
HAL Id: hal-01241681
https://hal.science/hal-01241681v1

Preprint submitted on 10 Dec 2015 (v1), last revised 25 Oct 2016 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Model-Based Framework for the Specification and
Analysis of Hierarchical Scheduling Systems

Mounir Chadli, Jin Hyung Kim, Axel Legay, Louis-Marie Traonouez, Stefan
Naujokat, Bernhard Steffen

To cite this version:
Mounir Chadli, Jin Hyung Kim, Axel Legay, Louis-Marie Traonouez, Stefan Naujokat, et al.. A
Model-Based Framework for the Specification and Analysis of Hierarchical Scheduling Systems. 2015.
�hal-01241681v1�

https://hal.science/hal-01241681v1
https://hal.archives-ouvertes.fr

A Model-Based Framework for the Specification
and Analysis of Hierarchical Scheduling Systems

Mounir Chadli Jin Hyun Kim Axel
Legay Louis-Marie Traonouez

Inria Rennes
firstname.lastname@inria.fr

Stefan Naujokat Bernhard Steffen
Technische Universität Dortmund

{stefan.naujokat,steffen}@cs.tu-dortmund.de

Abstract
For decades, schedulability analysis of Cyber-Physical Sys-
tems (CPS) has been conducted by analytical methods rather
than model-based methods. However, CPS are getting more
and more complicated, beyond the capability of analytical
methods, as more sophisticated scheduling mechanisms are
used. This encourages the use of model-based and automated
verification techniques. These techniques must be flexible
enough to be adapted to any system, and easy to use by sys-
tem designers, without deep knowledge of formal verifica-
tion. In this paper, we present a flexible model-based frame-
work for specifying hierarchical scheduling systems and per-
forming automated formal verification. It allows to easily
specify complex scheduling mechanisms, with hierarchical
scheduling units that can be analyzed efficiently in a com-
positional manner. Formal verification using statistical tech-
niques is performed automatically by generating on-the-fly
the formal models. Finally, the framework returns compre-
hensible feedback from the results of formal verification in
the design tool.

1. Introduction
Cyber-Physical Systems (CPS) are software-implemented
control systems that control physical objects in the real
world. These systems are being increasingly used in many
critical systems, such as avionics and automotive systems,
and they are now integrated into high performance plat-
forms, with shared resources. This motivates the develop-
ment of efficient design and verification methodologies to
guarantee the safety and reliability of the systems.

[Copyright notice will appear here once ’preprint’ option is removed.]

One of the trends in developing a CPS is to integrate
many heterogeneous computational components into a high-
performance platform in order to maximize the utilization
of hardware resources. The heterogeneous components in
the same platform are managed to be completely partitioned
such that errors caused by one component are alienated
from the other components. For instance, heterogeneous op-
erating platforms in avionics and automotive systems, that
manage various and different integrity-level applications,
are integrated using a high-performance hardware platform
supported by multi-core processors, advanced memory, and
multi-level cache architectures.

However, high-performance hardware architectures as
well as advanced software architectures make it much harder
to predict the behavior and the timing performances of these
real-time systems, in particular the schedulability analy-
sis, which is essential to evaluate the safety and reliability
of mission-critical systems. For this reason, designers are
still reluctant to use lower-price hardware components with
higher capabilities, such as multi-core processors, for these
safety-critical systems.

In order to increase the predictability of these compli-
cated CPS, two approaches are drawing more and more
attention: the model-based approach and the probabilistic
approach. On one hand, the model-based approach allows
more flexibility and complexity in the system design, and
it expands the scope of properties that can be analyzed on
the system using automated verification techniques, such as
model checking and theorem proving techniques. Timed au-
tomata (TA) [2] for instance is a well known formal model
that can be used to perform schedulability analysis of real-
time systems [12, 13]. Recently, this model has been used to
model sophisticated scheduling system with several hierar-
chical scheduling units that allows to decompose the schedu-
lability analysis of complex CPS [9].

On the other hand, the probabilistic approach allows ab-
stracting unknown and hardly-estimated aspects of system
components. Probabilistic timed automata is an extension
of timed automata with probabilities [4]. When the model
is fully stochastic its behavior can be predicted by statisti-

1 2015/12/10

Figure 1: Our Model-based Formal Analysis Engineering

cal methods such as statistical model-checking (SMC) [14].
This approach is much more efficient for analyzing complex
systems, that are often intractable with exhaustive methods.

Currently, many models and tools are successfully used to
analyze properties of CPS, but they are domain-specific, and
thus cannot easily be applied to other systems. Moreover,
these models and tools require high technical knowledge
about the theoretical formalisms used to design models and
write properties, which most system engineers do not master.

This paper demonstrates a flexible and formal analysis
engineering approach for analyzing scheduling properties
of CPS. Fig. 1 depicts the principles of our model-based
engineering framework.

We first introduce a new model-based compositional
framework with stochastic real-time tasks in a hierarchical
scheduling system. This framework is designed with timed
automata and probabilistic timed automata that constitute
a model bank to describe hierarchical scheduling systems.
In particular we introduce new probabilistic timed automata
(PTA) models to instantiate stochastic tasks where task real-
time attributes, such as deadline, execution time or period,
are characterized by probabilities. This allows to design
generic models that cover more cases of CPS.

We then encapsulate this formal framework into CINCO
[26, 27], a generator for domain-specific modeling tools.
CINCO allows to specify the features of a graphical inter-
face in a compact meta-model language, and it generates
automatically from this meta-model specification a domain-
specific analysis tool with a graphical interface.

Inside this analysis tool we can design the specifications
of a hierarchical scheduling system and the properties it must
satisfy. We can launch analysis of the properties, which gen-
erates automatically the timed automata models using the
components of our model-bank, and it calls the tools UP-
PAAL [5] and UPPAAL SMC [15] to perform the analysis.
This approach allows to completely hide the formal models
being used from the system designer that can concentrate on
the structure and the parameters of the hierarchical schedul-
ing system.

The last challenge is to give significant feedbacks to the
user in the most user friendly manner. Indeed, results of for-

mal verification from academic tools like UPPAAL can be
difficult to interpret. It is even more difficult to understand
the results when the models used by these tools have been
automatically generated. Nevertheless the most recent ver-
sion of CINCO introduced an API for model transformations
that allows to program actions that can update the model.
We have used these new functionalities to parse the results
of the analyses output by UPPAAL and to show graphically
the most important information.

To sum up, the contributions of this paper are to provide

1. A flexible formal engineering approach for specify-
ing and analyzing scheduling systems with a generated
graphical interface.

2. A new model of real-time stochastic tasks for the analysis
of real-time properties of scheduling systems supported
by sophisticated operating environment.

3. A model-based compositional statistical analysis for the
new model with real-time stochastic tasks.

The rest of this paper is organized as follows: Section 2
discusses related works on scheduling techniques for real-
time systems. Section 3 presents the background theories
about formal models and hierarchical scheduling that we
are using in this paper. Section 4 presents our framework
for model-based analysis of hierarchical scheduling sys-
tem, with our contributions in extending the models with
stochastic tasks. Section 5 describes our implementation of
the framework in the tool CINCO, which provides a user-
friendly approach capable of formal analysis. We illustrate
this framework with a case-study in Section 6. Section 7
concludes the paper.

2. Related Work
2.1 Analytical Methods for Analysis of Sporadic Tasks
Sporadic tasks were first introduced in [3, 25] as an exten-
sion of the Liu and Layland [19] task model. The authors
in [3] proposed an exact schedulability analysis by provid-
ing some necessary and sufficient conditions for a sporadic
task system. In [31], the authors propose a framework for
the schedulability analysis of real-time systems, where they
define a generalized model for sporadic tasks to more pre-
cisely characterize the task arrival times. Each task is char-
acterized by two constraints: higher instantaneous arrival
rate, which bounds the maximum number of task arrivals
during some small time interval; lower average arrival rate,
which is used to specify the maximum number of arrivals
over some longer time interval. The work of [24] considers
systems with probabilistic execution times and probabilis-
tic inter-arrival times. However it does not handle dynamic
scheduling policies. Moreover, the method is a numerical
analysis technique whose complexity is exponential in pro-
portion to the number of samples and tasks. In [30], the au-
thors propose a method to control the preemptive behavior

2 2015/12/10

of real-time sporadic task systems by the use of CPU fre-
quency scaling. They introduced a new sporadic task model
in which the task arrival may deviate, according to a discrete
time probability distribution, from the minimum inter-arrival
time. Based on the probability of arrivals, the authors pro-
pose an on-line algorithm computing CPU frequencies that
guarantee non-preemptiveness of task behavior while pre-
serving system schedulability.

2.2 Model-based Analysis of Stochastic Sporadic Tasks
In the context of model-based analysis, the authors in [11]
present a symmetric multi-core framework where a flat
scheduling system can be described in the Prelude language.
The schedulability can be checked using generated UPPAAL
models.

The authors in [21] formally characterize stochastic tasks
for various platforms and presents a model-based analysis
technique to check the schedulability of the tasks. The main
ides is to compute the probability distribution of a task ter-
mination time by a convolution of the probability density
functions of the task starting time and execution time. How-
ever, it is restricted to non-preemptive stochastic tasks, and
the analysis complexity is also exponential.

Using the statistical model checking technique in UP-
PAAL, the work in [8] proposes a way of estimating the ”de-
gree of schedulability” of sporadic tasks and also presents
the UPPAAL models used to implement the concepts as well
as an avionics case-study.

The analysis technique of our work is based on [7, 9,
10]. Extending the models of Timed Automata (TA) and
Stopwatch Automata (SWA) in [7, 9], we present a model
of hierarchical scheduling systems, based on the stochastic
sporadic tasks of [10] but with dynamic stochastic updates
of real-time attributes.

3. Background
3.1 Timed Automata
Timed Automata (TA) [2] are a classical formal model to
design real-time systems. A TA consists in a finite automaton
extended with real-time clocks. It is composed of locations
and transitions between locations associated with guards and
resetting of clocks.

For a set of real-time clocksC, a function v : C Ñ R¥0 is
called a clock valuation. For a delay d P R¥0, let v�d denote
the clock assignment that maps all x P C to vpxq�d. A clock
constraint on C is a finite conjunction of expressions of the
form x � k where x P C, �� t ,¤,¡,¥u, and k P N. Let
B(C) denotes the set of all clock constraints on C. A clock
valuation v satisfies the clock constraint g P BpCq, written
v (g, iff g holds after all the clocks in g have been replaced
by their value vpcq.

DEFINITION 1. A Timed Automata (TA) is a tuple (L, l0,Σ,
C,Ñ, I), where

• L is a finite set of locations,
• l0 P L is the initial location,
• Σ is an alphabet of actions,
• C is a finite set of clocks with valuation in R¥0.
• Ñ� L� BpCq � Σ� 2C � L is the set of transitions.
• I : L Ñ BpCq associates an invariant constraint on

clocks in C to each location.

A state s � pl, vq of a TA consists in a location l and a
clock valuation v. The semantics of a TA is defined by an
infinite transition system with two types of transitions:

• Continuous transition updates the clock valuation in a lo-
cation by the same value d P R¥0 for all clocks, pro-
vided that the invariant of the location remains satisfied
(v � d (Iplq).

• Discrete transition switches from one location to another,
if there exists a transition pl, a, g, r, l1q P E, whose guard
g is enabled (v (g), and it resets the clocks in r to 0.

An execution of the TA is an alternating sequence of discrete
and continuous transitions.

A simple example of TA is shown in Figure 2. It de-
picts an abstract model for a real-time task that starts exe-
cution when receiving the event schedule?. It sends an event
done! as soon as the clock x has reached the best case ex-
ecution time (bcet) and before reaching the worst case ex-
ecution time (wcet), or goes to location MissingDeadline if
the clock exceeds the deadline. Finally it returns to location
Ready for the next execution round. The running task at lo-
cation Executing can be preempted when receiving the event
not schedule?, and then it returns to the Ready location.

Figure 2: TA for a simple real-time task

Several TA can be combined in a network of TA . The
semantics of the network is then defined using the parallel
composition of TA such that transitions labeled with the
same action are synchronized.

3.2 Probabilistic Timed Automata
Probabilistic Timed Automata (PTA) [4] are a stochastic
extension of TA , such that probabilities are attached to the
transitions of the TA . Formally, the transition relation of TA
is replaced by the following definition:

Ñ� L� BpCq � Σ�Distp2C � Lq

3 2015/12/10

where Distp2C � Lq is a discrete probability distribution
over the clocks reset and the next location. This defini-
tion generates a set of possible transitions in the semantics,
whose choice is governed by the probability distribution. A
PTA still exhibits non-deterministic behaviors, since the time
elapsing is non-deterministic and several transitions may be
enabled at the same time.

However, we can provide a fully stochastic semantics for
PTA using the one defined in [14] for priced timed automata.
First, we associate a continuous probability distribution for
the time elapsing in each location. If the invariant of a lo-
cation l is unbounded, meaning that for all state pl, vq there
exists no delay d P R¥0 such that v � d * Iplq, then this
probability distribution is an exponential distribution with a
rate λplq assigned to the location l. Otherwise we consider a
uniform distribution over the timed bounds defined by the in-
variant. Second, we consider a uniform distribution between
all the transitions enabled from the same state.

Using these probability distributions the set of executions
of a PTA is the same as the one of the underlying TA , but it
also defines a measurable space, with a probability over the
set of executions. This will enabled to use statistical model-
checking as an analysis technique for PTA .

3.3 Statistical Model-Checking
Correctness of the system is specified using formal logics
that defines which are the admissible executions of the sys-
tem. We will use a subset of the Computational Tree Logic
(CTL) as defined by the model-checker UPPAAL. The gram-
mar of this subset is ϕ ::� A[]P | A ¡P | E[]P | E ¡P . A
and E are paths operators, meaning respectively “for all the
paths” and “there exists a path”. [] and <> are state operators,
meaning respectively “all the states of the path” and “there
exists a state in the path”. P is an atomic proposition that is
valid in some state. For example the formula “A[] not dead-
lock” specifies that in all the paths and all the states on these
paths we will never reach a deadlock state, defined as a state
where the system is permanently blocked.

Model-checking is an automated verification technique
that explores all the possible executions of a TA to verify
if it satisfies a property expressed in a logic like CTL . Prob-
abilistic model-checking can also be used to compute the
probability to satisfy a CTL property. However these tech-
nique are limited by state-space explosion problems when
the model is too large, which can prevent the analysis due to
a lack of memory.

To counter this limitations we will apply Statistical
Model-Checking (SMC) techniques [15]. The principle is to
combine formal verification and techniques from the statistic
area. For instance, the Monte-Carlo algorithm computes N
executions ρ and it estimates the probability γ that the sys-
tem satisfies a logical formula ϕ using the following equa-

tion:

γ̃ �
1

N

Ņ

i�1

1pρ |ù ϕq

where 1 is an indicator function that returns 1 if ϕ is satisfied
and 0 otherwise. It guarantees that the estimate γ̃ is close
enough to the true probability γ with a probability of error
that is controlled by the number N of simulations.

3.4 Hierarchical Scheduling Systems
Hierarchical scheduling systems (HSS) provide a flexible
method to design and analyze scheduling systems. Instead of
scheduling the entire system, tasks are grouped in scheduling
units that can be analyzed independently. Scheduling units
can themselves be grouped in a hierarchical manner, and the
schedulability of the system is guaranteed by the schedula-
bility of all the scheduling units at every levels.

Formally, a scheduling unit CpW,Aq is composed of a
workload W and a scheduling algorithm A. A workload W
is a set of tasks, and each task Tipp, e, dq is characterized by
period (pi), execution time (ei), and deadline (di). Schedul-
ing algorithms can be fixed priority (FP) and earliest dead-
line first (EDF).

Figure 3: A hierarchical scheduling system

Fig. 3 shows an example of a 2-layer hierarchical schedul-
ing system. At the base level the scheduling units C1 and C2

are composed of real-time tasks. These scheduling units are
each associated to an interface ICippi, biq, that specifies a
period pi and a budget bi. The budget is a collective timing
requirements for the workload of the scheduling unit. At the
upper level, the interfaces ICi

ppi, biq are associated to tasks
Tippi, bi, piq in the Croot scheduling unit. An interface can
be viewed as a contract between parent and child units, such
that the budget given to the interface is guaranteed by the
parent unit. The tasks in a child unit can only execute when
the parent task associated to the interface of the scheduling
unit is running.

The schedulability analysis of an HSS can be performed
in a compositional manner: each scheduling unit is checked
to determine if it can schedule its tasks with the budget pro-
vided by its interface. We adopt the compositonal framework
of [1, 28], where scheduling units are analyzed individually
using a periodic resource model (PRM). The PRM provides
the worst case assignement of the resources. Note that while
HSS allow to compose the schedulability analysis of a com-
plex system, this may cost some over-approximation.

4 2015/12/10

3.5 Domain-Specific Code Generator: CINCO
CINCO is a generative framework for the development of
domain-specific graphical modeling tools. It is based on the
Eclipse Modeling Project [16], but with a strong emphasis on
simplicity [23], so that the user (i.e. the developer of a tool
generated with CINCO) does not need to struggle with the
underlying powerful but complicated EMF metamodeling
technologies [29] directly. This is achieved by focusing on
graph model structures (i.e. models consisting of nodes and
edges) and automatically generating the required metamodel
as well as the complete corresponding graphical editor from
an abstract specification, essentially providing a form of
constraint-based variability management [17, 18].

Central to every CINCO product is the definition of a file
in the Meta Graph Language (MGL). It defines what kind
of modeling components the model consists and what at-
tributes they have. Every modeling component is either a
node type, a container type (i.e. a special node that can hold
other nodes) or an edge type. It is also possible to define
which kind of nodes can be connected by which kind edges
and express cardinality constraints on those connections.
The second important file is a specification in the Meta Style
Language (MSL), which is used for defining shapes (rect-
angle, ellipse, polygon, image, text, etc.) and appearances
(colors, line style, line width, etc.) for nodes and edges. To
change the look of the model depending on runtime infor-
mation (e.g. the value of a node’s attribute) one can either
use the attribute directly within a text shape or implement an
appearance provider that is invoked by the framework and
may contain Java code that decides on the appearance by ar-
bitrary external or internal factors.

Those specifications are already enough for CINCO to
generate the complete graphical modeling tool. But CINCO
also provides mechanisms to integrate code that interprets
or transforms the models. It automatically generates APIs
specific to the model type and – similar to the appearance
providers – seamlessly integrates code implemented against
it into a ready-to-run modeling tool, which is realization
of the one-thing-approach [22]. Fully pointing out all of
CINCO’s concepts and capabilities for the development of
sophisticated domain-specific modeling tools is clearly be-
yond the scope of this paper. We therefore only briefly point
out the aspects most relevant for our HSS modeling tool.
Please refer to [26, 27] or the website1 for more detailed in-
troductions.

The easiest way to enhance the graphical editor is by
adding a custom action to a node type, which is then avail-
able via the nodes’ context menu or on double-click. For
a custom action two methods need to be implemented:
canExecute and execute. Both receive the node on which
the action should be performed as parameter. While the first
decides whether the action is available (i.e. not disabled/-

1 http://cinco.scce.info

greyed out in the context menu), the second one actually
performs it. The generated enhanced API for the metamodel
simplifies the implementation of those methods, as one can
easily access related modeling elements in a semantic and
type-safe way, e.g. by accessing all successors (i.e. target
nodes of outgoing edges) of a certain type.

Furthermore, the most recent version of CINCO intro-
duced a feature that makes it especially easy to perform
changes to the edited model. Usually, with the common
Eclipse approaches, the visual representation as well as the
underlying model structure need to be changed separately.
The transformation API that CINCO generates for every
model type handles the synchronous and consistent modi-
fication of both parts automatically, so that it becomes very
straightforward to program transformations for the model,
as the generated API provides the same actions the tool user
can perform within the editor, e.g. change attributes, add new
elements, connect them with edges, or move/resize/delete
them.

Summing up, CINCO allows us to concentrate more on
the formal model and its analysis instead of how to develop a
graphical modeling tool with numerous complicated frame-
works.

4. Formal Model-based Compositional
Framework for HSSs

Our model-based compositional analysis tool implements
a model-based analysis framework of HSSs that is flexible
enough to represent any scheduling systems.

Figure 4: Flexible Compositional Analysis Framework

As shown in Fig. 4, the framework is composed of a set
of component models (tasks, a scheduler and a stochastic
dispatcher), that are used to configure the scheduling units
of a HSS, and a set of real-time properties that must be
analyzed.

The configuration of the scheduling units of a HSS are
determined by the user, who defines the structure of the

5 2015/12/10

HSS and specifies the real-time attributes of individual tasks.
Once the configuration of the HSS has been made, our tool
enables the designer to check the configuration of the HSS
against real-time properties. In our setting, three important
real-time properties are checked: the deadlock freedom of
a HSS, and the schedulability and the worst-case response
time of individual tasks.

4.1 Stochastic Task
We introduce in this paper a new model of stochastic tasks
whose real-time attributes depend on probability distribu-
tions. An execution of a task is characterized by 3 real-time
attributes: an execution time, a period, and a deadline. The
difference between these stochastic tasks and the previous
work [6, 9, 24] is that the three real-time attributes are dy-
namically configured according to the condition in which the
system is running. This dynamic configuration is modeled by
a stochastic dispatcher with an extension of Timed Automata
with configuration actions that depends on the probability
distributions.

A task represents the time spent for executing some com-
putation. Its execution time may vary due to the length of
executions of the computation logics and the capability of
the execution environments, such as CPU, memory, I/O and
caches, etc. Real values can be obtained by sampling the exe-
cution times from the real world system. The sampled execu-
tion times can then be captured by a probability distribution.

Meanwhile, the deadline and the period are determined
according to the timing requirements of the functionality
implemented by a set of tasks. For instance, some video
decoder and encoder would update the deadline and period
of tasks according to the frequency of input streams. In a
similar way, they can also be represented by probability
distributions.

In our stochastic task model we consider discrete proba-
bility distributions, defined with a random variable X given
by:

X �
� x1, ..., xn
p1, ..., pn

�
(1)

where tx1, .., xnu are samples, P pxiq � pi is the probability
of each sample xi and

°n
i�1 pi � 1. The probability of any

variable x is given by P pxq if x P tx1, .., xnu, otherwise
P pxq � 0.

Fig. 5 shows the TA for our stochastic task model. The
only difference of this TA model with the periodic TA task
model of [9] is that it begins an execution if its job’s queue
job q[tid] is not empty.

If a process of the TA stochastic task at the Init location
is instantiated, it reads the default attributes by function
setTaskAttribute() and initializes a job. Then, the job requests
the scheduler to assign a CPU by synchronizing the channel
req sched(pid) and queues at a resource (ready) queue by
inserting its id (tid) to the queue.

Figure 5: TA template of a stochastic task (Ti)

A job process may stay at location Executing as long as
job’s execution time is not fulfilled and it does not miss the
deadline. The process stops and resumes its execution on that
location according to the availability of CPU resource, i.e.
the job process can make progress when a CPU is available,
otherwise, it must stop its execution.

In our model, there is no preemption location to de-
note that a task is waiting for CPU after it has been pre-
empted but preemption is implemented by a stopwatch
clock t et[tid]. This clock measures the CPU-consuming
time of a task since a job of the task has been instantiated;
the clock can stop and resume when a CPU is available
to the task. At location Executing, the invariant expression
t et[tid]’=isSchedSuped(tstat[tid].pid),tid) is associated to the
stopwatch clock. This condition is such that the clock pro-
gresses if the function isSchedSuped() returns 1, otherwise,
it does not progress.

The process of a task exits from location Executing when
it has fulfilled its execution time and it releases the CPU
resource using function deque tid(tstat[tid].pid, tid). Then, it
joins the location WaitEndofMINIntv and wait the end of the
minimal inter-arrival time. Finally, the process of a task joins
the location JobWait to be instantiated by a job dispatcher.

4.2 Stochastic Dispatcher
These stochastic tasks are combined with a stochastic dis-
patcher that configures the real-time attributes of the tasks at
each individual execution round. In other words, the stochas-
tic dispatcher determines the configuration of task’s real-
time attributes at the beginning of each execution round
when the task is waiting at the location JobWait.

To represent this dynamic configuration of real-time at-
tributes, we extends the timed automata (TA) with a config-
uration action. An example of the configuration of a set of

6 2015/12/10

Figure 6: An action to configure stochastic real-time at-
tributes

3 tasks is given in Fig. 6: The transition l to l1 is enabled
if the condition threshold ¡ h holds. When the transition
is taken, the set A of actions are carried out, meaning that
the execution e1 of task T1 is chosen randomly according to
the probability distribution pe1. In the similar way, the dead-
line and period of each individual stochastic tasks are taken
from the corresponding probability distributions. Note that
e3, d3 and p3 are assigned to constants values, 10, 45 and
45, respectively.

Figure 7: An action to configure stochastic real-time at-
tributes

Fig 7 shows an example of a job dispatcher that uses
the configuration actions. On the initial location Stable,
two recursive transitions trigger the events start job[1] and
start job[2] to instantiate the corresponding jobs if the condi-
tions tstat[1].status=WAITING and tstat[2].status=WAITING

hold. Even if the transitions are enabled, they are actually
taken by the exponential distribution with rate λ � 1{100. If
the condition numofJobs ¡ h holds, the transition heading
for location Unstable can be taken. Then, a new configura-
tion on the real-time attributes of T1, T2 and T3 are made
and, in particular, the real-time attributes of T1 and T2 are
taken from the associated probability distributions, such as
ρe1,2, ρp1,2, ρd1,2, etc.

4.3 Formal Analysis Model of Scheduling Unit
The approach we pursue is compositional: each scheduling
unit is individually analyzed with respect to an interface
that abstracts the behavior of the other components. For the
analysis of HSSs, the interface we are using is the PRM [28]
that assigns the amount Θ of resources every period Π.

Fig. 8 depicts the conceptual model of a scheduling unit
of a HSS: The scheduling unit is composed of a set of
tasks (Ti), a scheduler (A), a queue (pq) and a stochastic

Figure 8: Conceptual model of a scheduling unit of a HSS

dispatcher D. The unit is given a PRM (ΓPRM pΠ,Θq) that
is used to analyze the component in a compositional manner.
We will call this resource model the supplier.

Our framework supports two types of tasks: periodic task
and stochastic task. A periodic task instantiates at every the
same period. Meanwhile, a stochastic task instantiates with
a minimum inter-arrival time by an event. The real-time
attributes of stochastic tasks are determined by the stochastic
dispatcher D using a set Ω of probability distributions, as
shown in Fig. 8.

Once a job is instantiated by a task, it asks the scheduler
for CPU computation time by firing the event req(tid,pid),
which inserts the task’s id into the ready queue pq. Then, the
scheduler sorts task’s identities according to a scheduling
policy and chooses the id of the task having the highest
priority. This task can carry out its jobs until it finishes the
jobs or it is preempted.

The model of the scheduling unit is extended with a re-
source model ΓPRM pΠ,Θq in Fig. 8 in order to analyze the
HSS in a compositional manner. The resource model ΓPRM

in Fig. 8 can stop and resume the execution of a running
task. It determines when to stop and resume according to the
timing requirement pΠ,Θq. In this paper, the TA model of
resource model ΓPRM is created such that it supplies the Θ
amount of resources at every period Π in a non-deterministic
way, i.e. a task that is scheduled to use CPU is allowed to ex-
ecute only for Θ time units at any time within its period.

Such a non-deterministic behavior simulates every re-
source supplying patterns of a parent task, including the ex-
treme cases when the longest starvation of the resource as-
signment occurs, as mentioned in Section 3.4.

4.4 Resource Model
To speed up the schedulability analysis using model check-
ing techniques, we adapt the PRM to generate the extreme
cases more often, as depicted in Fig. 9: The TA model of
the PRM uses two clocks, x and y. The clock x is reset every
new period and used to measure the current time since a new
period has begun. The clock y denotes the time of supply-
ing the resources, so it may progress only when the process
resides on the Supply location. A new supply period starts
when the clock x reaches Π at location PrdDone. Then, one

7 2015/12/10

Figure 9: Abstract PRM model in TA

of the two transitions existing from location PrdDone is taken
non-deterministically. One of the transitions leads to loca-
tion Supply where immediately starts the resource supply.
Otherwise, the other transition leads to the location NonSup-

ply that postpones the resource supply up to the time Π�Θ
that is the laxity time of the resource supply.

Figure 10: A simulation of PRM behavior model

Fig. 10 shows a simulation of the PRM behavior that pro-
vides a resource for 33 time units every 100 time units. The
spike in blue denotes a period of the supply and the graph in
red denotes a resource supply. Note that the resource supply
begins and terminates in synchronization with the beginning
and end of a period, which implies that the longest starvation
of the supplying resources can occur extremely often.

5. Model Checking Tool Generated by
CINCO

The formal framework presented in the previous section is
generic enough to describe a wide range of HSSs. However,
it still requires from the system designer a lot of knowl-
edge to select and configure the components needed for
the scheduling analysis. Powerful model-checking tools like
UPPAAL and UPPAAL SMC can be used to verify these
systems, but the configuration of the tools and the inter-
pretation of the results also requires very specific knowl-
edge. It is therefore of great interest to provide the engineers
with more user-friendly interfaces to interact with model-
checking tools.

5.1 Automated Generation of the Interface
Using the tool generator CINCO we can automatically gen-
erate an interface capable of specifying HSSs in a graphical
interface, launching formal analyses and displaying relevant
information on the graph from the results.

This interface is specified using a few lines of code:

• The MGL file (132 lines) specifies the components
(nodes and edges) that can be used to design an HSS
and it references the actions that can be performed on

these components. Listing 1 presents the specification of
a supplier node. This node possesses a set of parameters,
some of them being referenced by the style to be dis-
played (policy, resource, tid, period and budget). It can
accept one incoming edge and several outgoing edges. It
can contain nodes of the type Query to specify properties
to verify.

• The STYLE file (136 lines) specifies the graphical style
of these components.

• Custom actions in Java, that are included during the auto-
mated generation (cf. Sect. 3.5). These actions allow to 1.
generate TA models corresponding to the HSS, 2. launch
UPPAAL to verify queries from the model, 3. parse the
results of the analyses, 4. display them in the graphical
interface, either through message notifications, modifica-
tions of the style of model or the display of graphs.

5.2 Specification of an HSS in the Tool
We now present how to specify an HSS with the graphical
interface generated by CINCO. Fig. 11 shows the generated
interface inside the Eclipse environment. The edition zone
allows to construct an HSS by selecting components from
the Palette on the left and linking them together.

Suppliers A supplier describes the interface mechanism
of a scheduling unit. Three types of supplier are available:
TopSupplier (in blue) for the root of the HSS; ProbSupplier
(in red), whose budget is stochastically determined within a
minimum and maximum budget; Supplier (in yellow) with a
fixed budget. In the parameters of these suppliers we select
the scheduling policy and the resource model. Suppliers can
contain queries, and they can have task nodes and other
supplier nodes as childs.

Tasks Tasks are the leaf nodes of the HSS tree. Normal
tasks are displayed with rounded rectangle node. They have
several integer parameters (deadline, best execution time,
worst execution time, period, priority). ProbTasks (rectan-
gle nodes) implements the formal model of stochastic task
presented in Section 4. They can specify discrete probability
distribution in place of period, deadline and execution time.

1 @style(supplier , "${policy}", "${resource}","${tid}",
2 "${period}","${budget}")
3 container Supplier {
4 attr Policy as policy
5 attr Resource as resource
6 attr EInt as tid
7 attr EInt as priority
8 attr EInt as period
9 attr EInt as budget

10 attr EInt as deadline
11 incomingEdges (Transition[1,1])
12 outgoingEdges (Transition[1 ,*])
13 containableElements (Query)
14 }

Listing 1: Part of the MGL file that specifies a supplier

8 2015/12/10

Figure 11: Generated tool interface

Queries Several type of queries can be added to a supplier
in order to verify the scheduling unit. The generic type
allows to specify any CTL formula, but the tool provides
pre-configured type of queries that allow to perform the most
usual checks without any knowledge of temporal logics.

Deadlock Queries check if the model has been correctly
design such that there is no deadlock. Error Queries check
if a scheduling unit is schedulable, which means that no task
ever exceeds its deadline. Execution Time Queries compute
the maximum response of a task. Estimate Budget Queries
compute the necessary budget for probabilistic suppliers.
Simulate Queries run random simulations on a scheduling
unit in order to display the scheduling periods provided by
the resource model.

With the graphical description of the HSS in our tool, we
can generate automatically TA models and CTL properties in
the format of the tool UPPAAL, using the model bank of our
framework described in Section 4. One model is generated
for each scheduling unit, and it can be used to check the
queries associated to this scheduling unit.

5.3 Model-Checking and Feedbacks
Model-checking is launched from a right-click menu on a
query. It generates the TA model of the scheduling unit
and translate the query in a CTL property. Then, depending
on the query, either UPPAAL or UPPAAL SMC is used to
analyzed the model, and various results are displayed in our
tool.

Model-checking queries Generic CTL queries and dead-
lock queries are checked with UPPAAL model-checker. To
this end, deadlock queries are translated to the CTL formula
A[] not deadlock. the result of teh analysis is displayed in the
tool with a message saying whether the property has been

Figure 12: Task that has missed a deadline

satisfied, and the color of the query is changed accordindly
to green if satisfied and to red if not.

Error queries Error queries can be checked with UPPAAL
model-checker for an exhaustive analysis. In that case, they
are translated to the CTL formula A[] not error. For better
performances, an option enables to use UPPAAL SMC for
the analysis. In that case the query is translated to a proba-
bilistic property Prr �runTimesp ¡errorq, which computes
the probability to reach an error state within runTime time
units.

The results of the analysis are parsed by the tool: if an
error state is found, it detects which task missed its deadline,
and the color of the query is changed to red as well as the
faulty task, as shown in Fig. 12. Otherwise, the color of the
query is changed to green.

Execution time queries The query estimate the maximum
response time of a task using UPPAAL SMC. To this end the
tool translates it to a CTL formula like Er �100000; 1000spmax :

9 2015/12/10

Figure 13: Minimum budget of probabilistic supplier

trstr2sq, which estimates the maximum response time of the
task with id 2, over a simulation time of 100’000 t.u. and
using 1000 simulations. The result is displayed in the tool
with a message box.

Estimate budget queries Using probabilistic suppliers we
can determine what is the minimum budget needed by a
scheudling unit such that all the tasks satisfied their deadline.
This supplier is given a minimum and maximum budget and
the TA model randomly select a value within this range. The
query is translated to the probabilistic property:

PrrestBudgetr1s �runTimes

p ¡globalTime¡�runTime and errorq

This property is analyzed with UPPAAL SMC that runs
random simulations on the model and estimates for each
value of the budget the probability that a task misses a
deadline.

The tool analyses the results of UPPAAL SMC and deter-
mine the minimum budget, as shown in Fig. 13.

Simulate queries Using UPPAAL SMC we can also per-
form random simulations and display the results in a graph.
This is useful to look at the variation of selected parameters
from the model. For instance in Fig. 14 the graph displayed
in our tool shows the value of 4 parameters: the beginning of
a supply period, the status of the supplier and the status of
the 2 tasks.

6. Case Study
We to apply our framework to model and verify an avionic
scheduling system. We consider the specification of avionic
tasks presented in [20]. This is a mixed-critical system with
multiple tasks of varius criticality running together. We ar-
range these tasks in a hierarchical scheduling system by
grouping tasks from similar functions and critically (Nav-
igation, Targeting, Weapong control and Controls and dis-
plays). Each function is associated to scheduling unit. The
three scheduling units of the most critical functions (navi-
gation, targeting and weapong control) are further grouped

Figure 14: Variations of parameters along a random simula-
tion

under a “Hard-Subsystem” scheduling unit. This results in
the hierarchical scheduling systems presented in Fig. 15.

The goal of our study is to determine if the complete
system is schedulable and to find appropriate parameters for
each scheduling unit, such that they are all schedulable.

6.1 Modeling with Cinco
We design the HSS in Cinco. Sporadic tasks are modeled
with stochastic task nodes and are associated to probabil-
ity distributions. To estimate their necessay budget, each
scheduling unit is modeled using a probabilistic supplier.

6.2 Verification Procedure
We analyze each scheduling unit, starting from the bot-
tom, with the budget estimation query. We configure the
scheduling unit, by selecting several values for the period
of the probabilistic supplier. The period must be lower than
the minimum period of the tasks being supplied. Then, we
configure the minimum and maximum budget for the esti-
mation between r1, periods. The tool computes the mini-
mum budget such that the tasks are schedulable. The ratio
budget{period gives us the load factor of the scheduling
unit. Our goal is to find the lowest load factor among the
choice of possible values for the period.

When, all the bottom units have been analyzed we can
replace them with normal supplier using the minimum bud-
get that has been computed. We then repeat the procedure
to compute the minimum budget for the upper scheduling
units.

10 2015/12/10

Figure 15: Hierarchical scheduling of avionic tasks

Unit Period Budget Load factor

Navigation 8 2 0.25

Targeting 6 1 0.17

Weapon Ctrl. 4 2 0.5

Hard-Subsystem 4 4 1

Controls and Display 3 1 0.33

Table 1: Minimum budget for the scheduling units

6.3 Results
We present in the Fig. 16 the results obtained from the anal-
ysis of the 3 bottom scheduling units (Navigation, Target-
ing, Weapong control). The graph plots the load factor of the
scheduling unit using the minimum budget computed with
SMC for several values of the periods. From these results we
select the points with the lowest load factor and the highest
period. The values that we choose are listed in Table 1.

We can now replace these probabilistic Suppliers with
normal suppliers and confirm the schedulability of the units
using the error query, that is checked either with model-
checking or SMC.

0 10 20 30 40 50

0.2

0.4

0.6

0.8

1

Period

L
oa

d
fa

ct
or

Navigation
Targeting

Weapon Ctrl.

Figure 16: Budget estimation for Navigation, Targeting and
Weapon control

11 2015/12/10

We then determine the period and the budget for the Hard
Subsystem unit. Its period must be lower than 4, the chosen
period of the Weapon control unit. Since the combined load
factor of the 3 lower scheduling unit is 0.92, only a budget
of 4 over 4 can scheduled the Hard Subsystem unit, which
we verify with the error query.

We also determine the necessary budget for the Controls
and display scheduling unit. We found the best budget to be
1 over a period of 3.

From our results we conclude that the two upper schedul-
ing units (Hard Subsystem and Controls and Display) are
each schedulable. However since the load factor of the Hard
Subsystem is already 1, it cannot be scheduled with the sec-
ond unit using the same ressources.

7. Conclusions
We have presented a formal framework that performs model-
based analysis of the schedulability of CPS. This framework
is based on the hierarchical scheduling concept that allows
to decompose the schedulability analysis into subsystems,
each associated to its own scheduler. In this paper, we have
extended these HSS with a model for stochastic task that
allows to abstract several timing behaviors or represent un-
known behaviors of sporadic tasks. In order to make these
techniques more accessible we have embedded our frame-
work in a domain-specific tool generated by the tool genera-
tor CINCO. This front end allows a system designer to spec-
ify an HSS using simple graphical components and it can
launch formal analyses using the model-checking and SMC
algorithms of the tool UPPAAL. Finally, our framework can
interpret the results of these analyses and output comprehen-
sible information to the system designer.

In future works we would like to increase the accessibil-
ity of our approach by generating automatically the formal
properties from a collection of queries that can be checked
on HSS.

References
[1] Proceedings of the 24th IEEE Real-Time Systems Symposium

(RTSS 2003), 3-5 December 2003, Cancun, Mexico, 2003.
IEEE Computer Society. ISBN 0-7695-2044-8.

[2] R. Alur and D. L. Dill. A theory of timed automata. Theor.
Comput. Sci., 126(2):183–235, 1994.

[3] S. K. Baruah, A. K. Mok, and L. E. Rosier. Preemptively
scheduling hard-real-time sporadic tasks on one processor. In
In Proceedings of the 11th Real-Time Systems Symposium,
pages 182–190. IEEE Computer Society Press, 1990.

[4] D. Beauquier. On probabilistic timed automata. Theor.
Comput. Sci., 292(1):65–84, Jan. 2003. ISSN 0304-3975.
. URL http://dx.doi.org/10.1016/S0304-3975(01)

00215-8.

[5] G. Behrmann, A. David, K. G. Larsen, J. Håkansson, P. Pet-
tersson, W. Yi, and M. Hendriks. UPPAAL 4.0. In Third
International Conference on the Quantitative Evaluation of

Systems (QEST 2006), 11-14 September 2006, Riverside, Cal-
ifornia, USA, pages 125–126. IEEE Computer Society, 2006.
ISBN 0-7695-2665-9. . URL http://dx.doi.org/10.

1109/QEST.2006.59.

[6] A. Boudjadar, J. H. Kim, A. David, K. G. Larsen,
M. Mikučionis, U. Nyman, A. Skou, I. Lee, and L. T. X. Phan.
Flexible framework for statistical schedulability analysis off
probabilistic sporadic tasks. In 18th International Sympo-
sium of Real-Time Distributed Computing (ISORC). To be
appeared.

[7] A. Boudjadar, A. David, J. H. Kim, K. G. Larsen, M. Mikucio-
nis, U. Nyman, and A. Skou. Hierarchical scheduling frame-
work based on compositional analysis using uppaal. In FACS
2013, volume 8348 of LNCS, pages 61–78. Springer, 2013.

[8] A. Boudjadar, A. David, J. H. Kim, K. G. Larsen, M. Miku-
cionis, U. Nyman, and A. Skou. Degree of schedulability of
mixed-criticality real-time systems with probabilistic sporadic
tasks. In Theoretical Aspects of Software Engineering Confer-
ence (TASE), 2014, pages 126–130, Sept 2014. .

[9] A. Boudjadar, A. David, J. Kim, K. Larsen, M. Mikučionis,
U. Nyman, and A. Skou. Widening the schedulability of hi-
erarchical scheduling systems. In I. Lanese and E. Made-
laine, editors, Formal Aspects of Component Software, vol-
ume 8997 of Lecture Notes in Computer Science, pages 209–
227. Springer International Publishing, 2015. ISBN 978-
3-319-15316-2. . URL http://dx.doi.org/10.1007/

978-3-319-15317-9_14.

[10] J. Boudjadar, A. David, J. H. Kim, K. G. Larsen,
M. Mikučionis, A. Skou, I. Lee, L. P. Xuan, and U. Nyman.
Quantitative schedulability analysis of continuous probabil-
ity tasks in a hierarchical context. Springer International
Publishing, 2015. URL http://dx.doi.org/10.1007/

978-3-319-15317-9_14. To be appeared.

[11] M. Cordovilla, F. Boniol, J. Forget, E. Noulard, and C. Pagetti.
Developing critical embedded systems on multicore architec-
tures: the PRELUDE-SCHEDMCORE toolset. In S. Faucou,
A. Burns, and L. George, editors, RTNS 2011, pages 107–
116, 2011. URL http://rtns2011.irccyn.ec-nantes.

fr/files/rtns2011.pdf.

[12] A. David, J. I. Rasmussen, K. G. Larsen, and A. Skou. Model-
based Framework for Schedulability Analysis Using Uppaal
4.1d.

[13] A. David, K. G. L. Larsen, A. Legay, and M. Mikučionis.
Schedulability of herschel-planck revisited using statisti-
cal model checking. In T. Margaria and B. Steffen, ed-
itors, Leveraging Applications of Formal Methods, Verifi-
cation and Validation. Applications and Case Studies, vol-
ume 7610 of Lecture Notes in Computer Science, pages
293–307. Springer Berlin Heidelberg, 2012. ISBN 978-
3-642-34031-4. . URL http://dx.doi.org/10.1007/

978-3-642-34032-1_28.

[14] A. David, K. G. Larsen, A. Legay, and D. B. Poulsen. Statisti-
cal model checking of dynamic networks of stochastic hybrid
automata. ECEASST, 66, 2013. URL http://journal.ub.

tu-berlin.de/eceasst/article/view/893.

[15] A. David, K. Larsen, A. Legay, M. Mikučionis, and
D. Poulsen. Uppaal smc tutorial. International Journal on

12 2015/12/10

Software Tools for Technology Transfer, pages 1–19, 2015.
ISSN 1433-2779. . URL http://dx.doi.org/10.1007/

s10009-014-0361-y.

[16] R. C. Gronback. Eclipse Modeling Project: A Domain-
Specific Language (DSL) Toolkit. Addison-Wesley, Boston,
MA, USA, 2008.

[17] S. Jörges, A.-L. Lamprecht, T. Margaria, I. Schaefer, and
B. Steffen. A Constraint-based Variability Modeling Frame-
work. International Journal on Software Tools for Technology
Transfer (STTT), 14(5):511–530, 2012. .

[18] A.-L. Lamprecht, S. Naujokat, and I. Schaefer. Variability
Management Beyond Feature Models. IEEE Computer, 46
(11):48–54, 2013. ISSN 0018-9162. .

[19] C. L. Liu and J. W. Layland. Scheduling algorithms for
multiprogramming in a hard-real-time environment. J. ACM,
20(1):46–61, Jan. 1973. ISSN 0004-5411. . URL http:

//doi.acm.org/10.1145/321738.321743.

[20] D. Locke, L. Lucas, and J. Goodenough. Generic avionics
software specification. Technical Report CMU/SEI-90-TR-
008, Software Engineering Institute, Carnegie Mellon Univer-
sity, Pittsburgh, PA, 1990. URL http://resources.sei.

cmu.edu/library/asset-view.cfm?AssetID=11181.

[21] S. Manolache, P. Eles, and Z. Peng. Analysis of monoproces-
sor systems. In Real-Time Applications with Stochastic Task
Execution Times, pages 27–60. Springer Netherlands, 2007.
ISBN 978-1-4020-5505-8. . URL http://dx.doi.org/10.

1007/1-4020-5509-9_4.

[22] T. Margaria and B. Steffen. Business Process Modelling
in the jABC: The One-Thing-Approach. In J. Cardoso and
W. van der Aalst, editors, Handbook of Research on Business
Process Modeling. IGI Global, 2009.

[23] T. Margaria and B. Steffen. Simplicity as a Driver for Agile
Innovation. Computer, 43(6):90–92, 2010. ISSN 0018-9162.
.

[24] D. Maxim and L. Cucu-Grosjean. Response Time Analysis
for Fixed-Priority Tasks with Multiple Probabilistic Parame-
ters. In RTSS 2013 - IEEE Real-Time Systems Symposium,
Vancouver, Canada, 2013.

[25] A. K. Mok. Fundamental design problems of distributed
systems for the hard-real-time environment. Technical report,
Cambridge, MA, USA, 1983.

[26] S. Naujokat, L.-M. Traonouez, M. Isberner, B. Steffen, and
A. Legay. Domain-Specific Code Generator Modeling: A
Case Study for Multi-faceted Concurrent Systems. In Proc.
of the 6th Int. Symp. on Leveraging Applications of Formal
Methods, Verification and Validation, Part I (ISoLA 2014),
number 8802 in LNCS, pages 463–480. Springer, 2014. .

[27] S. Naujokat, M. Lybecait, D. Kopetzki, and B. Steffen.
CINCO: A Simplicity-Driven Approach to Full Generation of
Domain-Specific Graphical Modeling Tools. 2015. to appear.

[28] I. Shin, A. Easwaran, and I. Lee. Hierarchical schedul-
ing framework for virtual clustering of multiprocessors. In
ECRTS, pages 181–190. IEEE Computer Society, 2008.

[29] D. Steinberg, F. Budinsky, M. Paternostro, and E. Merks.
EMF: Eclipse Modeling Framework (2nd Edition). Addison-
Wesley, Boston, MA, USA, 2008.

[30] A. Thekkilakattil, R. Dobrin, and S. Punnekkat. Prob-
abilistic preemption control using frequency scaling for
sporadic real-time tasks. In The 7th IEEE Interna-
tional Symposium on Industrial Embedded Systems, June
2012. URL http://www.mrtc.mdh.se/index.php?

choice=publications&id=2888.

[31] Y. Zhang, D. K. Krecker, C. Gill, C. Lu, and G. H. Thaker.
Practical schedulability analysis for generalized sporadic
tasks in distributed real-time systems. In Proceedings of the
2008 Euromicro Conference on Real-Time Systems, ECRTS
’08, pages 223–232, Washington, DC, USA, 2008. IEEE
Computer Society. ISBN 978-0-7695-3298-1. . URL http:

//dx.doi.org/10.1109/ECRTS.2008.33.

13 2015/12/10

