N

N

OCamlDoom: ML for 3D action games

Francois Pessaux

» To cite this version:

Frangois Pessaux. OCamlDoom: ML for 3D action games. ACM SIGPLAN Workshop on ML, Sep
1998, Baltimore, United States. hal-01241394

HAL Id: hal-01241394
https://hal.science/hal-01241394
Submitted on 10 Dec 2015

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://hal.science/hal-01241394
https://hal.archives-ouvertes.fr

OCamlDoom: ML for 3D action games

Francois Pessaux
INRIA Rocquencourt
Francois.Pessaux@inria.fr

Abstract

This paper describes a 3D graphics engine with texture map-
ping for Doom-style computer games entirely written in Ob-
jective Caml. This work demonstrates the applicability of
ML for interactive computer graphics.

1 Introduction

The traditional area of application for ML is symbolic pro-
cessing: theorem proving, compilers, ... It has been claimed
that ML is ill-suited to other areas by lack of speed and ac-
cess to low-level machine features. Recent work on network
protocols implemented in ML [1, 4] has refuted this claim.
In this paper, we attack another stronghold of C (and even
assembly language) programming: realtime 3D graphics as
found in action computer games such as ID Software’s infa-
mous “Doom”.

We describe a 3D graphics engine with texture mapping
entirely written in Objective Caml. The purpose is twofold:
first, give a tutorial introduction to the main algorithms used
in this kind of graphics engines; second, study the adequacy
of ML for such applications. We show that ML’s datatypes
and recursive functions are a natural match for those algo-
rithms. We also study the performances obtained with the

Objective Caml compiler and compare them against those
of a C implementation of the same algorithms. The Caml
implementation delivers approximatively 75% of the perfor-
mance of the C implementation, and achieves a highly re-
spectable frame rate of 100 frames per second on a 333 Mhz
Pentium II'.

The implementation described in this paper is not state-
of-the-art: it is clearly not optimized as it should be in order
to make a real game. More powerful algorithms exists to get
a more realistic rendering, but are too complex for a tutorial
introduction. Finally, we only deal with the rendering of the
scenery, but not with sprites, ballistic aspects, nor sound.
Still, the model we talk about is a good starting point before
going deeper in 3D graphics programming. . .

The remainder of this paper is organized as follows. We
first introduce the basic idea behind Doom-like engines. Then
we will inspect the core data structure of the renderer, i.e
the BSP tree, and see how it can be implemented in ML.
In section 3 we will go deeper in the rendering mechanism
to understand how the view is built before being displayed.
Section 4 shows performance figures and compare them with
the C version of the same program. Section 5 discusses pos-
sible enhancements to make the program more efficient.

2 Basics of pseudo-3D rendering

For performance reasons, games such as Doom do not per-
form full 3D rendering, but restrict themselves to a particu-
lar class of models that we call pseudo-3D. In these models,
the virtual world where players move is represented as a
2-dimensional map viewed from above, with the third di-
mension (the height) added afterwards. For instance, here
is how a simple rectangular room is represented:

125 to 30 frames per second is generally considered acceptable, as
it corresponds to TV-quality animation.

<—— Line

U U

\ Vertex

Such a room, also called a sector, is composed of several
vertices (4 in our example) connected by oriented lines, also
called linedefs. These lines define the walls of the room
where the player moves. The height is given as a separate
attribute of the sector.

To display this room on the screen, each linedef is pro-
jected onto the player’s field of vision, according to its posi-
tion in space. Because a linedef represents in fact a surface
of constant height, once projected on the plane representing
the visible part of the space, it leads to a simple polygon.
(This is the reason why these graphics engines are called
polygon-based renderers.)

Field of vision extremity

Wall rendered
on the screen

Polygon

Eye to draw

Plane
representing
screen

Screen

Field of vision extremity

Before going deeper in the projection-rendering process,
let us address the problem of knowing which walls are visi-
ble from a specific position. This problem is important for
two reasons. First, it conditions the correct rendering of
overlapping walls: we draw walls starting by those that are
closest to the player, and never drawing over a wall that has
already been drawn. This way, we can stop rendering as
soon as the screen is filled; this would not be possible with
a simple painter algorithm, which forces to draw all walls.
Second, we avoid computing and displaying walls that lie
outside of the player’s field of vision.

To address this issue, we represent the scenery by a bi-
nary space partitioning (BSP) tree. This is a static data
structure computed at the time where the virtual world is
designed, and saved in the file describing that world.

2.1 The BSP tree

A BSP tree represents a recursive, hierarchical partitioning,
of a n-dimensional space. In our case, the space we want to

partition is the map of the virtual world. Hence, our space’s
dimension is 2, and we will partition it with hyperplanes
that are 1-dimensional objects, that is, lines.

The process for building such a tree is rather simple:
choose a partition line I, and determine the set £ of linedefs
in the map which lie on the the left of I,, as well as the
set R of linedefs in the map which lie on the the right of
lp. Recursively represent £ and R by BSPs. Finally, create
a node, labeled by l,, with left and right children the two
BSPs representing £ and R.

Consider the world depicted above. It is composed of
two sectors. Note that on the junction of these two sectors,
there are two linedefs of opposite direction, not only one.
This is because a sector must be a closed polygon.

To decompose this world into a BSP, we choose a par-
tition line along the linedef 4. Hence, the top node of the
BSP tree is labeled by 4, the left child represents the set
containing linedefs {0; 1;2; 3}, and the right child represents
{5;6;7;8}.

In some cases, the chosen partition line can cross some
linedefs. Hence, it is impossible to determine whether these
linedefs are on the left or on the right of the partitioning
line. For instance, assume we partition the world above
along linedef 3. Then, segment 6 is neither on the left nor
on the right of the partition line:

v

In this case, we split the crossed linedefs in two by adding
a new vertex at the intersection point. Hence, the left child
of the top node (labeled 3) is {6';7;8} and the right child is
{0;1;2;3;4;5;6}.

Note that the choice of the partition line strongly in-
fluences the shape of the tree. In some applications, the
criterion for choosing partition lines can be very important.
For the sake of simplicity, in our case, we choose partition
lines at random among the linedefs of the world.

To complete the description of the algorithm, we need a
criterion to know when to stop partitioning. This criterion
depends on the intended use of the BSP. For example, one
can decide to stop when a limit is reached on the number of
linedefs contained in a leaf, or the tree depth, or the number
of splits, or the number of leaves, ...In our application, we
stop partitioning when:

e all linedefs in a leaf belong to the same sector,
e and all linedefs in a leaf form a convex polygon?.

The first point makes sure that all linedefs in a leaf have
the same height (because they belong to the same sector,
and the height is an attribute of the sector).

The second point makes sure that when drawing walls
in a leaf, we can draw them in any order without risk of
overlapping. To see that this is not the case when the poly-
gon is not convex, consider the following example, where the
viewing direction is the bold arrow.

3

If we draw linedef 1 before linedef 0, the view looks cor-
rect, but in the inverse order the closer linedef 0 is masked
by linedef 1 and the result is visually wrong.

Now that we know how to build a BSP tree, let us discuss
its relevance to our graphics engine. The first problem was to
perform hidden surface removal, i.e to display closest walls
first. To achieve this, all we need to do is walk the tree in
the following way:

1. Determine player’s position
2. If the tree is a leaf, then display each lines of this leaf

3. If the tree is a node, classify the player’s position ac-
cording to the partition line (i.e determine whether he
is on its left or on its right).

e If on the left, then recurse on left subtree, display
partition line, recurse on the right subtree.

e If on the right, then recurse on right subtree, dis-
play partition line, recurse on the left subtree.

e If on the partition line, choose to proceed like one
the previous cases.

2In some cases, it is possible that there is not enough linedefs at a
leaf to form a closed polygon. We also accept non-closed polygons as
long as they are “convex” in the following sense: the angle between
consecutive linedefs I, and /1 must be < 180°. This can easily be
determined by the sign of a dot product.

It is easy to convince oneself that if two walls overlap viewed
from the player’s standpoint, then the closer one will be
visited first.

Now we still have to address the problem of determining
which walls are in the player’s field of vision. To handle
this in a simple but effective way, we add two bounding
boxes (axis-aligned) at each node of the tree, one for each
subtree. These boxes contain coordinates of the minimal
rectangle bounding linedefs of the left child (respectively
right child). So, before recursing in a subtree, we simply
check the player’s field of vision against the bounding box.
This can be achieved quickly and with a sufficient precision
using quadrants [7]. To achive this issue, we split the space
(let’s assume it is centered on the player’s position) in four
parts along the and y axis. Then we consider the direction
of the leftmost ray in the player’s field of vision according to
the direction (by block of 90°) the player is currently looking
at.

If we only considerer that the user’s cone of vision is
the central ray pointing toward the direction the player is
looking at, then the following figure shows conditions on
relations between player’s position and bounding box coor-
dinates to consider this bounding box can be visible (i.e the

ray can intersect the box).
Y
PlayerX > x1 PlayerX <x2
PlayerY <y2 PlayerY <y2

(x1,y2) (x2,y2) (x1,y2) (x2,y2)

Ly e)

; N X
(xL,y2) -~ ’) Tl (x2,y2)
(x1,y1) (x2,y1) | (x1,y1) (x2,y1)

PlayerX > x1 PlayerX < x2
PlayerY >yl PlayerY >yl

In fact, the player’s cone of vision is wider that a simple
ray. We assume that the angle of this cone is lower than
180°. By considering the leftmost extremity of this cone, we
make sure that all rays in this cone won’t cross a quadrant
on the left of the one player is looking at. But, depending
on the real angle where the player is looking, some rays of
the cone can travel into the quadrant just on the right (not
more because we assumed the cone to be lower than 180°).
Then to be correct, the test of visibility must not perform,
for each quadrant, the two tests given in each part of the
figure, but rather the only test common to the quadrant and
the quadrant immediately on its right.

So this test of visibility is an approximation which elim-
inate, for one quadrant, all bounding boxes lying on the
other semi-plane than the one defined by the quadrant and
the one immediately on its right.

Hence, test visibility is performed by:

let is_right_visible playerX playerY
playerLeftAngle
(x1, y1, x2, y2) =
if (playerLeftAngle < 90.0)
then (playerX <= x2)
else
if (playerLeftAngle < 180.0)
then (playerY < y2)
else
if (playerLeftAngle < 270.0)
then (playerX >= x1)
else (playerY >= y1)

2.2 BSP tree structure

The BSP tree structure is elegantly described by the follow-
ing ML datatype:

type tree =
| Leaf of int list
| Node of node

and node = {

(* Label of partition line for the current node *)
partline : int ;

(* Bounding box for the left subtree *)
leftbbox : (float * float * float * float) ;
(* Left subtree : contains linedefs on *)

(* the right of the partition line *)
left : tree ;

(* Bounding box for the right subtree *)
rightbbox : (float * float * float * float) ;
(* Right subtree : contains linedefs on *)

(* the right of the partition line *)
right : tree

Note that linedefs are represented as integers, indices
into a global array; this makes it easier to save the structure
to disk.

The recursive function to walk down the tree in the order
described in section 2.1 is also easily written in ML:

let rec front_to_back_tree_parsing tree =
if not (screen_full ()) then
match tree with
| Leaf lines -> List.iter draw_lidenef lines
| Node nd ->
(¥ Get partition line start point *)
let vl = lines.(nd.partline).start
(¥ Get partition line end point *)
and v2 = lines.(nd.partline).stop in
match get_point_position !playerX !playerY
vi.x vl.y v2.x v2.y with
| P_Left —>
if is_left_visible nd.leftbbox

then front_to_back_tree_parsing nd.left ;

draw_linedef nd.partline ;
if is_right_visible nd.rightbbox
then front_to_back_tree_parsing nd.right
| P_Right | P_On ->
if is_right_visible nd.rightbbox

then front_to_back_tree_parsing nd.right) ;

draw_linedef nd.partline ;
if is_left_visible nd.leftbbox
then front_to_back_tree_parsing nd.left)

3 More on rendering

We now know how linedefs are passed to the renderer. It’s
now necessary to render individually each linedef as a wall
on the screen.

The first step is to transform linedef coordinates into the
player’s coordinate system. This is simply achieved by a
translation plus a rotation on the linedef’s vertices coordi-
nates. Then the linedef obtained has to be clipped in case
it would be behind the player.

At this point, we know that a part of the wall the linedef
represents is potentially visible. We need to project it on the
virtual plane representing the screen using a simple mech-
anism of perspective, in order to get horizontal coordinates
of this wall on the screen surface. We now know where this
wall will extend horizontally on the surface of the screen,
but we still need to clip against the player’s field (cone) of
vision to remove non visible parts (see following figure).

Y
View from above

(xsftart, ystart)

(new | xstart, new. _ysgérij

Eye

T e yen)

(new_xend, new_yend)

Surface of the screen

=T~
Focal distance

Once this is done, we know the horizontal extent of the
wall on the screen. Now the problem is to get the height
of this wall. This height can change along the wall because
of perspective effect. In fact, computing the height of the
starting and ending wall points is sufficient, a linear inter-
polation will give us the height in any point between.

The description above is sufficient for drawing plain walls
like those of a closed room. In the worlds we try to model,
it is possible to have two adjacent rooms, each sharing one
of its sides with the other. This corresponds to “doors” and
“windows” between rooms. In this case, the limit linedef
must not be drawn, otherwise it would look like the player
cannot walk from one room to the other. A solution could
be to check whether the linedef we want to draw is a two
sectors junction, and not to render it in this case. In fact,
this solution is not correct because our worlds can have two
adjacent sectors with different ceiling and/or floor altitude.
So in some cases the junction can look like a step on the
floor or on the ceiling (see the following figure).

Ceiling 1

Wall 3 - upper part

all 6 - main pant
Wall 4 wal 5

Wall 1 . Wwall 2
Ceiling 2

Wall 3 lower part

Floor 1

Screen column
Screen

For this reason each linedef contains 3 different textures,
the upper texture which is used if the wall shows a upper
visible part, the lower texture which is used if the wall shows
a lower visible part, and the main texture which is used to
paint the wall if it is plain (that is if it is not a junction be-
tween two sectors). We can notice that if a lower or upper
texture is needed, the main one is not used. This corre-
sponds to the case where the wall is a sector junction.

When lower and upper textures are used, instead of draw-
ing one plain wall, we need to draw two walls: the upper part
of the wall, and it lower part (see figure above). Of course,
one of this part can be null (even the two parts, in this case,
the wall is simply a junction between two sectors of same
ceiling and floor altitude).

Hence, from this description, we see that we need to com-
pute, for each wall, the vertical start and stop position of
each extremity of this wall (intermediate values are com-
puted by linear interpolation) before being able to really
draw it.

So, the linedef drawing routine in ML looks like:

let draw_linedef linedef =
(* Transform line extremities coords *)
(* into the viewer space system. *)
let (xstart, ystart) =
rotate_translate lines.(linedef).start in
let (xend, yend) =
rotate_translate lines.(linedef).stop in

(* Check if the wall is completely invisible *)
if (is_behind_us xstart) && (is_behind_us xend)
then ()

else

let (new_xstart, new_xend, new_ystart, new_yend) =

clip xstart xend ystart yend in
(* Project coords on the computer screen space *)
let scr_xstart = project new_xstart new_ystart in
and scr_xend = project new_xend new_yend in

(* Check if the wall is completely out of our *)
(* screen. In this case, do not compute anymore *)

if (scr_xstart = scr_sxend) || (scr_xend < 0)

||l (scr_xstart > screen_width) then ()
else
if linedef.maintx <> 255 then

add_wall new_xstart new_xend

scr_xstart scr_xend ;
else
begin

if linedef.uppertx <> 255 then
add_wall new_xstart new_xend
scr_xstart scr_xend ;
if linedef.lowertx <> 255 then
add_wall new_xstart new_xend
scr_xstart scr_xend
end

This pseudo code is a simplified version of the real code
implanted in OcamlDoom. We can see we took the con-
vention of 255 meaning “no texture used”. In the real im-
plantation, before calling add_wall, we need to compute a
few coefficients used for texture mapping, and vertical wall
extremities.

Displaying a wall (done by add_wall in the above pseudo-
code) consists in drawing it vertical line per vertical line on
all its visible length. Each time a vertical line is drawn in a
screen column, if this line totally fills the column, we mark
this column. If a column is already marked as filled, of
course, we don’t draw again on it (this is part of hidden face
removing). If a column is partially filled, we don’t mark it,
but we record which part is still unfilled.

A strong invariant of Doom-like worlds is that the un-
filled part of a wall is always a contiguous space comprised
between the bottom and the top of the screen. Hence we
only need to record two integers per column. Notice that
adding a wall also draw the ceiling (resp. floor) visible in
this column. Because of simplifications used in our engine,
floors and ceilings are not textured, so a simple plain vertical
line drawing routine is sufficient in this case.

3.1 Texture mapping

In order to get a more realistic rendering, we need to apply
textures on these walls. Several texturing techniques exist,
varying in quality and complexity. We simply choose to tile
an arbitrary bitmap. First we need to know which column
of the bitmap maps on each column of the wall. Then,
according to the distance from the player to the wall we
can determine factors for scaling vertically this column to
make it fit the vertical dimension of the wall. Hence, the
vertical line drawing consists, for each point of the wall on
the screen, in fetching the color of the source point in the
texture and to write it on the screen.

Texture

Wall

let vertical_textured_line_draw column top bottom
hindex vindex vincr
current_bitmap

current_bitmap_height

current_bitmap_width
let index_start = (top * 320 + column)
and index_end = (bottom * 320 + column) in

let rec draw index vi =
if index < index_end then begin
let color =
current_bitmap. (((truncate vi)
mod current_bitmap_height)
* current_bitmap_width
+ hindex) in
String.unsafe_set double_buffer index color ;
draw (index + 320) (vi +. vincr)
end in
draw index_start !vindex

Because of restrictions on the world we model, each time
we draw a column for a wall, we can notice that for this
column then z coordinate in space remains constant. This is
the reason why such kind of engine is known to use constant
Z texture mapping.

3.2 Screen drawing

To avoid flicker while drawing, we prefer to build the view
image in an offline buffer and then blit this temporary image
in the video memory of the graphic card. This buffer is
a simple character string representing a 320x200 array of
points, with 8 bits per point (i.e 256 colors). Note that on
slow computers (i.e when building a frame view takes longer
than the time the video card needs to refresh the screen), it
can be useful to synchronize this blit with the end of video
refresh.

This low level access to the video hardware is done using
SVGALib under Linux. This library provides a set of C
primitives to manipulate SVGA video cards. We only need
three of those primitives: obtain the address of the video
memory; access the color table of the video card; and wait
for the end of screen refresh. The only other part of our
engine that is written in C is a simple “blit” function that
copies the ML string representing the off-screen buffer into
the video memory.

Note that a version running under X-Window also exists
and was used to extract the snapshots shown in this paper.
The amount of C code is the exactly the same; it only uses
X primitives instead of SVGALib primitives.

3.3 Editing worlds

Given the complexity of the data structures, it’s obvious
that world descriptions cannot be made by hand. For this
reason, we also developed a basic editor in Objective Caml,
using our CamlTK library [8]. This allows to enter world
description using mouse, windows and buttons. Besides this
editor, a BSP compiler also exists which takes as input the
world description and build the associated BSP tree. Be-
cause of the recursive structure of the tree, and its complex
data structure, a functional language with high level data
types such as ML is very attractive to write such a tool.

4 Performances

In this section, we compare the performances of our ML en-
gine with a C implementation of the same algorithms. The
C implementation is functionally equivalent to the ML ver-
sion, except that it handles only 64x64 bitmaps for textures,
while the ML version handles arbitrary bitmaps (GIF im-
ages). This allows to replace, in the C version, some modu-
los and multiplications by masks and shifts. To make com-
parision more precise, we patched the C engine in order to

simulate arbitrary sized bitmap (i.e we removed hardcoded
size constants and replaced shifts and mask by their corre-
sponding arithmetic operations). The ML implementation
is compiled by the Objective Caml 1.07 native-code com-
piler, with default settings. Array bound checking is not
globally turned off; we only used the “unsafe” version of ar-
ray access primitives in the vertical textured lines drawing
function. The C implementation is compiled with gcc -02.

To compare sources size, even if it is difficult to compare
a program written in two different language, we can say that
once comments and useless blank lines are removed the C
version is about 1000 lines of source, and the ML version is
about 700 lines of code. (Note that identifiers have roughly
the same names in both versions).

The main performance criterion is the frame rate, i.e
the number of screen images rendered per second, assuming
they are rendered continuously without intervening pauses.
The higher the frame rate, the smoother the animation.
The frame rate depends obviously on the complexity of the
scenery; the measures below are for a simple, but not trivial
scenery.

| Objective Caml | C
Pentium 166 Mhz 34 fps 47 fps
Pentium IT 333 Mhz 64 fps 81 fps

These figures show that the Caml version is competitive
with the C version, despite the fact that we use full ML
functionalities such as datatypes, lists and their iterators,
and recursion. On the Pentium II, Caml achieves 80% of
the performances of C.

Both the C implementation and the Caml implementa-
tion give visually satisfying animations, without perceptible
pauses or “hiccups”. A frame rate of 25 to 30 frames per
second is usually considered comfortable.

The first implementations (both in C and ML) used float-
ing point operations everywhere, for the sake of simplicity.
Profiling shows that about 80% of the running time is spent
in the vertical_textured_line_draw function shown above.
The inner loop of this function is executed approximately
once for each screen point, i.e 64000 times per frame. Exam-
ination of the assembly code generated by Objective Caml
and by GCC shows that by far the most expensive operation
in the inner loop is the truncate float-to-integer conversion.
This operation is extremely costly on the Intel x86 architec-
ture, as it involves changing the rounding mode of the FPU
to “truncate towards zero”, then performing the conversion,
then restoring the rounding mode. This takes a whopping
55 to 60 cycles on the Pentium II.

To address this bottleneck, we replaced floating-point
arithmetic by fixed-point arithmetic in the vertical line tex-
turing function (vertical_textured_line_draw). This leads
to a significant speed improvement of the engine as shown
by the following figures:

| Objective Caml | C
Pentium 166 45 fps 61 fps
Pentium IT 333 100 fps 125 fps

Garbage collection accounts for a very small part of the
execution time (less than 5%). This is because the renderer
allocates all data structures once and for all at initialization-
time. Most of the time is spent in the vertical textured line
drawing routine. The next most time consuming routine is
add_wall, i.e the one which computes the dimensions of each
wall on the screen and calls the vertical line drawing when
needed. The remainder of the renderer, and in particular
the traversing of the BSP tree, takes negligible time.

5 Possible enhancements

Of course, our engine is far from performances obtained with
the original Doom engine, and it is far from those needed by
a real game. But as we said previously it was not intended
to be a real game. It was just written to be understandable
by beginners, and to be a demonstration. To get a more
efficient engine, in both ML and C version, several enhance-
ments can be and should be done:

1. use of fixed arithmetic everywhere instead of floats,

2. tabulate trigonometric functions like sin, cos, tan, in-
stead of calling them each time we need them,

3. use fixed power of 2 as dimensions for textures, which
would lead to use masks and shifts instead of modulos,
multiplications and divisions,

4. explicitly share common sub-expressions while com-
puting data needed by the rendering.

To get a more impressive result, it could also be inter-
esting to add textures onto floors and ceilings. This compli-
cates the engine because floors and ceiling have to be drawn
as horizontal lines (not as vertical in the current description
of the algorithm). In this way, we keep the Z constant invari-
ant we noticed above. Hence, an intermediate structure has
to be used to record vertical lines making up the walls and
horizontal lines making up floors and ceiling. The difficult
part for building this structure lies in recording horizontal
runs for floors and ceiling; vertical runs for walls are com-
puted in the same way than we did before (we just record
them instead of drawing them on the fly).

A new texture mapper, more complex but more powerful
is also needed. We then have to use correct perspective tex-
ture mapping techniques. Schematically, for each screen pro-
jected polygon we want to texture, knowing a screen point
location, we must be able to recover its corresponding posi-
tion on the polygon in the space. Hence knowing how the
texture is applied on the polygon in the space, we can deter-
mine which point of this texture is used, and so which color
to use for this screen point. Because of constant Z invari-
ant, depending on wether we are drawing a vertical run or
an horizontal run, some computation can be extracted from
the inner loop of the mapper, hence reducing the amount of
time needed to texture one run.

A version of our renderer incorporating those enhance-
ments is currently under development.

6 Conclusion

Our OCamlDoom renderer demonstrates that ML can also
be used for interactive graphical applications, where response
time is an important factor and heavy computations are per-
formed in real time. For these applications, using sophisti-
cated data structures and algorithms is as important as raw
computing power in achieving good performances; what ML
loses in raw execution speed on numerical computations is
compensated by the ease with which it handles the complex
data structures.

On OCamlDoom, the Objective Caml native-code com-
piler delivers about three fourths of the performances of an
optimizing C compiler. This is consistent with the general
claim that good, modern functional compilers such as Objec-
tive Caml or GHC stay within a factor of two of C compilers.
The difference in execution speed is acceptable in practice,
and the time saved in debugging and coding can give ML

a great advantage. We have also implemented other graph-
ical applications in Caml: a real-time mouse driven image
“warper”, and several image processing algorithms. All of
them deliver entirely satisfactory performances.

References

[1] Edoardo Biagioni, Rober Harper, Peter Lee, and Brian
G. Milnes. Signatures for a Network Protocol Stack: A
Systems Application of Standard ML. Lisp and Func-
tional Programming, ACM Press, 1994.

[2] Matthew S. Fell. The unofficial DOOM specs, April 1994.
WEB: http://doomgate.cs.buffalo.edu/docs/FAQ/
DOOM.FAQ.Specs.html

[3] J. Foley, A. van Dam, S. Feiner, J. Huges Computer
Graphics Principles and Practice, second edition, 1990.
Addison-Wesley Publishing Company

[4] Mark Hayden. The Ensemble System, Cornell University
Technical Report, TR98-1662, January 1998.

[6] Xavier Leroy, Jérome Vouillon, and Damien Doligez. Ob-
jective Caml, INRIA 1998. Software and documentation
available at http://caml.inria.fr

[6] Francois Pessaux. BSP Trees pour la 3D Mappée,
Nov 1996. Available at http://pauillac.inria.fr/
~pessaux/bsparticle.html

[7] Francois Pessaux. Réalisation d’un moteur graphique en
pseudo-3D mappée, January 1997. Software and doc-
umentation available at http://pauillac.inria.fr/
~pessaux/engine.html

[8] Francois Pessaux and Frangois Rouaix, Projet Cristal.
The CamlTk interface, INRIA Rocquencourt. Software
and documentation available at http://caml.inria.fr/
~rouaix/camltk-readme.html

[9] Mel Slater. A Comparison of Three Shadow Volume Al-
gorithms, The Visual Computer, (1992), Vol. 9(1), 25-38.

[10] comp.graphics.algorithms newsgroup FAQ
Available at http://wuarchive.wustl.edu/graphics/
graphics/faq/comp.graphics.algorithms-faq

[11] Bsp Tree Frequently Asked Questions
http://reality.sgi.com/bspfaq/index.shtml

[12] The source code for Doom is now available on the WEB
(December 1997)
ftp://ftp.idsoftware.com/idstuff/source/
doomsrc.zip

More snapshots

