
HAL Id: hal-01241673
https://hal.science/hal-01241673v1

Preprint submitted on 11 Dec 2015 (v1), last revised 28 Oct 2016 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Formal Modeling and Analysis Framework for
Software Product Line of Preemptive Real-Time

Systems
Jin Hyung Kim, Axel Legay, Louis-Marie Traonouez, Mathieu Acher,

Sungwon Kang

To cite this version:
Jin Hyung Kim, Axel Legay, Louis-Marie Traonouez, Mathieu Acher, Sungwon Kang. A Formal
Modeling and Analysis Framework for Software Product Line of Preemptive Real-Time Systems.
2015. �hal-01241673v1�

https://hal.science/hal-01241673v1
https://hal.archives-ouvertes.fr

A Formal Modeling and Analysis Framework for Software
Product Line of Preemptive Real-Time Systems

Jin Hyun Kim, Axel Legay
Louis-Marie Traonouez

INRIA/IRISA,
Rennes Cedex, France

Mathieu Acher
University of Rennes 1

France

Sungwon Kang
KAIST

Daejeon, Republic of Korea

ABSTRACT
Adapting real-time embedded software for various variants
of an application and usage contexts is highly demanded.
However, the question of how to analyze real-time proper-
ties for a family of products (rather than for a single one)
has not drawn much attention from researchers. In this pa-
per, we present a formal analysis framework to analyze a
family of platform products w.r.t. real-time properties. To
this end, we first propose an extension of the widely-used
feature model, called Property Feature Model (PFM), that
distinguishes features and properties explicitly, so that the
scope of properties restricted to features can be explicitly
defined. Then we present formal behavioral models of com-
ponents of a real-time scheduling unit, i.e. tasks, resources,
and resource schedulers, such that all real-time scheduling
units implied by a PFM are automatically composed with
the components to be analyzed against the properties given
by the PFM. We apply our approach to the verification of
the schedulability of a family of scheduling units using the
symbolic and statistical model checkers of Uppaal.

1. INTRODUCTION
Software Product Line Engineering (SPLE) allows reusing

software assets by managing the commonality and variabil-
ity of products. Recently, SPLE has gained a lot of atten-
tion as an approach for developing a wide range of soft-
ware products from non-critical to critical software prod-
ucts [4,5,11–15,19,22–24,26,27], and from application soft-
ware to platform software products [25]. Real-time software
products (such as real-time operating systems) are a class
of systems for which SPLE techniques have not drawn much
attention from researchers, despite the need to efficiently
reuse and customize real-time artifacts.

A real-time system is a time and resource-constrained sys-
tem, in which the performance and the correctness of the
system depend not only on individual capabilities of its com-
ponents but also on their composition under given resources.
For this reason, it is indispensable to check if a complete sys-
tem guarantees its composability over timing requirements
concerning resource constraints whenever it is deployed with
varying sets of resources. The same constraints hold for an
SPL of real-time system, such that all the products gener-
ated from the SPL should satisfy various real-time proper-
ties. In general, a real-time system product is not verifiable
until its configuration under given resources is fixed.

The overall challenge is to analyze a family of real-time
systems (rather than a single one) against real-time prop-
erties, depending on varying sets of resources. Two main

Figure 1: Our formal SPLE framework

issues are raised for the verification of an SPL of real-time
systems. 1) The specification method must link individual
features of an SPL to the corresponding real-time proper-
ties that must be verified. 2) The analysis method must
verify all products generated from an SPL against all real-
time properties imposed upon individual features of each
product. If the products of an SPL are safety-critical, this
analysis method should be rigorous enough to guarantee the
safety of all the products.

When analyzing real-time systems, formal methods such
as model-checking are often used to obtain safe and reliable
proofs that the system satisfies the expected properties. The
research in [5,6,23,24,26,27] consider various properties, in-
cluding structural and behavioral properties of SPLs. How-
ever, they are limited to functional properties, and rarely
considered real-time properties or non-functional properties,
that are related to the real behavior of a complete system.

This paper proposes a formal SPLE framework for real-
time scheduling units1 and demonstrates its efficiency and
feasibility. It focuses on the formal analysis of real-time
properties of an SPL in terms of resource sharing with time
dependent functionalities. Our framework is depicted in
Figure 1. It provides a structural description method of
the variability and the properties of a real time system,
and behavioral models to verify the properties using formal
techniques and the tools Uppaal symbolic model checker
(MC) [8] and Uppaal statistical model checker (SMC) [16].

For the specification of an SPL, we propose an extension of
a feature model, called Property Feature Model (PFM), shown
on the right side of Figure 1. A PFM explicitly distinguishes

1A scheduling unit consists of tasks and a scheduling mech-
anism.

1

features and properties associated with features in a FM so
that properties are analyzed in the context of the relevant
features. In the second step of Figure 1, we define a non-
deterministic decision process that automatically configures
the products of an SPL that satisfy the constraints of a given
PFM and the product conditions of customers. In the third
step in Figure 1, we analyze the products against the as-
sociated properties. For analyzing real-time properties, we
provide feature behavioral models of the components of a
scheduling unit, i.e. tasks, resources and schedulers. Us-
ing these feature behavioral models, a family of scheduling
units of an SPL is formally analyzed against the designated
properties with model checking techniques.

The rest of the paper is organized as follows: Section 2
discusses some background concerning SPL specification and
analysis of real-time systems. Section 3 presents a new ex-
tension of a feature model, Property Feature Mode (PFM).
In addition, we define product conditions to express cus-
tomer’s requests. Also, we define the semantics of the PFM
to configure the SPL according to the customer’s requests.
In Section 4, we provide feature behavioral models of the
components of a scheduling unit, using Timed Automata
and its extensions Stopwatch Automata. In Section 5, we
present the results from a case study. Finally Section 6 dis-
cusses related work and Section 7 concludes this paper.

2. BACKGROUND
This section discusses our basic formal models, analysis

techniques, and a basic model of a product family.

2.1 Specification methods
In our framework, a real-time system is considered in

terms of resource sharing, where a scheduling unit consisting
of a set of tasks and a set of shared resources is organized to
support the execution of applications. It is given timing re-
quirements, such as schedulability conditions, performance,
etc. Behaviors of a SPL are captured to analyze real-time
properties using Timed Automaton (TA) [3], that is a classi-
cal formal model for designing real-time systems. It consists
of:

 A set of real-time clocks. The model uses a continuous
time semantics meaning that the clocks are evaluated
to real numbers.

 A set of locations, possibly labeled with an invariant
constraint over clocks, which restricts the time spent
in the location.

 A set of transitions between pairs of locations, possi-
bly labeled with a guard constraint over clocks. This
constraint specifies from which values of the clocks the
transition may be taken. The transition may also be
labeled with a synchronization channel and an update
of clocks.

When considering preemptive real-time systems, it is nec-
essary to keep track of the execution time of a running pro-
cess. For this reason, Stopwatch Automata (SWA) are TA
that use a stopwatch mechanism to stop and resume the
execution of a clock

A simple example of SWA is shown in Figure 2. It depicts
an abstract model of a periodic task. A transition may be
taken when its guard and all the invariant hold. The transi-
tion between JobDone and Ready is thus taken as soon as x is

Figure 2: SWA for an abstract task

equal to period. At Ready the SWA starts executing the task
if it receives the event schedule?. Then, it can send the event
done! as soon as the clock x reaches the best case execution
time (bcet) and before it reaches the worst case execution
time (wcet). Otherwise it joins the location MissingDeadline

if the clock exceeds the deadline. Finally, it returns to lo-
cation JobDone and waits for the next period. The running
task at location Executing can be preempted by the event
not schedule?, and then it returns to the Ready location. No-
tice that the clock x at the location Ready is associated to a
stopwatch (x’==0) meaning that the clock stops progressing,
whereas at location Executing the stopwatch x’==1 means
that the clock is progressing. This model will be refined in
Section 4.

Even if a real-time system synchronizes with a clock, there
might be a delay caused by various reasons, such as a noise
or a jitter, etc. Such non-deterministic timed events cannot
be physically and precisely measured with ease, but they can
be abstracted by giving probabilities to events and actions.

For this reason, Probabilistic Timed Automata (PTA) ex-
tends TA with probability transitions. In PTA, like in TA,
a transition is enabled as long as the relevant guards and
invariants hold, but the time to make an enabled transition
depends on a certain probability distribution [17]. If multi-
ple transitions leaving the same location are enabled at the
same time, one of them is taken according to another prob-
ability distribution [21]. In the tool Uppaal, if transitions
and locations are not specified with any probability, then the
relevant transitions are guarded by uniform distributions,
i.e. all possible transitions have the same probability.

In our framework, the correctness of a system is specified
using formal logics that define the admissible executions of
the system. We use a subset of the Computational Tree
Logic (CTL) as defined by the model-checker Uppaal. The
grammar of this subset is ϕ ::� A[]P | A<>P | E[]P | E<>P ,
where A and E are paths operators, meaning, respectively,
“for all path” and “there exists a path”. [] and <> are state
operators, meaning, respectively, “all states of the path” and
“there exists a state in the path”. P is an atomic proposition
that is valid in some state. For example the formula “A[] not

deadlock” specifies that in all the paths and all the states on
these paths we will never reach a deadlock state.

2.2 Analysis methods
Model Checking (MC) is an automated verification tech-

nique that explores all the possible executions of a model to
verify if it satisfies a property expressed in a logic like CTL.
While this technique can guarantee that the model satisfies
a given property, it has several limitations:

 It is susceptible to state-space explosion if the model

2

is too large, which can prevent analysis due to a lack
of memory.

 It can give only approximated results when verifying
SWA, since the exact computation is not possible.

When MC is undergoing state-space explosion, Statistical
Model Checking (SMC) techniques [16] can be used as an
efficient alternative, but with the sacrifice of the absolute
certainty provided by MC verification.

SMC is also used to analyze scheduling systems with stochas-
tic features, using PTA. In this context, the scheduling prob-
lem becomes to compute, for a given set of tasks, the prob-
abilities of schedulability and the possible response time of
individual tasks. We briefly explain the principles of SMC

hereafter.
SMC combines formal verification and techniques from the

statistic area. For instance, the Monte-Carlo algorithm com-
putes N executions of the model ρ and estimates the proba-
bility γ that ρ satisfies a logical formula ϕ using the following
equation:

γ̃ �
1

N

Ņ

i�1

1pρ |ù ϕq

where 1 is an indicator function that returns 1 if ϕ is satisfied
and 0 otherwise. It guarantees that the estimate γ̃ is close
enough to the true probability γ with the probability of error
that is controlled by the number N of simulations.

Figure 3: Model analysis

Fig. 3 shows how to analyze TA and its extensions. MC

accepts TA models, while SMC accepts PTA. Uppaal MC

accepts PTA models but ignores all stochastic aspects of the
model. Meanwhile, Uppaal SMC accepts a TA model, that is
interpreted using uniform probability distribution whenever
non-deterministic choices have to be made.

For this reason, we apply both techniques, MC and SMC,
to the same model. First, we check a model with SMC and
repeat until the certainty of our verification of a model is
close to 100%. Then, we apply MC to our model to be sure
that the system satisfies a given property.

2.3 Feature Model
A Feature Model (FM) is a well-known specification and

analysis model for SPLs. It is used to manage the com-
monality and the variability of products in a simple and
easy-to-understand way [9]. A feature is a distinguished as-
pect, quality, property, or characteristic of a product. A
FM organizes features of products together with constraints
among them. A product generated from a FM is then a set
of included features that satisfies all the feature constraints.

We adopt the syntax shown in Figure 4 for property speci-
fication. The root is the representative feature of a family of
products. The child nodes of the root are features either in-
cluded or excluded in the products. Individual features are
linked to its parent node by connectors that represents their

Figure 4: Feature operators of a FM

modality, such as optional/mandatory inclusions, and/or
compositions, optional-xor/mandatory-xor inclusions.

3. PROPERTY FEATURE MODEL
We analyze SPLs of real-time systems with respect to the

following properties:

 Deadlock properties, that concern all the components
in the system.

 Schedulability properties, such that tasks with dead-
lines do not exceed them.

 Performance properties, that evaluate the response time
of tasks.

Inspired by [20, 27], we propose a new extension of fea-
ture model called Property Feature Model (PFM) that dis-
tinguishes between features and properties using property-
specific operators. It states two pieces of important infor-
mation: the scope of a property and a list of properties that
individual features must satisfy. A property can either be
local when associated to a leaf feature, or global when asso-
ciated to the root feature. The association between a feature
f and a property p instantiates a satisfiability relation f (p,
which can be represented by a CTL formula.

3.1 Syntax for PFM
A PFM is described using the similar notations of a FM.

The root of a PFM is a feature, that has child features or
properties. A property node can have another property node
as its child, but not a feature node. A property can be
represented by the composition of multiple properties.

Figure 5: Property-specific operators PFM

Figure 5 shows property-specific operators of a PFM in
graphical notations:

 Optional: the child property may or may not be satis-
fied,

 Mandatory: the child property must be satisfied,

 And: the parent feature must satisfy all child proper-
ties,

3

Figure 6: An SPL of a scheduling unit

 Or: the parent feature must satisfy one or more child
properties,

 Optional-XOR: at most one property may be included,

 Mandatory-XOR: at most one property must be in-
cluded.

Similar to the optional feature of a feature model, an op-
tional property of a PFM can represent two products: one
that satisfies the property and one that does not. Feature
and property nodes can be quantified or given parameters
for their products.

Figure 6 shows an example of PFM. The SPL has the root
feature SS representing a scheduling unit. It is composed of
two mandatory features Task1 and CPU1, one optional fea-
ture Task2, and one mandatory property “Not Deadlock.”
The feature CPU1 is mandatory and quantified by two sched-
ulers, FP (Fixed-Priority) or EDF (Earliest Deadline First).
The property node denoted by Not Deadlock states a global
property that requires that the root feature SS is never in
deadlock when it operates. The property node denoted by
Schedulable imposed upon Task2 is a mandatory and local
property specifying that Task2 can never miss its deadline.
Note that the property node ResponseTime requires a single
product satisfying RT<=MaxT, while the feature SP[FP, EDF]

requires two products, each of which comes along with the
feature SP[FP] or SP[EDF]. A complete example of PFM is
presented in Figure 7.

A PFM can be represented by a propositional logic for-
mula with Boolean variables [9]. Each Boolean variable cor-
responds to a single feature f stating whether the feature is
included or not or the satisfiability relation f (p. We allow
numeric and arrayed features in propositional logic formu-
las, like F[A, B, C], instead of Boolean variables [22]. F[A, B,

C] abstracts three features: F[A], F[B], and F[C].
A feature and property can be given a parameter to in-

stantiate a product. For instance, WCRT<= MaxT is imposed
upon WCRT, restricting WCRT to be less than or equal to
MaxT.

Definition 1. A Property Feature Model (PFM) is a quin-
tuple PFM � tF ,P,Ñ,(, ψF u such that

 F = tf0, ..., fnu is a set of features, f0 being the root
feature,

 P = tp1, ..., pmu is a set of properties,

 Ñ P 2F is a parent to child feature relation that en-
codes the feature structure of the PFM,

 (P F�P is a satisfiability relation (f (p) meaning
that a feature f satisfies a property p.

 ψF is a propositional logic formula over features and
properties that represents the constraints of the PFM.

Notice that ψF includes both a relation between parent
and child features and a relation between features that are
not in the parent-child relation. In the case where a feature
is in association with another feature that is neither parent
nor child, an additional proposition logic formula is given to
define such a relation.

Example 1. The PFM in Figure 6 can be defined as:

F � tSS, Task1, Task2, CPU1, SP.EDF, SP.FPsu

P � t“Not Deadlock”, “Schedulable”, “WCRT �MaxT”u

Ñ � tpSS, Task1q, pSS, Task2q, pSS,CPU1q, pCPU1, SP.FP q,

pCPU1, SP.EDF qu

(� tpSS, “Not Deadlock”q, pTask1, “WCRT �MaxT”q,

pTask2, “Schedulable”qu

ψF � pSS ùñ Task1q ^ pTask1 ùñ SSq

^ pTask2 ùñ SSq

^ pCPU1 ùñ SSq ^ pSS ùñ CPU1q

^ pSP rFP,EDF s ùñ SSq ^ pSS ùñ SP rFP,EDF sq

^ pSS (NotDeadlockq

^ pTask1 (WCRT ¤MaxT ùñ Task1q

^ pTask2 ùñ Task2 (Schedulableq

Figure 7: The refined PFM of a scheduling unit

3.2 Product Configuration
A product generated from a PFM is set of included fea-

tures that satisfy the constraints of the PFM.
We define a product condition that is used to describe re-

quirements of product features requested by the customer.
A product condition ρF is a propositional formula that is a
conjunction of condition variables corresponding to individ-
ual features in tf0, f1, ..., fnu. It is defined by the following
grammar:

ρF ::� c | c | ρF ^ ρF | e

e ::� x �� d | x ¡ d | x d | x ¤ d | x ¥ d | xrf s

f ::� d, f | d

where c is a Boolean variable, x is a numeric or constant
variable that are not allowed to contain negation, and d is a
numeric or constant value.

Example 2. A product condition ρF for the SPL of the
running example in Figure 6 can be:

ρF � pSS ^ Task1^ Task2^ CPU1^ SP rFP,EDF sq

It describes two components Task1 and Task2, exploiting
CPU1 served by two different scheduling policies FP or EDF.

4

A product condition is checked against the PFM to see if the
proposed products are producible from the PFM specified
by the product condition. This check can be performed by
SMT-solvers [14,18,22].

To derive products from a PFM, we define a (product)
configuration that is a set of condition variables that imply
the inclusion, exclusion, or valuation of the corresponding
features. Compared to a product condition, it is used to
generate all possible products of an SPL, which should sat-
isfy all product conditions that customers require.

Definition 2. (Configuration): A configuration γ is a
set of condition variables ci P ttrue, false, vu, each corre-
sponding to a feature fi P F or a property pi P P, such
that

 ci � true represents the inclusion of fi or pi,

 ci � false represents the exclusion of fi or pi,

 ci � v represents the assignment of fi to a value v in
any type.

For a given PFM, a configuration of a product is created
by assigning ci to one of true, false or a value v, where
ci has a corresponding feature or property in the PFM. A
configuration γ is “determined” if no variable ci remains un-
determined, i.e. not included in γ. Then |γ| is equal to
|F | � |P|.

Definition 3. (Propositional Logic Formula Projection):
The projection of ψF over a configuration γ, denoted by
ψF |γ , returns the formula ψF in which every variable vi cor-
responding to a feature fi or a property pi has been substi-
tuted with the value of the corresponding condition variable
ci in γ [22].

A configuration γ is said to be “valid” if ψF |γ , holds, i.e.
the configuration is producible from a feature model ψF .
Otherwise, the configuration γ is said to be “invalid.” For-
mally, a product is a valid and determined configuration.

Now, we define a non-deterministic decision process that
allows to construct all the products of a PFM compatible
with the product condition ρF expressed by the customer.
The process starts from the configuration γ0 � tc0 � trueu
that only includes the root feature of the PFM, and it recur-
sively extends this configuration until all the features and all
the properties have been determined. Therefore, from a con-
figuration γ a new configuration γ1 is produced by extend-
ing γ with a feature condition ci, according to the following
rules:

1. γ1 � γ Y ci,

2. Dcj P γ such that either fj Ñ fi, which means that fi is
a child feature of fj that has already been determined
to be included, or pi (fj , which means that pi is a
property of fj already determined,

3. ψF |γ1 and ρF |γ1 hold.

The first rule produces a new configuration by including
the condition variable ci corresponding to the decision on
the feature fi or the property pi. The second rule restricts
the decision process to make it follow the order from parent
to child defined in the PFM. The last rule checks if a new
configuration (γ1) satisfies both feature constraints (ψF) and
customer’s requests (ρF).

4. FEATURE BEHAVIORAL MODEL
A SPL of a scheduling unit is analyzed to see if the prod-

ucts generated from the SPL satisfy their properties. To this
end, all products from an SPL are represented by behavioral
models of real-time scheduling units. We model them using
timed automata such that properties of an SPL can be an-
alyzed using the behavioral models.

Figure 8: The process of analyzing an SPL of scheduling
units using Uppaal tools

The process of analyzing an SPL of a real-time scheduling
unit is presented in Figure 8. With TA and SWA, we build
reconfigurable task and resource scheduler models whose
properties are instantly updated. The task model executes
according to its timing properties, such as a period, an ex-
ecution time, and a deadline, and its execution depends on
the availability of specific resources. The resource scheduler
model schedules resource-requiring tasks by managing the
status and owner of a resource according to a scheduling
policy. Once a configuration of products is formulated from
a PFM, the properties of tasks and resource schedulers in-
cluded by the configuration are instantiated and a scheduling
unit model composed of the tasks and the scheduler models
is checked against properties from the same PFM. It repeats
until all possible configurations of the PFM are checked.

The properties to check are also extracted from the PFM
and translated to CTL formulae. They are analyzed with
Uppaal MC and Uppaal SMC. These analyses would return
either a “Yes/No” answer or a probability distribution when
Uppaal SMC is used. It can also extract specific traces from
the system behavior if it does not satisfy a property.

4.1 Preemptive Task Model
The scheduling units that we consider in this paper are

preemptive, so that the execution of a task can be inter-
rupted by other tasks according to a scheduling policy. Pre-
emption is implemented using stopwatch clocks in SWA mod-
els and it is known that the model-checking of SWA is unde-
cidable [2]. However, preemption is one of the main features
of real-time tasks. Our solution is to use SMC to check SWA
models in order to guarantee the termination of the analysis
of preemptive scheduling units. Figure 9 shows the feature

5

Figure 9: A SWA task model for a family of tasks

behavioral model of a real-time task with preemption. This
SWA model refines the basic model presented in Figure 2,
inspired by the work in [10]. We have extended this model
with variables that encode the enabling, disabling or valua-
tion of the features.

The SWA task model in Figure 9 is a generic model that
can be configured to execute any configuration of task pro-
ducible from the PFM. It captures the behavior of the task
after the feature variables have been configured at initial-
ization. Several behaviors are then possible depending on
the value of the feature variables. For instance, the location
DetermineFeatureInitOffset has two out-going transitions: one
to DlyOffset, and the other to DetermineFeaturePrdOffset. The
transitions are labeled with a guard that distinguishes a fea-
ture and the property of a task is determined by a set of en-
abled guards. Thus, the transition guard tfeature[tid].f ioffset

is set to true if the feature InitOffset is included, but set to
false when the feature is excluded. The other feature vari-
ables are tfeature[tid].f poffset, tfeature[tid].f deadline and tfea-

ture[tid].f prd are associated to the features PeriodOffset, Dead-

line, and Period, respectively.
After the initialization phase, the task eventually reaches

a location that corresponds to the execution of the task. The
location ExecutingNoDeadline does not consider a deadline, on
the contrary to location Executing, that allows to reach loca-
tion MissedDeadline if the deadline is missed.

While executing, the task may be preempted by the re-
source scheduler. The preemption is implemented by a stop-
watch clock t et[tid] that can stop and resume. It represents
the remaining execution time of the task tid and it should
progress only when the CPU resource is available to the task.
This stopwatch t et[tid] is constrained by an invariant that is
associated with a function isSched(). The preemption mech-

anism is as follows: when the task must be preempted, the
function isSched() is manipulated by the scheduler such that
it returns 0, which indicates that the resource is no longer
available to the running task, and then the clock t et[tid]

stops. When the resource is available again, the function
isSched() returns 1, and then the clock t et[tid] resumes its
progress. Finally when the execution is completed, the task
reaches the location JobDone and awaits the next period.

We present in Appendix A a detailled PFM of a real-time
task, and the feature behavioral models for real-time re-
sources and schedulers

5. EVALUATION
This section presents results of analyzing the SPL of Fig-

ure 7. Using Uppaal MC we check the schedulability of the
tasks and deadlock freedom as well. Uppaal SMC is used to
estimate the worst-case execution time of tasks, individually.

In addition to the feature behavioral models of tasks and
resources, we provide a configuration template that gener-
ates configurations of real-time systems out of a given PFM
before the execution of the system. A configuration tem-
plate simulates the non-deterministic decision process pre-
sented in Section 3 and selects features from a PFM in a
non-deterministic way to make a configuration of the sys-
tem under analysis

5.1 Analysis of the Running Example
In this section, we present the analysis results of Figure 7.

The running example of Figure 7 has only 2 tasks and no
constraints over configurations. The feature Task1 has 6 con-
figurations, the feature Task2 has 12 configurations, and the
feature CPU1 has 4 configurations. SS has 24 configurations
without Task2, and 288 configurations with Task2.

Table 1: Timing analysis results for the SPL in Figure 7

Feature Query for Property Results Time
SS A[] not deadlock Yes 28.43s

Task1 E[�10000;100](max:t rspt[1]) 6.80 3.22s
Task2 A[] (tstat[2].status ! � MISSDLINE) Yes 29.85s

Table 1 shows the results of analyzing the properties in-
cluded in the SPL. First, the property of SS “Not Deadlock”
is formulated as the CTL query“A[] not deadlock”stating that
the system is deadlock-free. The property is proven to hold
in the system. Second, the schedulability of Task2 is ana-
lyzed. The CTL query, “A[] (tstat[2].status ! � MISSDLINE)”,
is used as a specification, meaning that the state variable
tstat[2].status can never be the same as “MISSDLINE” while
the system is running. Uppaal MC verified that Task2 never
misses the deadline. Third, we analyzed the performance,
i.e. the response time of a task, of configurations from the
SPL. The property RT<=7 upon Task1 in the SPL is repre-
sented by a SMC query, E[�10000;100](max:t rspt[1]), requir-
ing Uppaal SMC to compute the average of the maximum
value of t rspt[1] for 10,000 simulation times by 100 simula-
tion rounds.

Uppaal SMC produces a probability distribution, as the
answer to the query, shown in Figure 10. It shows that the
response times of the task is at most 6.80 time units during
the simulation and validates that the worst-case response
time of Task1 is less than 7.

In Appendix B we present the analysis results of another

6

Figure 10: Probability distribution of Task1’s response time

case-study containing 5 real-time tasks and 2 resource sched-
ulers.

6. RELATED WORK
Numerous works addressed the problem of model checking

a family of products and considered various kinds of proper-
ties including structural or behavioural ones [4, 5, 12–15, 19,
22–24, 26, 27]. Model checking an SPL requires a formalism
to encode properties that have to be checked [27]. Numerous
approaches rely on computation tree logic (CTL) [12,19] or
linear temporal logic (LTL) [12, 23, 24, 26]. Apel et al. [4]
model temporal safety properties. Asirelli et al. [5] propose
a branching-time temporal logic. Cordy et al. [15] utilize
timed CTL, an extension of CTL with support for model-
ing real-time properties on FTS. This paper, in contrast,
specifically considers schedulability aspects and proposes to
leverage formal techniques for verifying a family of prod-
ucts. Moreover, we can verify the CTL properties of all the
products in one step. Our framework offer means to model
variability (through an extension of feature model) and au-
tomated translations to Uppaal and Uppaal SMC for the
verification of schedulability properties.

One of the work closely related to this paper is Sabouri
et al. [22]. The authors proposed an SPL framework for
scheduling units on the application level, in which schedu-
lability is verified by Uppaal using modular schedulability
analysis. In contrast with [22], we focus on the platform-
level of the scheduling units. Furthermore we consider not
only non-preemptive scheduling units, but also preemptive
scheduling units. The verification process combines Uppaal
MC and Uppaal SMC (hence supporting probabilities).

The verification and validation of scheduling systems us-
ing Uppaal is inspired by [10], where a hierarchical schedul-
ing component is specified with timed automata and stop-
watch automata. In this paper, we address the problem
of verifying a family of scheduling systems. We thus have
to adapt at the specification and reasoning level the for-
malisms and techniques to take variability into account. We
modify the model of the scheduling units so that features of
the system can be selected and deselected. Our framework
allows practitioners to specify variability and benefit from
advanced reasoning support.

The formalism of feature models in this paper relies on
the basic and classical constructs of [1, 7]. Our extension
of FM was inspired by Kang et al. [20] that criticizes the
existing feature model by saying that it often specifies one
or more concerns of SPL in one FM. Related to the quality
of an SPL, they proposed an attribute-based feature model
where only qualities of products are separately given as a
FM. However, such a representation makes it hard to explic-

itly figure out the relationship between a feature and the
associated quality attributes (i.e. properties). For this rea-
son, this paper extended FM with the related properties so
that a verification property is associated to a feature in one
FM through specific operators.

7. CONCLUSIONS
SPLE aims to provide efficient engineering solutions for

building multiple products that share common features. This
paper proposed a formal framework dedicated to the verifi-
cation of SPLs that should satisfy schedulability properties.

Specifically, we proposed a new formalism for variabil-
ity modeling, called PFM, to define feature models together
with feature properties, and defined the notion of product
condition that represents customer’s product requests. We
formally defined the semantics of PFM so that the SPL mod-
eled in the PFM can automatically generate valid configu-
rations in compliance with customer’s requests. In order to
analyze the configured products against feature properties,
we proposed behavioral models that capture the features
of real-time scheduling units defined in the PFM. We then
showed how a set of scheduling units in an SPL specifica-
tion can be automatically verified against the set of required
properties by leveraging efficient model checking methods.
Throughout the paper we illustrated the formal framework
with a family of scheduling units and showed the applicabil-
ity and efficiency of our techniques.

As future work we plan to investigate the scalability of
our proposal w.r.t. large, variability-intensive scheduling
systems. We also want to include a wider range of schedu-
lability properties in our verification process.

8. REFERENCES
[1] M. Acher, P. Collet, P. Lahire, and R. B. France.

Familiar: A domain-specific language for large scale
management of feature models. Science of Computer
Programming (SCP), 78(6):657–681, 2013.

[2] R. Alur, C. Courcoubetis, N. Halbwachs, T. A.
Henzinger, P.-H. Ho, X. Nicollin, A. Olivero,
J. Sifakis, and S. Yovine. The algorithmic analysis of
hybrid systems. Theoretical Computer Science,
138:3–34, 1995.

[3] R. Alur and D. L. Dill. A theory of timed automata.
Theoretical Computer Science, 126(2):183–235, 1994.

[4] S. Apel, A. v. Rhein, P. Wendler, A. Grösslinger, and
D. Beyer. Strategies for product-line verification: Case
studies and experiments. In Proceedings of the 2013
ICSE, ICSE’13, pages 482–491, 2013.

[5] P. Asirelli, M. ter Beek, A. Fantechi, and S. Gnesi. A
compositional framework to derive product line
behavioural descriptions. volume 7609 of LNCS, pages
146–161, 2012.

[6] P. Asirelli, M. H. ter Beek, S. Gnesi, and A. Fantechi.
Formal description of variability in product families.
In SPLC’11, pages 130–139, 2011.

[7] D. Batory. Feature models, grammars, and
propositional formulas. In Proceedings of the 9th
International Conference on Software Product Lines,
SPLC’05, pages 7–20, 2005.

[8] G. Behrmann, A. David, K. G. Larsen, J. H̊aakansson,
P. Pettersson, W. Yi, and M. Hendriks. UPPAAL 4.0.

7

In Third International Conference on the Quantitative
Evaluation of Systems, QEST’06, pages 125–126, 2006.

[9] D. Benavides, S. Segura, and A. Ruiz-Cortes.
Automated analysis of feature models 20 years later: a
literature review. Information Systems, 35(6), 2010.

[10] A. Boudjadar, A. David, J. H. Kim, K. G. Larsen,
M. Mikucionis, U. Nyman, and A. Skou. Hierarchical
scheduling framework based on compositional analysis
using uppaal. In FACS 2013, volume 8348 of LNCS,
pages 61–78. Springer, 2013.

[11] R. Braga, O. Trindade Junior, K. Castelo Branco,
L. Neris, and J. Lee. Adapting a software product line
engineering process for certifying safety critical
embedded systems. In Computer Safety, Reliability,
and Security, volume 7612 of LNCS, pages 352–363.
Springer, 2012.

[12] A. Classen, M. Cordy, P. Schobbens, P. Heymans,
A. Legay, and J. Raskin. Featured transition systems:
Foundations for verifying variability-intensive systems
and their application to LTL model checking. IEEE
Trans. Software Eng., 39(8):1069–1089, 2013.

[13] A. Classen, P. Heymans, P.-Y. Schobbens, A. Legay,
and J.-F. Raskin. Model checking lots of systems:
efficient verification of temporal properties in software
product lines. In ICSE’10, pages 335–344. ACM, 2010.

[14] M. Cordy, P. Schobbens, P. Heymans, and A. Legay.
Beyond boolean product-line model checking: dealing
with feature attributes and multi-features. In 35th
ICSE, ICSE ’13, pages 472–481, 2013.

[15] M. Cordy, P.-Y. Schobbens, P. Heymans, and
A. Legay. Behavioural modelling and verification of
real-time software product lines. In Proceedings of the
16th International SPLC - Volume 1, SPLC ’12, pages
66–75. ACM, 2012.

[16] A. David, K. Larsen, A. Legay, M. Mikučionis, and
D. Poulsen. Uppaal smc tutorial. International
Journal on Software Tools for Technology Transfer,
pages 1–19, 2015.

[17] A. David, K. Larsen, A. Legay, M. Mikučionis,
D. Poulsen, J. van Vliet, and Z. Wang. Statistical
model checking for networks of priced timed
automata. In U. Fahrenberg and S. Tripakis, editors,
Formal Modeling and Analysis of Timed Systems,
volume 6919 of LNCS, pages 80–96. Springer Berlin
Heidelberg, 2011.

[18] V. Ganesh. Decision Procedures for Bit-vectors,
Arrays and Integers. PhD thesis, Stanford, CA, USA,
2007. AAI3281841.

[19] J. Greenyer, A. Molzam Sharifloo, M. Cordy, and
P. Heymans. Features meet scenarios: modeling and
consistency-checking scenario-based product line
specifications. Requirements Engineering,
18(2):175–198, 2013.

[20] K. Kang and H. Lee. Variability modeling. In Systems
and Software Variability Management, pages 25–42.
Springer, 2013.

[21] G. Norman, D. Parker, and J. Sproston. Model
checking for probabilistic timed automata. Formal
Methods in System Design, 43(2):164–190, 2013.

[22] H. Sabouri, M. Jaghoori, F. de Boer, and R. Khosravi.
Scheduling and analysis of real-time software families.
In Computer Software and Applications Conference

(COMPSAC), 2012 IEEE 36th Annual, pages
680–689, July 2012.

[23] H. Sabouri and R. Khosravi. Modeling and verification
of reconfigurable actor families. J. UCS,
19(2):207–232, 2013.

[24] I. Schaefer, D. Gurov, and S. Soleimanifard.
Compositional algorithmic verification of software
product lines. In Formal Methods for Components and
Objects, volume 6957 of LNCS, pages 184–203. 2012.

[25] R. F. Scheidt, K. Schmidt, G. M. Pessoa, M. A. Viera,
and M. Dantas. A software product line approach to
enhance a meta-scheduler middleware. Journal of
Physics: Conference Series, 341(1):012030, 2012.

[26] M. H. ter Beek, A. L. Lafuente, and M. Petrocchi.
Combining declarative and procedural views in the
specification and analysis of product families. In
Proceedings of the 17th SPLC Co-located Workshops,
SPLC ’13 Workshops, pages 10–17. ACM, 2013.

[27] T. Thüm, S. Apel, C. Kästner, I. Schaefer, and
G. Saake. A classification and survey of analysis
strategies for software product lines. ACM Comput.
Surv., 47(1):6:1–6:45, June 2014.

8

APPENDIX
A. FAMILIES OF REAL-TIME

COMPONENTS
A SPL of real-time scheduling units and its behavior model

are designed to encompass representative features and prop-
erties of real-time system components. Put simply, a family
of scheduling units consists of a family of tasks and a family
of resources. The behavior of the SPL of scheduling units is
captured by a model composed of a behavior model of the
family of tasks and a behavior model of the family of re-
sources. Figure 11 shows a PFM of real-time tasks featured
with representative real-time features and properties.

Figure 11: PFM of a real-time task

The task behavior model of Figure 9 is designed to en-
compass all the features and properties of the task family of
Figure 11.

A.1 Feature Behavioral Model of Resources

Figure 12: PFM of a real-time resource

Figure 12 shows PFMs of resources of real-time systems.
A resource always comes along with a scheduler observing
a scheduling policy. The owner of a resource can change
even though the current owner hasn’t yet finish using it.
A resource can have a queue where the resource-requesting
tasks wait for the use of it.

Figure 14: EDF scheduler

The feature behavioral model of an SPL resource is com-
posed of a resource queue and a resource scheduler. The re-
source queue is realized with the“typedef”construction from
Uppaal’s specific language, as shown in Listing 1. The re-
source scheduler model is constructed with a TA and C-style
function definition, as shown in Figure 12.

Listing 1: Resource queue

typede f s t r u c t {
p r i a r r l eng ; % The length o f queue
t i d a r r qmem[t i d t] ; % The member o f ta sk s
} queue t ;
queue t rq [p i d t] ; % Resource queue

Listing 1 shows the resource queue model implemented
with a “typedef” construction. The variable leng denotes the
length of a queue. The array qmem sorts the identities of
the jobs requesting the resource according to their priori-
ties. A resource is instantiated by the declaration of the
corresponding queue variable (rq[pid t]), where pid t is an ar-
ray of resources.

Listing 2: Resource feature

typede f s t r u c t {
bool a c t i v e ; % Usab i l i t y
bool preemptive ; % Preemptiveness
s c h edpo l i c y t sp ; % Schedul ing po l i c y
} p r o c e s s o r t ;

The feature of resources is implemented by using the “type-
def” construction, as shown in Listing 2. The availability of
the resource is indicated by a Boolean variable active. The
preemptability of the resource is realized by a Boolean vari-
able preemptive. A specific scheduling policy is associated
with the resource by the variable sp.

A.2 Feature Behavioral Model of Schedulers
To share a resource between several tasks a scheduling

mechanism is needed. This scheduling mechanism decides
according to a scheduling policy at each instant which task
is allowed to exploit the resource. Figure 14 shows the TA

model of the EDF (Earliest Deadline First) resource sched-
uler, which sorts a set of tasks according to the slack time,
i.e. the remaining time to a deadline. In a similar way, dif-
ferent types of resource scheduler, Fixed-Priority and FIFO,
are modeled with TA [10].

B. A CASE STUDY
To see the feasibility of our verification capability, we con-

duct a further case study, as shown in Figure 13, where a

9

Figure 13: PFM of scheduling units with 5 tasks

Table 2: Constraints of the SPL of Figure 13

ID Constraints
c1 Task1^ Task2toCPU1.P reempt � false
c2 Task1^ Task2toCPU1.P reempt � true
c3 Task1^ Task2 Ñ pTask1.P � 25^ Task1.P reemp � Noq
c4 Task1^ pTask2_ Task3q Ñ pTask1.P � 30^ Task1.P reemp � Noq
c5 Task1 ^ ppTask2 ^ Task3 ^ Task4q _ pTask3 ^ Task4 ^ Task5qq Ñ

pTask1.P � 35^ Task1.P reemp � yesq
c6 Task5 Ñ Task2 � true
c7 Task2 ^ Task1.P � 30 Ñ pTask2.P � 45 ^ Task2.deadline � false ^

Task2.P reempt � falseq
c8 Task2 ^ Task1.P 30 Ñ pTask2.P � 50 ^ Task2.P � Task2.D ^

Task2.P reempt � falseq
c9 Task2 ^ Task1.P ¤ 35 Ñ pTask2.P � 55 ^ Task2.P � Task2.D ^

Task2.P reempt � trueq
c10 Tasl2 Ñ Task3 � false
c11 CPU1 Ñ Task3 � true
c12 Task3 ^ Task1.P ¤ 25 Ñ Task3.P � 55 ^ Task3.deadline � flase ^

Task3.P reempt � true
c13 Task3 ^ Task1.P ¤ 35 Ñ Task3.P � 57 ^ Task3.deadline � flase ^

Task3.P reempt � true
c14 Task3 ^ Task1.P ¥ 35 Ñ Task3.P � 60 ^ Task3.D � Task3.P ^

Task3.P reempt � true
c15 Task5 Ñ Task1.P ¤ 25 Ñ Task5.P � 90 ^ Task5.deadline � false ^

Task5.P reempt � true
c16 Task5 Ñ Task1.P ¤ 35 Ñ Task5.P � 95 ^ Task5.D � Task5.P ^

Task5.P reempt � true

SPL of scheduling units is composed of 5 tasks and 2 resource
schedulers with 16 constraints. We checked the schedulabil-
ity of 4 hard real-time tasks and estimated the worst-case
response times of some of the tasks.

Table 3 shows the results of the analysis. We analyzed
this model using Uppaal MC and Uppaal SMC on Intel
4-Core CPU 2.90GHz with 8 GB Memory in Window OS 64
Bits.

The first line of Table 3 shows that the system is free
from deadlock. The fourth line shows that no task misses
the deadline. The last line is the result returned by Uppaal

Table 3: Timing analysis results for the SPL of scheduling
units with 5 tasks with 16 constraints

Feature Query for Property Results Time
SS A[] not deadlock Yes 25,322.8 s

Task1 E[�10000;100](max:t rspt[1]) 66.6 0.28s
Task4 E[�10000;100](max:t rspt[4]) 71.75 0.31s
SS A[] not miss deadline Yes 25,134.51 s
SS Pr [<=1000000] <>

miss deadline

[0,0.0199955] 302.51 s

SMC, which shows that the probability of missing the dead-
line of tasks is between 0 and 0.0199955 with the confidence
of 0.99. It shows that even though a SPL of a preemptive
scheduling system cannot be checked by a MC technique,
SMC can verify the system with a quantified analysis result
withs a limited confidence.

10

