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Abstract. Over the years, schedulability of Cyber-Physical Systems
(CPS) has mainly been performed by analytical methods. Those tech-
niques are known to be effective but limited to a few classes of scheduling
policies. In a series of recent work, we have shown that schedulability
analysis of CPS could be performed with a model-based approach and
extensions of verification tools such as UPPAAL. One of our main contri-
bution has been to show that such models are flexible enough to embed
various types of scheduling policies that go beyond those in the scope of
analytical tools. In this paper, we go one step further and show how our
formalism can be extended to account for stochastic information, such
as sporadic tasks whose attributes depend on the hardware domain.

1 Introduction

Cyber-Physical Systems (CPS) are software-implemented control systems that
control physical objects in the real world. These systems are being increasingly
used in many critical systems, such as avionics and automotive systems. They
are now integrated into high performance platforms, with shared resources. This
motivates the development of efficient design and verification methodologies to
assess the correctness of CPS. Among the panoply of existing techniques to
respond to these challenges, one distinguishes between those that rely on an
analytic approach, using tools like CARTS [10], from those that rely on formal
models and tools such as UPPAAL [2], or SpaceEx [8].

In this paper, we mainly focus on schedulability for CPS. Over the years,
schedulability has mostly been performed by analytical methods [12]. Those tech-
niques are known to be effective but limited to specific classes of scheduling poli-
cies and systems. In a series of recent work, we have shown that schedulability
analysis of CPS could be performed with a model-based approach and extension
of verification tools such as UPPAAL. One of our main contribution has been to
show that such models are flexible enough to embed various types of scheduling
policies that go beyond those in the scope of analytical tools. In addition, we



proposed a hierarchical approach that allows us to reduce the complexity of this
computation [3,4]. This approach is well-suited to perform worst-case analysis
of scheduling systems, and even average performance analysis via a stochastic
extension of timed automata. This extension allows us to make hypothesis about
time at which tasks are scheduled. However, high-performance hardware archi-
tectures, as well as advanced software architectures, have more unpredictable
behaviors. This makes the verification of these real-time systems much harder,
in particular the schedulability analysis, that is essential to evaluate the safety
and reliability of mission-critical systems. For this reason, designers are still re-
luctant to use lower-price hardware components with higher capabilities, such
as multi-core processors, for these mission-critical systems.

In this paper, we propose a stochastic extension of our scheduling framework
that allows us to capture tasks whose real-time attributes, such as deadline,
execution time or period, are also characterized by probability distributions.
This is particularly useful to describe mixed-critical systems and make assump-
tions on the hardware domain. These systems combine hard real-time periodic
tasks, with soft real-time sporadic tasks. Classical scheduling techniques can only
reason about worst-case analysis of these systems, and therefore always return
pessimistic results. Using tasks with stochastic period we can better quantify
the occurrence of theses tasks. Similarly, using stochastic deadlines we can relax
timing requirements. Finally stochastic execution times model the variation of
the computation time needed by the tasks. These distributions can be sampled
from executions or simulations of the system, or set as requirements from the
specifications. For instance in avionics, display components will have lower crit-
icality. They can include sporadic tasks generated by users requests. Average
user demand will be efficiently modelled with a probability distribution. Tim-
ing executions may vary due to the content being display and can be measured
from the system. This formal verification framework is embedded in a graphical
high-level modeling tool developed with the CINCO meta tooling suite [9]. It is
available at http://cinco.scce.info/applications/.

2 Background

Given a set of clocks C, a function v : €' — R>q is called a clock valuation.
A stopwatch is a vector s : C' — {0,1} that distinguishes between a set of
running clocks and a set of frozen clocks. For a delay d € R>( and a stopwatch
s, let v + s - d denotes the clock valuation assignment that maps all z € C to
v(x) + s(xz) - d. A clock constraint on C is a finite conjunction of expressions of
the form x ~ k where z € C, ~€ {<,<,>,>}, and k € N. Let B(C) denote the
set of all clock constraints on C. A clock valuation v satisfies the clock constraint
g € B(C), written v F g, iff g holds after all the clocks in g have been replaced
by their value v(c).

A Stopwatch Automata (SWA)[6] is a tuple (L,ly, X, C,—,I,S), where
L is a finite set of locations, Iy € L is the initial location, X' is an alphabet of
actions, C is a finite set of real-time clocks, +C L x B(C) x ¥ x 2¢ x L is the



set of discrete transitions, I : L — B(C) associates an invariant constraint to
each location, S : L — {0,1}¢ is the location stopwatch. A state s = (I,v) of a
SWA consists in a location ! and a clock valuation v.

An execution of the SWA is an alternating sequence of discrete and continuous
transitions. Continuous transitions update the clock valuation in a location by
the same value d € R for all running clocks in S(), provided that v+ S(1)-d F
I(1). Discrete transitions switche from one location to another, if there exists
a transition (l,a,g,r,l') € E with v E g, and it resets the clocks in r to 0. We
distinguish between internal and communication transitions. There are two types
of communication transitions, the input ones (noted with ?) to receive a message
and the output ones (noted with !) to send a message. As classical transition
systems can do, SWA can be combined in networks of SWA by synchronizing
inputs and outputs in a broadcast manner. This means that when a SWA executes
one output, all those SWA that can receive it must be synchronized.

In Fig. 1a, we illustrate the concept with an abstract real-time task modeled
via SWA. The task execution time is measured by a clock x, that can progress
in location Executing (we denote z’ = 1 the fact that the stopwatch is running)
but is stopped in location Ready (denoted a2’ = 0). It starts its execution when
receiving the event schedule?. It sends an event done! as soon as the clock x has
reached the best case execution time (bcet) and before reaching the worst case
execution time (wcet), or goes to location MissingDeadline if the clock exceeds the
deadline. Finally it returns to location JobDone for the next execution round. The
running task at location Executing can be preempted when receiving the event
not_schedule?, in which case it returns to the location Ready.
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(a) SWA for a simple real-time task (b) PTA for a task dis-
patcher

Fig.1: (Probabilistic) Stopwatch Automata

Probabilistic Timed Automata (PTA) [1] is an extension of SWA that
adds discrete probabilities to the transitions. Thus the transition relation is
replaced by —C L x B(C) x X x Dist(2¢ x L), where Dist(2¢ x L) is a discrete
probability distribution over clock reset and next location.

This extension is useful to initialize the parameters of a model with random
values e.g., to specify that the period or the deadline of a task depends on some
random information. The simple PTA in Fig. 1b allows to select two values for



the period of the task: 10 with probability 1/3 and 15 with probability 2/3. In
what follows, we will call this automaton a dispatcher. It is worth mentioning
that UpPAAL, the tool we use to model SWA and PTA, can also model global
variables and parameters. Such parameters can be modified either via internal
transitions, or via output transitions. In that example the period is a shared
variable, initialized by the dispatcher and read by the task. This semantics of PTA
still exhibits nondeterministic behaviors, because several probabilistic transitions
may be enabled at the same time, and the time at which transitions can happen
is not randomized. Therefore it can only be used to analyze best case or worst
case scenario.

It is however of great interest to analyze scheduling systems with average
scenario generated by a fully stochastic semantics. This will allow us to quantify
performance analysis. In our early works [7,5], we have proposed a stochastic
semantics for networks of priced timed automata, an extension of SWA. The
stochastic semantics associates probability distributions on both the delays one
can spend in a given state, as well as on the transitions between states. In
UpPAAL uniform distributions are applied for bounded delays and exponential
distributions in the case a component can remain indefinitely in a state. In a
network of PTA the components repeatedly race against each other, i.e. they
independently and stochastically decide on their own how much to delay before
outputting, the “winner” being the component that chooses the minimum delay.

Model-checking queries are represented via a subset of the Computational
Tree Logic (CTL) as defined by the model-checker UppPAAL. More precisely, we
consider ¢ ::= A[|P | A<>P | E[]P | E<>P. A and E are path operators, mean-
ing respectively “for all paths” and “there exists a path”. [] and <> are state
operators, meaning respectively “all states of the path” and “there exists a state
in the path”. P is an atomic proposition that is valid in some state. For example
the formula “A[] not error” specifies that in all the paths and all the states on
these paths we will never reach a state labelled as an error. For schedulability
analysis, an error state is one where a task has missed a deadline.

Statistical model-checking queries require a time bound. The following
query for instance “Pr[<=maxTime]( <> error)” asks to compute the probability
of reaching an error state before maxTime.

UppAAL model-checker (MC) [2] is used to verify SWA and UPPAAL statis-
tical model-checker (SMC) [5] is used to verify PTA. Moreover, if PTA are used
with UppPAAL MC, all stochastic information is discarded and replaced by non-
determinism (probabilistic transitions are replaced by a corresponding discrete
transition for each specific value of the distribution).

3 Formal Model-based Compositional Framework for
Hierarchical Scheduling Systems

We first introduce the formal model used to represent scheduling units. This for-
malism extends the one in [3,4] with probability distributions on task’s features.



Then, we show how formal tools such as UpPAAL MC and UpPAAL SMC can
be used to solve queries such as deadlock or schedulability.

3.1 Automata-Based Models for a Scheduling unit

In our framework, a scheduling unit is composed of a set of real-time tasks, a
scheduler, that implements a scheduling algorithm, and a queue, that manages
jobs instantiated by tasks. Additionally we provide each scheduling unit with a
resource supplier that allocates the resource (CPU time) for a given amount of
time. As explained in [11] and illustrated in Section 3.2 such a resource supplier
can be used to perform scheduling of complex systems in a hierarchical manner.

Tasks and stochastic dispatcher: We use two types of tasks: 1. a classi-
cal task model as presented in [4], implemented with SWA; 2. a new stochastic
task model whose real-time attributes (period, delay, execution time) depend
on a probability distributions, and are dynamically chosen by a stochastic dis-
patcher. This stochastic feature is of interest to model the variation of execution
time with respect to the computation logics and the capability of the execution
environments (CPU, memory, I/O and caches, etc). Such real values can be ob-
tained by sampling the execution times from the real world system (and this
objective is out of scope of this paper). Observe that other task’s parameters,
such as deadline and period, are determined according to the timing require-
ments of the functionality implemented by a set of tasks. For instance, some
video decoder/encoder would update the deadline and period of tasks according
to the frequency of input streams. For those reasons, they can also be represented
by probability distributions.

Fig. 2 shows the SWA for the stochastic task model. From the Init location,
a job is initialized with real-time attributes obtained by setTaskAttribute (and
assigned by the dispatcher as explained below). This job is queued for execution
at location DIlyPQoffset. There it requests the scheduler to assign a CPU, which
is granted by the synchronisation on the channel req_sched(pid), and reaches lo-
cation Executing. Its execution can be stopped and resumed according to the
availability of the CPU resource. This is implemented by a stopwatch clock
t-et[tid]. The clock progresses only when the CPU is available, that is when the
function isSchedSuped returns 1. Finally, the job exits from location Executing
when it has completed its execution time. This releases the CPU resource using
function deque_tid(tstat][tid].pid, tid). The SWA waits the end of the minimal inter-
arrival time (WaitEndofMINIntv) and then waits for a new job instantiated by the
stochastic dispatcher (JobWait).

The stochastic dispatcher, presented in Fig. 3, configures the real-time at-
tributes of the tasks at each individual execution round.

Scheduler: The scheduler SWA (Fig. 4) implements the scheduling policy
of the scheduling unit. We use two types of scheduling policy: earliest deadline
first (EDF) and fized priority (FP). These schedulers synchronize with the task
model on the channel req_sched.

Resource Supplier: The resource supplier is responsible for supplying a
scheduling unit with the resource allocated from another scheduling unit. We
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Fig.2: SWA model of a stochastic task

adopt the periodic resource model (PRM) [11]. It supplies the resource for a
duration of © time units every period II. To speed up the schedulability analysis
using model checking techniques, it only generates the extreme cases of resource
assignment: either the resource is provided at the beginning of the period (from
0 to ©) or at the very end (from I — @ to IT). The choice between the two
assignments is non-deterministic. The PRM automata communicates with the
task model through a shared variable isSupply that is set to true during the supply
period. We also use the probabilistic supplier model presented in [4]. Instead of
using a fixed budget ©, it uses a range of values specified between an interval.
This will allow to perform a parameter sweep with SMC by selecting uniformly
a value of the budget and help determining the optimal budget.

3.2 Formal Analysis of Hierarchical Scheduling Systems

A hierarchical scheduling system (HSS) is a set of scheduling units orga-
nized in a tree structure. It allows to dispatch a common CPU resource to dif-
ferent scheduling units with the help of resource suppliers. As presented in [11],
HSSs can be analyzed in a compositional manner by analyzing each scheduling
units individually. Below, we present different types of real-time properties in
the format of the tool UPPAAL MC and UprpPAaAL SMC.

Absence of deadlock: We check that the formal models have been correctly
designed, because they cannot reach a deadlock state in which time is blocked
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Fig.3: PTA of a stochastic dispatcher that configures the three attributes with
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Fig.4: EDF (left) and FP (right) schedulers

and no action is available. We use UPPAAL MC to analyze this query with the
following CTL formula A[] not deadlock.

Schedulability: The main objective of analyzing a scheduling unit and an
HSS is to determine whether the tasks are schedulable. In our formal models we
analyze this property by searching for error states in tasks, that correspond to
the tasks missing their deadline. All these error states are identified by a single
Boolean variable error, set to true when a task misses a deadline.

The schedulability can be analyzed by UpPAAL SMC using the following
probabilistic query: Pr[<=runTime|(<> not error). It computes the probability
that not error state is found within runTime t.u. This probability must be 1
to assert that the scheduling unit is schedulable. We can also performed the
exhaustive analysis of the SWA model with UpPAAL MC. In that case, we use
the CTL formula A[] not error.

Maximum response time: Performances of the HSS are measured by an-
alyzing the maximum response time of tasks, that is to say the maximum time
between a job instantiation and its completion. We measure this property using
UppPAAL SMC with the following query: E[<=100000;1000](max:t_rst[2]). It asks



for 1000 simulations of 100’000 t.u. and it computes the average value over these
simulations of the maximum response time of the task with ID 2 (the response
time of task 2 is measured in the variable t.rst[2]).

Budget estimation: We use the probabilistic supplier to specify a range
of values between an interval for the budget ©. Then we can use UPPAAL
SMC to randomly select a value within this range and check whether the
scheduling unit it schedulable with this value. We use the following probabilis-
tic query: PrlestBudget[l]<=runTime|(<>globalTime>=runTime and error). It com-
putes the probability distribution of all the possible budget values that are not
schedulable. By looking at the support of this distribution we can determine
the minimum budget whose probability is zero, that is the minimum budget
necessary to schedule all the tasks of the scheduling unit.

Simulate queries: Additional parameters of the model can be observe dur-
ing random simulations with UPPAAL SMC. Results can be displayed in a graph.
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