well resources
are utilized.

Thus, cloud providers are faced with the problem of
sizing their systems so as to meet their SLAs, while at
the same time minimizing their costs and energy use. This
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implies determining the right (as little as possible) amount
of resources to allocate as a function of customer’s needs. To
assist them in this provisioning task, cloud providers need
appropriate tools. In that respect, queueing theory based
tools seem a natural choice when dealing with performance
aspects of the QoS, viz. blocking probability, average delay
for a task, etc, as well as resource utilization.

A cloud center can be viewed as a set of computing
nodes that execute user tasks. User tasks arrive to the com-
puting nodes according to some pattern (arrival process),
potentially queue for service and are eventually treated by
a node in accordance with the needs of the task (service
process). This leads naturally to a queueing system with
multiple servers (nodes). However, cloud-based systems
present a number of challenges for standard queueing mod-
els:

• there is a potentially very large number of computing
resources (several hundred);

• the service process can be highly variable;
• the arrival process can exhibit high variability as

well.

Standard queueing models rarely consider hundreds of
servers. High variability of the service process means that
the coefficient of variation, i.e., the ratio of the standard
deviation to the mean service time can be much larger than
one. The coefficient of variation (cv) is a unitless measure
of variability. The more variable the distribution, the greater
its coefficient of variation. Similarly, high variability of the
arrival process means that the coefficient of variation of
the time between task arrivals to the computing nodes can
be much larger than 1. This in turn implies that queueing
models with Poisson arrivals, which assume a very specific
pattern of arrivals with a coefficient of variation of exactly
1, are likely not an adequate general representation of cloud
systems.

In this paper, as a generalization of the work of previous
authors [XIO09, YAN09, KHA12], we propose to use a
model with multiple servers, general times between task
arrivals and general task service time (G/G/c-like queue)
and we present a simple-to-implement, efficient and accu-
rate approximate solution which uses available off-the-shelf
components. Because the multiple servers in our model,
like in the work cited before, are assumed to be statistically
identical, the model is a high-level general representation of
a system with reasonably homogeneous processing nodes.
For systems in which the nodes are far from homogeneous,
it may be possible to account for the differences in process-
ing speeds by adjusting appropriately the variability of the
service times in the model. A significant level of complexity
would be added if nodes were to be considered individually.

The next section is devoted to a brief review of existing
related work. Section 3 presents our model and its solution,
including the easy derivation of performance metrics of
interest. Section 4 summarizes the results of an extensive
validation of our approximate solution. It presents also data
on its convergence and relative speed. Section 5 shows
examples of the application of our model to the sizing of
a cloud system. Section 6 concludes this paper.

2 RELATED WORK

Despite the ubiquitous presence of cloud systems and the
considerable research attention devoted to such systems,
there seems to be a relatively limited number of studies
which apply queueing theory models to cloud systems.
Initial research work in this area started by assuming ex-
ponential distributions throughout the system. Xiong and
Perros in 2009 [XIO09] model the cloud as an open queueing
network and obtain the approximate distribution of the task
response time and related performance metrics under the
assumption of exponential service and inter-arrival time
(coefficients of variation equal to 1 for both). Yang and al.
[YAN09] the same year obtain the approximate distribution
of task response time in a multi-server queue under the
same restrictive assumption regarding service and inter-
arrival distributions. Subsequent research work seeks to
relax the restrictive exponential assumption. Khazaei et al.
in 2012 [KHA12] present an approximate solution of a multi-
server queue with general service time but Poisson arrivals
(i.e. exponentially distributed times between arrivals). Yang
et al. [YAN13] extend in 2013 their approximate solution
[YAN09] to account for general non-Poisson task arrivals
while the service times are assumed to be exponential. Ad-
ditionally, in 2013, Khazaei et al. [KHA13] and Singh et al.
[SIN13] provide more fine-grained performance models for
the cloud systems but retain the restrictive Poisson arrival
assumption.

Our model and its approximate solution allow us to relax
both restrictive assumptions on service and inter-arrival
distributions. With general distributions for the service
times and the times between arrivals, the resulting model is
known as the G/G/c/N queue where N is the finite capacity
of the system in terms of the numbers of tasks it can accept
at any given time (also referred to as the buffer space). The
general analytical solution of this model is not known so
that a common approach (barring simulation) is to represent
the “general” distributions by their phase-type equivalents.
Well established techniques exist and are readily available
as a free software service to effect this translation [HOR02,
BOB05, OSO06]. The resulting Ph/Ph/c/N queueing system
is then solved numerically as a specific system of linear
equations.

As long as the number of servers c and the number
of phases (used to represent the general distributions) in
the model remain moderate, the equations of the Ph/Ph/c/N
queue can be solved via direct iteration [TAK76, SEE86] or,
more efficiently and elegantly, via matrix-geometric meth-
ods [RAM86, LAT99, BIN05]. However, as the number of
servers and phases grows, the number of equations to
solve grows combinatorially (“dimensionality curse”), effec-
tively precluding the exact numerical solution of systems
with larger numbers of servers. This may be the case for
Ph/Ph/c/N queues with as few as 32 servers and a buffer
space as small as 64. Unfortunately, larger number of servers
is precisely what is needed to represent many cloud environ-
ments. Additionally, to represent a realistic arrival pattern it
may be necessary to use more than just a few phases.

While a few approximations have been proposed in
the literature (see [WHI93] and [BOL05] for an overview),
most of these approximations turn out to be of questionable
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accuracy [WOL77, WHI80, GUP10, BEG13]. This is the case
for approximations based on the first two moments of the
service time and inter-arrival time distributions. Other exist-
ing approximations (e.g. [WHI04, TAK07, KIM03]) may rely
on “heavy traffic limits” and come with their own specific
complexity and limitations. Thus, there is a clear need for an
efficient and reasonably simple solution of such queues that
scales easily as the number of servers increases. We propose
precisely such a solution.

3 MODEL AND ITS SOLUTION

The Ph/Ph/c/N queueing model under consideration is rep-
resented in Figure 3. We denote by a and b the number of
phases used to represent the distributions of the time be-
tween arrivals and of the service time, respectively. A phase-
type distribution is a representation of a general distribution
as a set of exponential phases, and any general distribution
can be represented arbitrarily closely by a finite number of
such exponential phases [BOL05].

The service time distribution represented as a phase-
type distribution in Figure 2. This distribution comprises
b exponential phases, where µi is the parameter of the
corresponding exponential phase i (phase intensity) with
i = 1, . . . b. With probability σi, the service starts in phase
i. Upon completion of phase i, with probability q̂i the
task service is over, and with probability qik the service
continues in phase k. For simplicity, we consider acyclical
distributions, i.e. qik = 0 if k ≤ i. Similarly, the arrival
process is represented by a phase-type distribution with a
exponential phases where λj is the intensity of phase j, and
the parameters τj , r̂j and rjm correspond to parameters σi,
q̂i and qik of the service time distribution, respectively.
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Fig. 2: Phase-type representation of a general service time
distribution.

For simplicity of exposition, the above description as-
sumes no state-dependency of the service times and times
between arrivals. Without difficulty, the model can be ex-
tended to include state dependencies by making the phase
intensities, as well as the probabilities of selecting a specific
phase depend on the current number of users of tasks in
the system. Note that a stochastic queueing model like the
one considered in this paper incorporates by its very nature
a level of dynamic behavior, and even more so with state-
dependent phase parameters.

We denote by p(n), n = 0, ..., N the steady-state prob-
ability that there are n tasks in the system (queued and in
service).

In our method, we iterate between the solutions of
simpler M/Ph/c/N and Ph/M/c/N queues, in which one of the
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Fig. 3: The Ph/Ph/c/N queue.

phase distributions is replaced by a memoryless (the M part
of notation) state-dependent distribution. For the M/Ph/c/N
queue, the arrivals are represented by a state-dependent rate
of arrivals w(n), n ≥ 0, and the service time distribution
is the complete phase-type distribution with b phases. The
solution of this queue produces approximate values for p(n)
and the conditional rate of service u(n), n ≥ 1 given that
there are n tasks in the system. This rate of service is used
to solve the Ph/M/c/N queue with the complete phase-type
distribution of the time between arrivals with a phases.
The solution of this queue produces approximate values for
p(n), as well as the conditional rate of arrivals given that
there are n tasks in the queue, w(n), n ≥ 0 (see Figure 4).

Thus, we need the w(n) to solve the M/Ph/c/N queue
and obtain the u(n) needed to solve the Ph/M/c/N queue
to produce the values of w(n), naturally leading to a fixed-
point iteration. We stop the iteration when the steady-state
distributions p(n) produced by the two models become
sufficiently close, as measured by the mean number of tasks
in the system L =

∑N
n=0 n.p(n).
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Fig. 4: Schematic view of the approximate solution.

The resulting fixed-point iteration is summarized in Al-
gorithm 1.

Note that we have u(n) = p(n − 1).w(n − 1)/p(n) and
that the steady-state probability p(n) can be expressed as

p(n) =
1

G

n∏
i=1

w(i− 1)

u(i)
for n = 0, 1, ..., N (1)
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Algorithm 1 Fixed-point solution

1: Initialize the values of w(n), n ≥ 0 to the inverse of the
mean time between arrivals.

2: Solve the M/Ph/c/N queue using the current values of
w(n), n ≥ 0 (these values come from Step 1 on the first
iteration and from Step 3 afterwards).
a: Obtain current values for p(n) and for u(n).
b: Compute the current value of L from this model.

3: Solve the Ph/M/c/N queue using the current values of
u(n), n ≥ 1 from Step 2.
a: Obtain current values for p(n) and for w(n).
b: Compute the current value of L from this model.

4: If the values of L from Step 2 and Step 3 deviate by less
than ε > 0 then stop the iteration, otherwise go to Step 2.

5: Use the current values of p(n) and w(n) to compute
desired performance metrics.

where G is a normalizing constant, i.e. G =
[
1 +∑N

n=1

∏n
i=1

w(i− 1)

u(i)

]−1

. We solve the Ph/M/c/N queue us-

ing the fast and stable recurrence described in [BRA12],
which produces directly the values of w(n), n ≥ 0. We
use the reduced-state approximation to solve the M/Ph/c/N
queue [BRA14]. The state-space complexity in this approx-
imation grows linearly with the number of servers and
service time phases.

Note that formula (1) would be exact if we had the exact
values of the conditional rate of arrivals w(n) and of the
conditional service rate u(n).

Having obtained the steady-state probabilities p(n), it is
a straightforward matter to compute the probabilities of the
number of tasks found by a task upon arrival to the system,
denoted by PA(n) as:

PA(n) =
w(n)p(n)∑N
i=0 w(i)p(i)

for n = 0, . . . N. (2)

The blocking probability pblock is then simply PA(N)
i.e., the probability that an arriving task finds the system
full to capacity. Note that in the particular case when the
time between arrivals is exponentially distributed (Poisson
process), the probabilities upon arrivals PA(n) happen to
be exactly the same as the steady-sate probabilities p(n)
[BOL05]. We assume in our model that tasks continue to
arrive to the system even when it has reached its capacity.
It is not difficult to treat the case where the arrivals become
blocked until there is room in the system. In our solution,
this requires only a straightforward modification of the
Ph/M/c part of the solution, as described in [BRA12]. No
modification is required in the M/Ph/c part of our solution
as the blocking of arrivals will be automatically represented
by the state-dependent rate of arrivals in this model.

The probability that a task experiences no wait, pno wait,
can be computed as:

pno wait =

c−1∑
n=0

PA(n). (3)

TABLE 1: Notation used.

Symbol Description
a Number of phases for the inter-arrival time distri-

bution
b Number of phases for the service time distribution
cva Coefficient of variation for the inter-arrival time

distribution
cvs Coefficient of variation for the service time distri-

bution
c Number of servers
N Buffer space, i.e. maximum number of tasks in the

system (queued and in service)
p(n) Marginal probability that there are n tasks in the

system
u(n) Overall departure rate from the set of c servers

given that the current number of tasks in the
system is n

w(n) Arrival rate at the queue given that the current
number of tasks in the system is n

PA(n) Probability that an arriving task finds n tasks in
the system

pblock Blocking probability (i.e. probability that a task
finds the system at capacity full upon arrival)

pno wait No-wait probability (i.e. probability that a task
experiences no wait)

U Server utilization
L Mean number of tasks in the system
Θ Mean task throughput
R Mean task response time

The server utilization (per server) can be expressed as:

U =

c−1∑
n=1

p(n).n/c+

N∑
n=c

p(n). (4)

The mean number of tasks in the system can be obtained
as:

L =

N∑
n=1

n.p(n). (5)

The task throughput, i.e., the number of tasks processed
per time unit is given by:

Θ =

N∑
n=1

u(n).p(n). (6)

Hence, the mean response time of a task, denoted by R,
can be computed using Little’s formula [BOL05]:

R =
L

Θ
. (7)

Regrettably, we don’t have a theoretical proof of the con-
vergence of the proposed fixed-point iteration to a unique
solution. In the several thousand cases we have explored
using the value of ε = 10−9 for the exit test, the method
never failed to converge within typically just a few tens of
iterations.

The proposed approach decomposes the solution of a
Ph/Ph/c/N queue into the solution of an M/Ph/c/N queue
with state-dependent rate of arrivals, and that of a Ph/M/c/N
queue with state-dependent service rates. Such decompo-
sition would be exact if we knew the rates of arrivals as a
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function of both the number of tasks n and the current phase
of the service process, as well as the rates of service as a
function of n and of the current phase of the arrival process.
Since we determine them only as a function of n, the method
is approximate. Intuitively, this would only matter when the
number of servers is small (say, less than 4).

4 ACCURACY AND PERFORMANCE OF THE PRO-
POSED APPROACH

We explored a number of cases to study the accuracy of
our approximation. The cases considered encompass the
following ranges of parameter values:

• Number of servers c : 32, 64, 128, 256, 512;
• System capacity (buffer space): N : 2c and 3c;
• Offered load : 0.4, 0.6, 0.8, 1. 2;
• Coefficient of variation of the service time cvs: 0.5, 2,

and 3;
• Coefficient of variation of the time between arrivals

cva: 0.5, 2, and 3.

We keep the mean service time set to 1. To define dif-
ferent workload levels, in the case of a model without state
dependencies we use the notion of offered load per server,
defined as the ratio of the mean rate of task arrivals (includ-
ing arrivals lost due to system overflow, i.e. blocking). This
definition stems from the fact that the maximum processing
capacity of the system is determined by the product of the
number of servers (c) times the mean processing rate for a
task (taken to be 1 here). Thus, an offered load per server of
1 or more corresponds to a system operating at its maximum
processing capacity where the mean rate of task arrivals is
equal to or exceeds the processing capacity of the servers.

We use the coefficients of variation to describe the vari-
ability of the times between task arrivals and their service
times, denoted cva and cvs, respectively. Recall that the
coefficient of variation is defined as the ratio of the standard
deviation to the mean of a random variable (or a sample).

We use discrete-event simulation as comparison basis to
assess the accuracy of our approach. Our simulation runs
employ the independent replication method with 7 repli-
cations of 50,000,000 task completions each. The resulting
estimated confidence intervals at 95% confidence level are
so small that we use only the mid-point in our validation.

Table 2 summarizes the relative error of the proposed
solution for the mean number of tasks L. In this set of
examples, the mean relative error is 0.3%, the median error
is 0.1%, and there are no cases where the relative error
exceeds 5%.

TABLE 2: Distribution of the relative errors for the mean
number of tasks L.

Mean Median <1% 1-5% 5-10% >10%
0.3% 0.1 % 93.6% 6.4% 0% 0%

Table 3 shows the relative error for the blocking prob-
ability pblock. Note that for the blocking probability to have
meaningful values, we include in this table only cases where
the blocking probability exceeds 0.01. We observe that the
mean relative error is below 1%, the median error 0.1% and
in over 93% of cases the relative error remains below 5%.

TABLE 3: Distribution of the relative errors for the blocking
probability pblock.

Mean Median <1% 1-5% 5-10% >10%
0.8% 0.1 % 89.6% 4.0% 4.0% 2.4%

Table 4 summarizes the relative error for the mean task
response timeR. We observe that the mean error is 0.3%, the
median error is a mere 0.1% and in only some 8% of cases
the error is greater than 1%.

TABLE 4: Distribution of the relative errors for the mean
task response time R.

Mean Median <1% 1-5% 5-10% >10%
0.3% 0.1 % 92.4% 7.6% 0% 0%

Table 5 shows the relative error for the server utilization.
This error is computed as |1−Uapproximation/Usimulation|. Anal-
ogous computation was used for relative errors presented in
Tables 2, 3 and 4. We observe the excellent accuracy of our
method for this metric.

TABLE 5: Distribution of the relative errors for the server
utilization U .

Mean Median <1% 1-5% 5-10% >10%
0.08% 0.03 % 98.7% 1.3% 0% 0%

The proposed approximation produces accurate results
not only for the performance metrics considered but also
generally correctly reproduces the shape of the steady-state
distribution of the number of tasks in the system, p(n). Fig-
ure 5 illustrates this fact for an example with the following
parameters: c = 32, N = 2c, cva = 2, cvs = 2 and an offered
load of 0.8 and 1.0. We observe a close agreement between
the results of our approximation and the exact probability
distribution.

As a final example, we consider a system with state
dependencies. In this example, the service times of tasks
increase as the number of tasks increases beyond the num-
ber of servers c. Specifically the service rate of each server
decreases linearly with the length of the queue from 1 with
no tasks queued down to 0.7 when the system is at capacity.
Figure 6 shows the mean number of tasks in the system as a
function of the offered load per server. We observe that the
values produced by our approximation closely match the
exact values.

In all examples presented in this paper, both the distri-
butions of the service time and of the time between arrivals
comprise 4 phases and are obtained using an adaptation
of the algorithm by Bobbio et al. [BOB05]. The choice of 4
phases is purely arbitrary and in no way a limitation of the
proposed approach. Note that if only the first two moments
of the empirical distribution are known and its coefficient of
variation is greater than 0.7, then a two-phase distribution
is sufficient to match the known two moments.

Note also that distribution fitting algorithms such as
[BOB05, OSO06] produce acyclical distribution as assumed
in our paper. This allows us also to use the simple recurrence
solution of the Ph/M/c queue.
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Fig. 5: Distributions of the number of tasks, p(n), produced
by the exact and our approximate solutions.
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Fig. 6: Mean number of tasks L in the system with c = 32,
N = 2c, cva = 3, cvs = 3 and state dependencies for the
service process for various levels of workload.

Additionally, it is worth noting that when the coefficients
of variation for the time between arrivals and the service
time are both equal to 1 (exponential distributions) our
approach produces exact results.

Since our method iterates between the simpler solutions
of the M/Ph/c/N and Ph/M/c/N queues, it is interesting to
examine the speed of convergence of this iteration on the
whole set of our examples. Table 6 summarizes the number
of iterations needed to attain convergence (with ε = 10−8).
We observe that on average some 6 iterations are needed.
It is important to note that each iteration comprises the
execution of an approximate M/Ph/c/N solution and an exact
recurrent solution of the Ph/M/c/N queues. The execution
time of the former grows somewhat faster than linearly with
the number of servers, while the complexity of the recurrent
solution grows only linearly with the number servers.

TABLE 6: Number of iterations till convergence in the ap-
proximate solution.

Mean Median <5 5-10 10-20 >20
6.0 4.0 59.9% 21.3% 14.6% 4.2%

A more detailed study of the convergence behavior of
the proposed approach reveals that, if one considers the
mean number in the system, the convergence to the final
result is very fast: on average 3 iterations suffice. This is
illustrated in Figure 7, as well as in Table 7, which show that
after 3 iterations the relative difference between the current
result and the final value is below 1% (in absolute value) in
all cases considered.

TABLE 7: Number of cases having a discrepancy less than
1% with the (approximate) value of L found at convergence.

After iteration 1 2 3
91.1% 97.8% 100%
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Fig. 7: Relative discrepancy of intermediate results of the
proposed solution (at each iteration) with its final solution.

As a final point in this section, we look at the relative
speed of the proposed approach as compared to discrete-
event simulation (with the simulation parameters used
throughout this paper). We observe in Table 8 that our
method is some 2 to 4 orders of magnitude faster.

Overall, based on the results shown and on many more
results not reported in this paper, we conclude that the rel-
ative error of our approximate solution for the performance
indices considered L, R, pblock and U can be expected to
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TABLE 8: Relative execution time compared to simulation.

Mean Median <100 100-1,000 1,000-10,000 >10,000
4154 298 35.2% 33.9% 19.6% 11.3%

be well under 5%, and rarely, if ever, exceed 10% for an
extremely large range of values of model parameters. Com-
pared to simulation the proposed solution is, on average, 3
orders of magnitude faster.

5 EXAMPLE OF SYSTEM SIZING

To illustrate the application of our model, we consider the
problem of determining the right amount of resources in a
cloud system so as to meet a given QoS level. We start by the
probability that tasks don’t have to wait for service pno wait.
Our objective is for 95% of tasks to experience no wait, i.e.
pno wait ≥ 0.95. We are seeking to determine the minimum
number of servers which will allow us to meet the specified
QoS objective. We maintain the maximum system capacity
at twice the number of servers. The mean service time is
normalized to 1 and the service time coefficient of variation
is set to 2. The offered load is kept at 0.8 and the buffer space
is set to N = 2c.

The results of our model shown in Figure 8 indicate that
when the coefficient of variation of the time between arrivals
cva is small (0.5), it is sufficient to provision 50 server to
attain this QoS level. With Poisson arrivals (cva = 1), this
number becomes 75 and increases all the way to almost 110
servers with more variable times between arrivals (cva = 3).
It is thus plainly clear that using a model with Poisson
arrivals leads to significant under- or over-provisioning
depending on the variability of the arrivals.

0 50 100 150 200 250 300 350
0.7

0.75

0.8

0.85

0.9

0.95

1

number of servers

n
o
−

w
a
it
 p

ro
b
a
b
ili

ty

 

 
cv for arrivals =0.5

cv for arrivals =1

cv for arrivals =2

cv for arrivals =3

QoS objective

Fig. 8: Sizing the cloud system according to the predicted
no-wait probability pno wait.

In our second example, we examine the sizing of the
maximum system capacity so as to maintain a blocking
probability pblock not exceeding 1% (pblock ≤ 0.01). The
number of server is kept constant at c = 256 and the offered
load is 1. As in our first example, the mean service time is
normalized to 1 and the service time coefficient of variation
is set to 2.

We observe in Figure 9 that with low arrival variability
(cva = 0.5), a total system capacity of 315 is adequate. With

Poisson arrivals (cva = 1), the necessary system capacity
is 360, and it grows to almost 770 when the variability of
the time between arrivals reaches 3 (cva = 3). It important
to note that the necessary waiting space size i.e., N − c,
to meet the specified QoS objective grows almost fivefold
(from a little over 100 to 500) as the coefficient of variation
varies from 1 (Poisson arrivals) to 3. As in our first example,
it is clear that one cannot rely on the results of a model with
Poisson arrivals to reliably size a cloud system.
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Fig. 9: Sizing the cloud system according to the predicted
blocking probability pblock.

The next section summarizes the conclusions of this
paper.

6 CONCLUSION

In this paper we argue the importance of performance
evaluation tools to properly size a cloud system so as to
meet performance aspects of the SLA, as well as minimize
the amount resources the cloud provider needs to provision
to meet the agreed upon QoS levels. Due to the variability
of cloud workloads, we propose to use a G/G/c-like model
to represent a cloud-based system and compute expected
performance indices. The advantage of such a model is that
it represents general distributions of workloads in the cloud
system with respect to both the arrival and service patterns.

Given the potentially high number of servers in a
cloud system, we present an efficient approximate solution.
We have extensively validated our approximation against
discrete-event simulation for several QoS performance met-
rics such as task response time and blocking probability
with excellent results. Our validation is limited to the ac-
curacy of the approximate solution. It does not validate
the adequacy of the general model itself in a specific
cloud environment. Given the number of potential issues in
such a validation (e.g. erroneous or inconsistent data, non-
representative behavior [FEI14]), this is the intended subject
of future work.

The fast execution speed of our approximation allows
us to quickly explore large ranges of parameters in order
to determine appropriate resource provisioning levels. We
apply our approach to examples of system sizing and our
examples clearly demonstrate the importance of taking into
account the variability of the tasks arrivals and thus expose
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the risk of under- or over-provisioning if one relies on a
model with Poisson assumptions.

A simple implementation of the proposed model is
available for experimentation on the website http://
queueing-systems.ens-lyon.fr. Extensions of the proposed
approach to include state-dependent arrivals and service are
possible.

ACKNOWLEDGMENTS

The authors would like to express their sincere thanks to the
anonymous referees for their remarks and comments.

REFERENCES

[ARM10] Armbrust, M., Fox, A., Griffith, R., Joseph, A. D., Katz, R.,
Konwinski, A., ... and Zaharia, M. A view of cloud computing.
Communications of the ACM, 53(4), pp. 50-58 (2010).

[BEG13] Begin, T., and Brandwajn, A. A note on the accuracy of several
existing approximations for M/Ph/m queues. In Proceedings of
HSNCE (2013).

[BIN05] Bini, D. A., Latouche, G., and Meini, B. Numerical Methods for
Structured Markov Chains. Oxford University Press, Inc. (2005).
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