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Towards a Passive Measurement-based Estimator
for the Standard Deviation of the End-to-End Delay

Huu-Nghi Nguyen, Thomas Begin, Anthony Busson and Isabelle Guérin-Lassous
Université Lyon 1, ENS Lyon, Inria, CNRS, UMR 5668 - Lyon, France

Abstract— In this paper, we propose an algorithm to estimate
the second moment of the end-to-end delay experienced by
the packets of a flow based only on delay measurements
locally collected by the network nodes. Our solution estimates
the standard deviation of the end-to-end delay in an easy
and computationally efficient way. Based on thousands of
simulations using a real-life trace, our solution is found to
be accurate, typically differing by only a few percent from the
actual value of the standard deviation of the end-to-end delay.

1. Introduction

The increasingly complexity of present-day computer
networks and the need to cleanse the existing architecture
has driven researchers to come up with the new paradigm of
Software-Defined Networking (SDN) [1]. In a nutshell, with
SDN, the control plane is not executed on the forwarding
nodes (routers) but rather managed by a centralized logical
controller which is in charge to “program” the network
nodes with adequate rules. These rules may pertain to
various objectives, ranging from routing and Quality of Ser-
vice (QoS) to security objectives. To determine these rules,
each node periodically communicates to the controller local
information as the list of its neighbors, the characteristics
of its links as well as parameters regarding the workload
activity (typically expressed as counters). Then, it is up
to the controller to design network policies that will be
translated into rules before being sent to the nodes.

Owing to the controller role and to its awareness of
the network topology and activity, a SDN network may
be able to implement more efficient and tailored policies
than classical IP networks with a distributed control plane.
This may lead to a better processing of flows with stringent
requirements in terms of QoS (e.g., voice-over-IP, Video-
on-Demand, as well as other interactive applications). For
instance, it is envisioned that the controller may perform an
admission control on incoming flows to ensure that accepted
flows experience the right level of QoS. Another example
may be the QoS routing in which the controller attempts to
find paths across the network that comply with a given level
of QoS.

A significant challenge for the SDN controller is to take
relevant decisions related to end-to-end performance of a
flow such as the end-to end loss ratio, the end-to-end delay,
and the available bandwidth while having at its disposal
merely local measurements collected on each node. In most
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cases, the first moment of the end-to-end performance pa-
rameters (e.g., the mean value of the end-to-end delay) is
straightforward to get. However, to accurately forecast the
influence of a new flow entering into the network, or the
impact of a workload increase, the mere knowledge of the
first moment may be insufficient. For instance, assuming the
mean and the standard deviation on the end-to-end delay
of a flow are known, and given an apriori knowledge on
the form of its probability distribution, it becomes possible
to estimate the fraction of packets that will experience an
end-to-end delay exceeding a certain value (e.g. quantiles).
Also, for many applications, the variability in the end-to-
end delay (e.g., jitter) needs to be taken into account in
order to forecast the actual QoS obtained by a flow. Hence,
the efficiency of the SDN controller may be improved if
this latter incorporates algorithms that allow the inference
of the first two moments of these end-to-end metrics from
the local measurements sent by the nodes. In case the
measured quantities at each node can be handled as being
independent from each other, this inference does not rep-
resent a real issue. But, more sophisticated techniques are
required if the measurements from the different nodes are
correlated. Broadly speaking, correlations result from the
current states of the nodes (e.g., number of packets queued
in the buffer) that process the flows. These correlations are
difficult to characterize and they must be evaluated through
algorithms that offer a trade-off between the computational
and communication complexity and the attained accuracy.
In this paper, we focus on the end-to-end delay of a flow,
which is a key performance parameter to reflect the QoS
experienced by a flow. We propose a solution to estimate
the first two moments of the end-to-end delay experienced
by the packets of a flow in a wired network based only on
delay measurements locally collected by the network nodes.

The remainder of the paper is organized as follows. In
Section 2, we discuss the related work. Section 3 describes
the scenario under consideration in this paper as well as
our proposed algorithm to estimate the mean value and the
standard deviation of the end-to-end delay of flows. The
accuracy of our proposed solution is handled in Section 4.
Section 5 concludes this paper.

2. Problem statement and related works

As discussed above, our goal in this paper is to present
algorithms that allow the SDN controller to accurately es-
timate, within its domain, the end-to-end delay of flows



through their first two moments. We assume that measured
samples of end-to-end delays are unavailable. Many reasons
may hinder the measurement of the end-to-end delay: (i) the
difficulty to estimate the clock skew between the destination
and the source [2]-[4], (i1) the hazard of relying on a single
server to communicate the clock because of the latency
to transfer syncing NTP (Network Time Protocol) packets
[3], (iii) the hazard of relying on several distributed servers
because of the clock-drifting phenomena [4], (iv) the re-
quirement for specialized and expensive timing equipments
embedding GPS capability [5]-[8], (v) the use of probing
packets which may affect the perfomance of existing and
regular traffic [4], (vi) the impact of the probing pack-
ets profile (e.g. probing packet size, sending rate) on the
measurements [8], (vii) the requirement of differentiating
probing packets at their departure and then recognizing them
at their arrival, (viii) the need of a long enough measurement
interval duration (e.g., 10 minutes) to get meaningful statis-
tics [7] (ix) the introduction of errors and uncertainties with
any specific measurement method [2], [4], [5], (x) the impact
of some sampling methods on the measurement quality [4].

Hence, instead of directly measuring the end-to-end
delay using probing or data packets, we rely on the devel-
opment of algorithms to infer its values based on available
measurements, namely data collected on the forwarding
nodes.

In addition to forwarding packets to the corresponding
interfaces, the nodes also collect measurements on their
current state. Typically these measurements are expressed as
counters and they track the number of bytes or of packets
that have been processed by the node during a given time
period. Other possibly measured quantities include the size
of incoming packets, the queue length in the buffer of the
node as well as the queueing delay spent by each packet
waiting for its transmission in the buffer [9]. Assuming
samples of these latter quantities can be obtained, it is
then straightforward to compute estimated values for their
mean as well as for their variance (or equivalently standard
deviation) based on the classical empirical estimators.

Unlike the mean value for the end-to-end delay, which
can be easily derived from the local measurements, the
case for the standard deviation is much more complex. A
first and trivial solution could consist to approximate the
standard deviation of the end-to-end delay by equalling its
variance as the sum of the individual variances observed at
each node. Unfortunately, the accuracy of such an approach
is typically poor. This inaccuracy results from neglecting
fundamental aspects in the computation of the standard
deviation, namely the covariance terms, which matter for
the spatial correlations (see Section 4).

3. System considered and its approximate so-
lution

In this section we present our proposed approximate
solution to estimate the expected value and the variance
of the end-to-end delay of flows in a network, without
measuring samples of end-to-end delays.

From a flow perspective, the route taken by its packets
across a wired network follows, in general, a path of nodes.
Hence, we focus our efforts on the case of a network shaped
as a path (also called chain) with N nodes, labeled from 1
to N. The link between node ¢ (i = 1,...,N) and node
7 #1 (G =1,...,N) is characterized by its transmitting
capacity (in bps) C;; and its propagation delay R;; (in
sec.) Note that if there is no link between nodes 7 and
J, then we have: C;; = 0 and R;; = oo. At each node,
there are as many buffers as out-going network interfaces.
The corresponding built-up queues are ruled by a First-
Come First-Served discipline. In our case, we assume that
buffers are instrumented so that measurements regarding
their utilization (e.g., number of queued packets, waiting
delay) are available. Therefore, using the classical estimators
of the sample mean and of the sample variance [10], each
node can compute estimated values for the empirical mean
queueing delay as well as for the corresponding variance.

fi
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Figure 1: Example of a network with NV = 4 nodes and one
flow f;.

The workload of a network consists of multiple flows,
that originate at different nodes. In this paper, we restrict
our analysis to the case of a single flow, which we refer
to as fi. Note that our definition of a flow here refers to a
set of packets having the same entry and outgoing points in
the network. This flow constituting the network workload
can thus be viewed as an aggregation of multiple IP flows,
which happen to take the same path on their way to their
destination.

We denote by Py; the random variable that characterizes
the packet size for the flow f; when it enters the network.
Based on its routing tables (or flow tables in the case
of SDN), the network conveys these packets up to their
destination node that is typically several hops away from
the source node. Fig. | illustrates an example of a network
with IV =4 nodes and flow f;.

Along its course towards its destination, a packet is po-
tentially delayed by four types of delays: (i) the processing
delays, which mostly consist of handling the packet header
and determining its next interface, are typically much less
than a microsecond, and hence we neglect them in the
computation of the end-to-end delay; (ii) the transmission
delays for a packet that depend on its size as well as on the
links capacities; (iii) the queueing delays of packets that may
greatly vary as they depend on the states of the buffers found
upon the packet arrival; (iv) the propagation delays affecting
a packet which can be easily known in advance since its
value is constant and equal to the sum of the propagation
delays of the links composing the taken path.

We denote by W, 141, Sk k+1, and Ry, 11 the queueing
delay, the transmission delay, and the propagation delay ex-
perienced by packets on the link between nodes k and k+1,
respectively. Clearly, unlike W, 141 and Si, g+1, R, k+1 has
a constant value for all packets. Also, note that Ry, ;+1 can



be known in advance, while Wj, ;41 and Sj ;41 can be
measured on each node k. Thus, we assume that for Wy, .1
and Sy, x+1 can be viewed as random variables.

In the following computations, we derive equations for
the end-to-end delay of a packet assuming no packets are
lost during their delivery to their destination (due to buffer
overflows or link errors). This implies that the distribution
of the size of packets for flow fi, i.e. Psy, keeps constant
on all the nodes of the chain.

Using these latter notation, the delay experienced by
packets of flow f; over the link between nodes k and &+ 1,
referred to as Dy, 141, can be expressed as:

Wh k1 + Sk k1 + R k1 (1)

Let us denote by D the end-to-end delay experienced by
packets of flow f; over their N —1 hops from the source to
the destination. We have:

Dy pe1 =

N-1 N-1 N-1
D= Wi+ Y Skke1+ Y, Ri st (2)
=1 =1 ]

3.1. Expected value for the end-to-end delay

Using the linear property of the expected value operator,
the expected value of end-to-end delay for flow f, namely
E[D], can be computed as follows:

N-1
E[D]= Y (EWikal + E[Skkal+ Ripa ) G)
k=1
Evaluating E [D] using (3) is straightforward. Indeed, the
expected value of Wy 41 can be easily measured on the
corresponding interface of node k. As for the transmission
delays Sy r+1, they are related to the packet size by the
equation:

P
Skok+1 = L “)
Cr k+1
so that, we have:
1
E[Sk k1] = c E[Ps]. 5)
k,k+1

Thus, combining (5) and (3), we obtain the following ex-
pression for E[D]:

E[D]= YN E[Wep] + (i P CN}LN) x E[P1]
+ 20 Ricket- (6)

3.2. Variance and standard deviation for the end-
to-end delay

When it comes to the estimation of the variance for the
end-to-end delay of flow f;, several approaches are possible.

3.2.1. First proposed solution. A first possible way
consists to attempt to obtain samples of the whole end-to-
end delay. To do that, we resort on a simple procedure,
which enables the first node of the path, i.e. node 1, to
forecast the queueing delays experienced by a packet at
each subsequent node of the path. This computation merely
requires node 1 to know, for each packet, its packet size and

its inter-arrival times with the previous packet of flow f;. Let
us denote by p™ the m-th packet of the flow (m > 1), and
by 6;,1 (m > 1) the time that elapses between the arrival at
node i (i = 1,...,N—-1) of packet p™ ! and that of p™ (both
being sent to node ¢ + 1 for their next hop). We designate
by w;" , and s, the respective values for the queueing
delay and of the transmission delay experienced by the m-th
packet on the link between nodes ¢ and ¢+1 (2 = 1,..., N-1).
Given the First-Come First-Served discipline of buffers at
each node, it follows that for any m-th packet of flow fi:

{wil,i+1 = max{0, w?,nl + S?,Hl - 51‘1,“1}

T ive = Siipr +max{0,077,, — wi S:nz:-ll} , M >(17-)
If node 1 applies Eq. (7) on every incoming packet of flow
f1, it can then forecast values for their queueing delays
at subsequent nodes, as well as for its end-to-end delay
up to the destination node. Said differently, node 1 can
obtain (predicted) samples for the end-to-end delay of flow
f1. We describe the exact procedure corresponding to the
prediction of the end-to-end delay for the m-th packet in
Algorithm 1. Finally, based on the classical estimator for
the sample variance, node 1 can estimate the variance of
the end-to-end delay, and, by taking its square root value,
its standard deviation, i.e. o.

i+l T

Algorithm 1 First solution proposed for the computation of
end-to-end delays

Inputs:
0172 > Inter-arrival time for the m-th packet at node 1.
p"tp™ > Sizes of the m-th and (m-1)-th packets.
Output:
D™ > End-to-end delay for the m-th packet.
Computation for the m-th packet:
if m =1 then
V7, wjl‘,j+1 <0
v, 5},141 <—p1/Cj,j+1
D' « 2j Sig+
. else
D’"L «— 0
for j from 1 to N —1 do
5;'7,13'111 A pm_l/ Cjj+1
S?fju <~ p™[Cj
Recurrent function:
w1 < max{0, w;"’j}ll + s;"fj}ll —07%1}
Ti1 e < s+ max{0, 67, —wih - 7
Update D™:
D™« D™+ w;'fjﬂ + 8;-7:']-+1 + Rj’j+1
21: end for
22: end if

i A S

D) = ko — —m
SO RX DDA RN OO0

Note that Eq. (7) assumes no packet losses (due to buffer
overflows), which impacts the accuracy of the proposed
estimation, as we will show in Section 4.

3.2.2. Second proposed solution. We now introduce a
better solution to estimate with more accuracy the standard
deviation of the end-to-end delay in case of packet losses.
To do this, we split the variance term into several sub-terms,
and evaluate them separately.



Based on (2), this variance verifies:
V[D]=V [Zﬁﬂl Wike1] +V [Z{f:’f S ]
+2x Z Cov (Wi is1,Sj+1) - (8)

1<i,j<N-1

Note that the propagation delays Ry ;41 do not appear in
(8) since these latter are constants.

The variance of transmission delays V[, Sk x+1]-
Based on (4), the total time spent by packets being in
transmission along their path towards the destination node
(over all the transmitting nodes) can be written as:

1 1
e 4

Z&mn (C12

And because the links capacities are constant, it follows that:

2
1 1
I:ZSkkH:I (C12+.“+CN1N) x V[Pri]. (10)

Eq. (10) shows that the variance of the transmission delays
can be easily derived given the variance of the packet sizes.

) <P (9)

Cn-1N

The covariance between queueing delays and transmis-
sion delays Cov (W; ;+1,S; j+1). Intuitively, this covariance
term should reflect that, in general, large packets experience
statistically different queueing delays than small packets. As
is known, the covariance term can be reformulated as:

Cov (Wz i+1s ]+1) E[ _E[Wi,i+l]E[Sj,j+l]~
Besides, using (4), E[W; ;11S;,j+1] can be rewritten as:
1
= —E[W;i1Pp]. (11)
Cjj+1
This latter term can be evaluated using the measurements
collected on each node. Thus, it follows that:

(E Wiis1Pr1] - E[Wi i1 ] E[Pp1] )

12)
Eq. (12) allows us to estimate the covariance between the
queueing delays of the packets and their transmission delays.

7 1+1‘Sj,j+1]

E [Wi,iJrlSj,jJrl]

1
Cov (Wi,i+1,Sj,j+1) = C

J,J+1

The variance of queueing delays V>, Wy r+1]. To
start our computation of V [}, Wi, 1+1], we resort again on
the well-known relation for variance, which states:

N-1 N-1
V[ > Wk,k+1:| = > V[ W]

k=1 k=1

+2 >

1<i<j<N-1

Cov (Wiis1, Wj j41). (13)

In (13), only the covariance term is left unknown since
each node can provide estimations for the variance of the
queueing delays using its measurements. We now explain
how we estimate the value of this covariance term. By
definition, we have:

COV (Wi,i+l7 Wj,j+1) =E [Wi,i+1Wj7j+1] -E [Wz‘,i+1] E [Wj,j+l] .

(14)
Of course, the difficulty in Eq. (14) stems from the need to
evaluate the expected value of the product of two quantities,

i.e., Wi 41 W; j+1, that occur at different nodes. Therefore,

Table 1: Distribution of the packet size in the real-life trace.

Packet sizes (bytes) < 150 150 - 1400 > 1400
Frequency (%) 45.48 24.22 30.30

we cannot derive the sought value based on the measure-
ments collected on each node. However, using Eq. (7), any
node ¢ can forecast the queueing delay for the m-th packet
at any subsequent node j (j > ) in the path. We denote by
W;);,j+1 the random variable that represents the forecasted
values by node ¢ for the queueing delays at node j. Of
course, we have, in general: W ;.1 # WiWH since the
latter is based on Eq. (7) and so does not take into account
the potential packet losses. Nonetheless, the covariance term
in Eq. (14) can be approximated by replacing W; ;:1 W j+1
with W; ;.1 W;);,j+1. Hence, we can estimate the covariance
terms in Eq. (13), which in turn, allows us to get an
approximate values for the variance of the end-to-end delays
based on Eq. (8).

4. Performance evaluation

4.1. Description of the simulations

To assess the accuracy of our proposed solutions , we run
several thousands of experiments using the discrete-event
simulator NS-3 [11]. NS-3 is a common tool to simulate
network systems, which allows to generate various scenarios
through a set of built-in classes that implement network
components from the application to the physical layers.

We consider a scenario with a network shaped as a path
(i.e. chain) with N = 4 nodes and one flow as shown in
Fig 1. The link capacities are C1 2 =8, C23 =5, C34 = 3
(Mbps). Hence, the capacity of this path, which is ruled by
the link having the smallest transmitting data rate, referred
to as the bottleneck link, is 3 Mbps. The propagation delay
for all links is set to 2.1073, i.e. Ri2 = Roz = R34 =
2.1073 (sec). The size of buffers at each node are set to
15,000 bytes. In order to consider realistic traffic, the inter-
arrival times and the size of the packets at node 1 are derived
from a real network trace. The trace was captured at one
of the two dormitory network of the university of Stuttgart
(Germany) [12]. The trace file corresponds to 4 hours (from
6 to 10 PM) of transmissions. Table 1 reports the almost
bimodal empirical distribution of the packet size obtained
with this trace. Indeed, the size of most of packets are close
to the maximum, viz. 1500 bytes, or minimum, viz. 64 bytes,
values. In order to consider various levels of workload, we
alter the actual level of the workload of each excerpt by
scaling up or down the times between packets arrivals by a
constant multiplying factor.

We evaluate the accuracy of our two proposed estima-
tors for the standard deviation of the end-to-end delay by
computing their delivered values on many small excerpts of
the trace. Each excerpt has a length 100 packets and permits
in turn to get 100 sampled values of delay at each node of
the path, which are then used by our proposed solutions
to estimate the standard deviation of the end-to-end delay.
Overall, we consider 1440 different excerpts.



In all forthcoming figures, our two proposed estimators,
which were described in Sections 3.2.1 and 3.2.2, are de-
noted by 0 approx-1 and Tapprox-2, respectively.

For the sake of comparison, we also implement an
oracle as well as a trivial solution. The former is able to
discover the actual value of the end-to-end delay for each
packet entering the network. This oracle solution, which
can be viewed as a simple implementation of a classical
estimator for the standard deviation, is easily programmable
and measureable in a discrete-event simulator, but not in a
real-life network for all the reasons mentioned in Section 2.
Let us denote by oy the corresponding found value for
the standard deviation of the end-to-delay.

The so-called trivial solution neglects the correlations
between the nodes measurements. It simply estimates the
standard deviation of the end-to-end delay by summing up
the variances of sojourn times (i.e. queueing plus transmis-
sion delays) measured at each node. Thus, it approximates

V[D] by Zﬁ]l V[Wk,;ﬁl +Sk,k+1]. In subsequent figures,
we refer to the corresponding found value as oyiyia-

4.2. Numerical results

Fig. 2 illustrates the results for many levels of workload
(obtained by varying values of the scaling factor between
inter-arrival times). We notice in Fig. 2a that while both
proposed estimators achieve to capture the general trend of
OExact> OUr second estimator, o approx-2, outperforms the first,
Oapprox-1- This is even clearer in Fig. 2b, where we depict
the relative error committed on the standard deviation of
the end-to-end delay by each solution. Indeed, the relative
error with oapprox-1 18 steadily exceeding that of o approx-2-
More precisely, Fig. 2b indicates that by using oapprox-2
the onset of inaccuracies in the estimation of the standard
deviation of the end-to-end delay was postponed to larger
levels of utilization of the bottleneck link, say around 70%
(instead of 50% with oapprox-1). Quantitatively speaking,
with o approx-2, the relative error is kept well below 5% as
long as the workload stays under 1.6 Mbps. For larger values
of workload, which tend to represent saturated scenarios
given the 3 Mbps transmitting capacity of the bottleneck
link, the relative error made by o approx-2 typically lies within
10 and 15%. While our first solution with o approx-1 becomes
quickly inaccurate as soon as packet losses due to buffer
overflows occur, our second proposed solution with o Approx-2
manages to handle some packet losses. As opposed to the
first solution that simply neglects potential packet losses, our
second solution requires that each node computes the local
variances for the queueing and for the transmission delays
as well as their covariance term. By doing so, it implicitly
and approximately accounts for the possible packet losses
occurring in the previous nodes of the path. We observe in
Fig. 2 that the trivial solution, labelled by vy, generally
leads to poor results with relative error well beyond 10% in
most cases.

To give a more comprehensive view on the accuracy
of our proposed estimators, we apply both of them on
thousands (namely, 1440) excerpts of the trace, and we
compute for each of them the relative error as compared
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Figure 2: (a) Exact vs Approximate solutions for the stan-
dard deviation of the end-to-end delay. (b) Relative error
committed by the approximate solutions.

to the value found by ogx.r. We consider three levels of
workloads, i.e. 1.0, 1.5 and 2.0 Mbps, corresponding to a
lightly, moderately and highly loaded scenarios, respectively.
Recall that the bottleneck link has a capacity of 3 Mbps.
Note that we do not consider larger levels of workload since
they correspond to very unlikely scenarios. Indeed, it is well
established that backbone networks, as well as access links,
tend to be lightly utilized [13]-[17]. More specifically, the
average utilization of the links is typically very low (around
a few tens of percent) while links utilization is reported to
be larger than 50% but less than 75% if a network failure
occurs. Fig. 3 reports the cumulative distribution function
of the relative error committed by each of our estimators.
For the sake of clarity, we represent in Table 2 the fractions
of cases found with a relative error smaller than 10%, 20%
and larger than 30%, respectively as well as the mean value.
For low levels of workload, Fig. 3a and Table 2 show
that both proposed solutions are accurate with more than
95% of the considered excerpts leading to a relative error
below 10%. The 10% accuracy threshold is indicated by a
vertical asymptote. It is worth noting that for such a level
of workload, the trivial solution delivers poor results with
around 40% of excerpts having an error exceeding 30%. In
Fig. 3b, the path is exposed to a moderate workload, i.e.
1.5 Mbps, whose rate is set to half the transmitting capacity
of the bottleneck link of the path. The obtained results are
similar to the former example, though the accuracy of our
two proposed solutions is slightly reduced. Finally, Fig. 3c
reports the obtained results for the case of a workload set to
2 Mbps. In this case, the packet losses are more frequent,
and then, unsurprisingly, the accuracy of our solutions is
diminished. Furthermore, we notice that the deviations be-
tween T approx-1 and Tapprox-2 18 deepened, which is in line
with our previous observation that our first solution is more
affected by packet losses than our second proposed solution.
We also notice that while our approximations exhibit a much
better behavior than the trivial solution, orivia converges to
100% prior to oapprox-1 and Gapprox-2. This implies that the
unfrequent worst cases of T approx-1 and Tapprox2 (90% of
cases lead to an error less than 20%) are worse than that of
OTivial- Under such levels of workload, the proportions of
excerpts leading to a relative error less than 10% is above
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Figure 3: Cumulative distribution function of the relative error committed by the three estimators: o approx-1, TApprox-2» OTrivial-
Table 2: Overall distribution of the relative error on the standard deviation of the end-to-end delay.

Workload set to 1 Mbps

Workload set to 1.5 Mbps

‘Workload set to 2 Mbps

Error <10% <20% > 30% Mean <10% <20% > 30% Mean <10% <20% > 30% Mean
OTrivial 6.25 21.94 43.40 26.42 16.04 2.08 21.04 21.18 17.99 46.67 2111 20.47
O Approz—1 95.07 97.57 1.67 3.05 86.46 92.50 5.07 6.56 74.44 82.85 12.43 12.22
T Approz—2 95.97 97.78 1.11 1.90 89.86 95.14 2.57 4.21 81.94 89.37 6.18 7.76
80% with O Approx-2» while it is around 75% with O Approx-1 [5] F Georgatos, F. Gruber, D. Karrenberg, and M. Santcroos, “Providing

and less than 20% with oyivia (see Table 2). Finally, Table 2
indicates that the mean error on the standard deviation of
the end-to-end delay of the trivial solution tends to oscillate
between 20 et 25%, while that of o approx-1 and T approx-2 lies
between 3 and 13%, and 2 and 8%, respectively.

We have considered lower and larger sizes of buffers.
The corresponding results, not shown in this paper due to the
lack of space, typically lead to a similar level of accuracy.

5. Conclusion

In this paper, we propose a simple algorithm to estimate
the first two moments of the end-to-end delay experienced
by the packets of a flow in a wired network based only on
delay measurements locally collected by the network nodes.
In its current version, our algorithm is thought to handle the
case of a single flow. Based on thousands of discrete-event
simulations using a real-life trace, our solution is found to
be accurate, differing by only a few percent from the actual
standard deviation value of the end-to-end delay. Future
works will be devoted to the extension of our algorithm to
cover more general scenarios including multiple competing
flows.

References

[1] B. A. A. Nunes et al., “A Survey of Software-Defined Networking:
Past, Present, and Future of Programmable Networks.” IEEE Com-

munications Surveys and Tutorials, vol. 16, no. 3, 2014.

G. Almes, S. Kalidindi, and M. Zekauskas, “A One-way Delay Metric
for IPPM,” IETF, RFC 2679, 1999.

(2]

[3] S. B. Moon, “Measurement and Analysis of End-to-end Delay and
Loss in the Internet,” Ph.D. dissertation, University of Massachusetts

at Amherst, 2000.

J. Wang, M. Zhou, and Y. Li, “Survey on the End-to-End internet
Delay Measurements,” in HSNMC, 2004.

[4]

[6]

[71

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

Active Measurements as a Regular Service for ISP’s,” in PAM, 2001.

B.-Y. Choi, S. Moon, Z.-L. Zhang, K. Papagiannaki, and C. Diot,
“Analysis of Point-To-Point Packet Delay In an Operational Net-
work,” in IEEE INFOCOM, 2004.

B.-Y. Choi, S. Moon, R. Cruz, Z.-L. Zhang, and C. Diot, “Practical
Delay Monitoring for ISPs,” in ACM CoNEXT, 2005.

A. Hernandez and E. Magafa, “One-way Delay Measurement and
Characterization,” in IEEE ICNS, 2007.

K. Papagiannaki, S. B. Moon, C. Fraleigh, P. Thiran, and C. Diot,
“Measurement and analysis of single-hop delay on an IP backbone
network.” IEEE JSAC, vol. 21, no. 6, 2003.

A. O. Allen, Probablity, Statistics and Queueing Theory with Com-
puter Science Applications, Second Edition. Elsevier, 1990.

T. R. Henderson et al., ‘“Network Simulations with the ns-
3 Simulator,” ACM SIGCOMM Demos, 2008, code available:
http://www.nsnam.org/releases/ns-3.1.tar.bz2.

D. Sass, “The dormitory network “Selfnet” of the University of
Stuttgart,” Oct. 2004, http://www.ikr.uni-stuttgart.de/Content/I2MP/.

O. Andrew, “Networks are Lightly Utilized, and Will Stay that Way,”
Review of Network Economics, 2003.

C. Fraleigh, S. Moon, B. Lyles, C. Cotton, M. Khan, D. Moll,
R. Rockell, T. Seely, and S. Diot, “Packet-level traffic measurements
from the Sprint IP backbone,” IEEE Network, vol. 17, no. 6, 2003.

A. Nucci, N. Taft, C. Barakat, and P. Thiran, “Controlled use of
excess backbone bandwidth for providing new services in IP-over-
WDM networks,” IEEE JSAC, 2004.

J. L. Garcia-Dorado, J. A. Herndndez, J. Aracil, J. E. L. de Vergara,
and S. Lopez-Buedo, “Characterization of the busy-hour traffic of
IP networks based on their intrinsic features,” Computer Networks,
vol. 55, no. 9, 2011.

A. Hassidim, M. Segalov, and A. Shaqed, “Network utilization: The
flow view,” in IEEE INFOCOM, 2013.



http://www.ikr.uni-stuttgart.de/Content/I2MP/

	Introduction
	Problem statement and related works
	System considered and its approximate solution
	Expected value for the end-to-end delay
	Variance and standard deviation for the end-to-end delay
	First proposed solution
	Second proposed solution


	Performance evaluation
	Description of the simulations
	Numerical results

	Conclusion
	References

