
HAL Id: hal-01241394
https://hal.science/hal-01241394v1

Submitted on 10 Dec 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

OCamlDoom: ML for 3D action games
François Pessaux

To cite this version:
François Pessaux. OCamlDoom: ML for 3D action games. ACM SIGPLAN Workshop on ML, Sep
1998, Baltimore, United States. �hal-01241394�

https://hal.science/hal-01241394v1
https://hal.archives-ouvertes.fr

OCamlDoom: ML for 3D ation games

Fran�ois Pessaux

INRIA Roquenourt

Franois.Pessaux�inria.fr

Abstrat

This paper desribes a 3D graphis engine with texture map-

ping for Doom-style omputer games entirely written in Ob-

jetive Caml. This work demonstrates the appliability of

ML for interative omputer graphis.

1 Introdution

The traditional area of appliation for ML is symboli pro-

essing: theorem proving, ompilers, . . . It has been laimed

that ML is ill-suited to other areas by lak of speed and a-

ess to low-level mahine features. Reent work on network

protools implemented in ML [1, 4℄ has refuted this laim.

In this paper, we attak another stronghold of C (and even

assembly language) programming: realtime 3D graphis as

found in ation omputer games suh as ID Software's infa-

mous \Doom".

We desribe a 3D graphis engine with texture mapping

entirely written in Objetive Caml. The purpose is twofold:

�rst, give a tutorial introdution to the main algorithms used

in this kind of graphis engines; seond, study the adequay

of ML for suh appliations. We show that ML's datatypes

and reursive funtions are a natural math for those algo-

rithms. We also study the performanes obtained with the

Objetive Caml ompiler and ompare them against those

of a C implementation of the same algorithms. The Caml

implementation delivers approximatively 75% of the perfor-

mane of the C implementation, and ahieves a highly re-

spetable frame rate of 100 frames per seond on a 333 Mhz

Pentium II

1

.

The implementation desribed in this paper is not state-

of-the-art: it is learly not optimized as it should be in order

to make a real game. More powerful algorithms exists to get

a more realisti rendering, but are too omplex for a tutorial

introdution. Finally, we only deal with the rendering of the

senery, but not with sprites, ballisti aspets, nor sound.

Still, the model we talk about is a good starting point before

going deeper in 3D graphis programming. . .

The remainder of this paper is organized as follows. We

�rst introdue the basi idea behind Doom-like engines. Then

we will inspet the ore data struture of the renderer, i.e

the BSP tree, and see how it an be implemented in ML.

In setion 3 we will go deeper in the rendering mehanism

to understand how the view is built before being displayed.

Setion 4 shows performane �gures and ompare them with

the C version of the same program. Setion 5 disusses pos-

sible enhanements to make the program more eÆient.

2 Basis of pseudo-3D rendering

For performane reasons, games suh as Doom do not per-

form full 3D rendering, but restrit themselves to a partiu-

lar lass of models that we all pseudo-3D. In these models,

the virtual world where players move is represented as a

2-dimensional map viewed from above, with the third di-

mension (the height) added afterwards. For instane, here

is how a simple retangular room is represented:

1

25 to 30 frames per seond is generally onsidered aeptable, as

it orresponds to TV-quality animation.

Line

Vertex

Suh a room, also alled a setor, is omposed of several

verties (4 in our example) onneted by oriented lines, also

alled linedefs. These lines de�ne the walls of the room

where the player moves. The height is given as a separate

attribute of the setor.

To display this room on the sreen, eah linedef is pro-

jeted onto the player's �eld of vision, aording to its posi-

tion in spae. Beause a linedef represents in fat a surfae

of onstant height, one projeted on the plane representing

the visible part of the spae, it leads to a simple polygon.

(This is the reason why these graphis engines are alled

polygon-based renderers.)

Polygon

Screen

to draw

Wall

Eye

Field of vision extremity

Field of vision extremity

Plane

representing

screen

Wall rendered

on the screen

Before going deeper in the projetion-rendering proess,

let us address the problem of knowing whih walls are visi-

ble from a spei� position. This problem is important for

two reasons. First, it onditions the orret rendering of

overlapping walls: we draw walls starting by those that are

losest to the player, and never drawing over a wall that has

already been drawn. This way, we an stop rendering as

soon as the sreen is �lled; this would not be possible with

a simple painter algorithm, whih fores to draw all walls.

Seond, we avoid omputing and displaying walls that lie

outside of the player's �eld of vision.

To address this issue, we represent the senery by a bi-

nary spae partitioning (BSP) tree. This is a stati data

struture omputed at the time where the virtual world is

designed, and saved in the �le desribing that world.

2.1 The BSP tree

A BSP tree represents a reursive, hierarhial partitioning,

of a n-dimensional spae. In our ase, the spae we want to

partition is the map of the virtual world. Hene, our spae's

dimension is 2, and we will partition it with hyperplanes

that are 1-dimensional objets, that is, lines.

The proess for building suh a tree is rather simple:

hoose a partition line l

p

and determine the set L of linedefs

in the map whih lie on the the left of l

p

, as well as the

set R of linedefs in the map whih lie on the the right of

l

p

. Reursively represent L and R by BSPs. Finally, reate

a node, labeled by l

p

, with left and right hildren the two

BSPs representing L and R.

0

1

2

3

4

5

6

7

8

Consider the world depited above. It is omposed of

two setors. Note that on the juntion of these two setors,

there are two linedefs of opposite diretion, not only one.

This is beause a setor must be a losed polygon.

To deompose this world into a BSP, we hoose a par-

tition line along the linedef 4. Hene, the top node of the

BSP tree is labeled by 4, the left hild represents the set

ontaining linedefs f0; 1; 2; 3g, and the right hild represents

f5; 6; 7; 8g.

In some ases, the hosen partition line an ross some

linedefs. Hene, it is impossible to determine whether these

linedefs are on the left or on the right of the partitioning

line. For instane, assume we partition the world above

along linedef 3. Then, segment 6 is neither on the left nor

on the right of the partition line:

0

1

2

3

4

5

6

7

8

In this ase, we split the rossed linedefs in two by adding

a new vertex at the intersetion point. Hene, the left hild

of the top node (labeled 3) is f6

0

; 7; 8g and the right hild is

f0; 1; 2; 3; 4; 5; 6g.

0

1

2

3

4

5

6

7

8

6’

Note that the hoie of the partition line strongly in-

uenes the shape of the tree. In some appliations, the

riterion for hoosing partition lines an be very important.

For the sake of simpliity, in our ase, we hoose partition

lines at random among the linedefs of the world.

To omplete the desription of the algorithm, we need a

riterion to know when to stop partitioning. This riterion

depends on the intended use of the BSP. For example, one

an deide to stop when a limit is reahed on the number of

linedefs ontained in a leaf, or the tree depth, or the number

of splits, or the number of leaves, . . . In our appliation, we

stop partitioning when:

� all linedefs in a leaf belong to the same setor,

� and all linedefs in a leaf form a onvex polygon

2

.

The �rst point makes sure that all linedefs in a leaf have

the same height (beause they belong to the same setor,

and the height is an attribute of the setor).

The seond point makes sure that when drawing walls

in a leaf, we an draw them in any order without risk of

overlapping. To see that this is not the ase when the poly-

gon is not onvex, onsider the following example, where the

viewing diretion is the bold arrow.

0 1

2

3

4

If we draw linedef 1 before linedef 0, the view looks or-

ret, but in the inverse order the loser linedef 0 is masked

by linedef 1 and the result is visually wrong.

Now that we know how to build a BSP tree, let us disuss

its relevane to our graphis engine. The �rst problem was to

perform hidden surfae removal, i.e to display losest walls

�rst. To ahieve this, all we need to do is walk the tree in

the following way:

1. Determine player's position

2. If the tree is a leaf, then display eah lines of this leaf

3. If the tree is a node, lassify the player's position a-

ording to the partition line (i.e determine whether he

is on its left or on its right).

� If on the left, then reurse on left subtree, display

partition line, reurse on the right subtree.

� If on the right, then reurse on right subtree, dis-

play partition line, reurse on the left subtree.

� If on the partition line, hoose to proeed like one

the previous ases.

2

In some ases, it is possible that there is not enough linedefs at a

leaf to form a losed polygon. We also aept non-losed polygons as

long as they are \onvex" in the following sense: the angle between

onseutive linedefs l

n

and l

n+1

must be � 180

o

. This an easily be

determined by the sign of a dot produt.

It is easy to onvine oneself that if two walls overlap viewed

from the player's standpoint, then the loser one will be

visited �rst.

Now we still have to address the problem of determining

whih walls are in the player's �eld of vision. To handle

this in a simple but e�etive way, we add two bounding

boxes (axis-aligned) at eah node of the tree, one for eah

subtree. These boxes ontain oordinates of the minimal

retangle bounding linedefs of the left hild (respetively

right hild). So, before reursing in a subtree, we simply

hek the player's �eld of vision against the bounding box.

This an be ahieved quikly and with a suÆient preision

using quadrants [7℄. To ahive this issue, we split the spae

(let's assume it is entered on the player's position) in four

parts along the x and y axis. Then we onsider the diretion

of the leftmost ray in the player's �eld of vision aording to

the diretion (by blok of 90

o

) the player is urrently looking

at.

If we only onsiderer that the user's one of vision is

the entral ray pointing toward the diretion the player is

looking at, then the following �gure shows onditions on

relations between player's position and bounding box oor-

dinates to onsider this bounding box an be visible (i.e the

ray an interset the box).

PlayerX < x2

PlayerY > y1PlayerY > y1

PlayerX > x1

PlayerX < x2

PlayerY < y2

PlayerX > x1

PlayerY < y2

(x1, y1)

(x2, y2)

(x2, y1)

(x1, y2)

(x1, y1) (x2, y1)

(x2, y2)(x1, y2)

(x1, y2) (x2, y2)

(x2, y2)(x1, y2)

(x1, y1)

(x1, y1) (x2, y1)

(x2, y1)

Y

Player
X

In fat, the player's one of vision is wider that a simple

ray. We assume that the angle of this one is lower than

180

o

. By onsidering the leftmost extremity of this one, we

make sure that all rays in this one won't ross a quadrant

on the left of the one player is looking at. But, depending

on the real angle where the player is looking, some rays of

the one an travel into the quadrant just on the right (not

more beause we assumed the one to be lower than 180

o

).

Then to be orret, the test of visibility must not perform,

for eah quadrant, the two tests given in eah part of the

�gure, but rather the only test ommon to the quadrant and

the quadrant immediately on its right.

So this test of visibility is an approximation whih elim-

inate, for one quadrant, all bounding boxes lying on the

other semi-plane than the one de�ned by the quadrant and

the one immediately on its right.

Hene, test visibility is performed by:

let is_right_visible playerX playerY

playerLeftAngle

(x1, y1, x2, y2) =

if (playerLeftAngle < 90.0)

then (playerX <= x2)

else

if (playerLeftAngle < 180.0)

then (playerY < y2)

else

if (playerLeftAngle < 270.0)

then (playerX >= x1)

else (playerY >= y1)

2.2 BSP tree struture

The BSP tree struture is elegantly desribed by the follow-

ing ML datatype:

type tree =

| Leaf of int list

| Node of node

and node = {

(* Label of partition line for the urrent node *)

partline : int ;

(* Bounding box for the left subtree *)

leftbbox : (float * float * float * float) ;

(* Left subtree : ontains linedefs on *)

(* the right of the partition line *)

left : tree ;

(* Bounding box for the right subtree *)

rightbbox : (float * float * float * float) ;

(* Right subtree : ontains linedefs on *)

(* the right of the partition line *)

right : tree

}

Note that linedefs are represented as integers, indies

into a global array; this makes it easier to save the struture

to disk.

The reursive funtion to walk down the tree in the order

desribed in setion 2.1 is also easily written in ML:

let re front_to_bak_tree_parsing tree =

if not (sreen_full ()) then

math tree with

| Leaf lines -> List.iter draw_lidenef lines

| Node nd ->

(* Get partition line start point *)

let v1 = lines.(nd.partline).start

(* Get partition line end point *)

and v2 = lines.(nd.partline).stop in

math get_point_position !playerX !playerY

v1.x v1.y v2.x v2.y with

| P_Left ->

if is_left_visible nd.leftbbox

then front_to_bak_tree_parsing nd.left ;

draw_linedef nd.partline ;

if is_right_visible nd.rightbbox

then front_to_bak_tree_parsing nd.right

| P_Right | P_On ->

if is_right_visible nd.rightbbox

then front_to_bak_tree_parsing nd.right) ;

draw_linedef nd.partline ;

if is_left_visible nd.leftbbox

then front_to_bak_tree_parsing nd.left)

3 More on rendering

We now know how linedefs are passed to the renderer. It's

now neessary to render individually eah linedef as a wall

on the sreen.

The �rst step is to transform linedef oordinates into the

player's oordinate system. This is simply ahieved by a

translation plus a rotation on the linedef's verties oordi-

nates. Then the linedef obtained has to be lipped in ase

it would be behind the player.

At this point, we know that a part of the wall the linedef

represents is potentially visible. We need to projet it on the

virtual plane representing the sreen using a simple meh-

anism of perspetive, in order to get horizontal oordinates

of this wall on the sreen surfae. We now know where this

wall will extend horizontally on the surfae of the sreen,

but we still need to lip against the player's �eld (one) of

vision to remove non visible parts (see following �gure).

Surface of the screen

Eye

Y

(new_xstart, new_ystart)

Focal distance

(xend, yend)

(xstart, ystart)

(new_xend, new_yend)

View from above

X

One this is done, we know the horizontal extent of the

wall on the sreen. Now the problem is to get the height

of this wall. This height an hange along the wall beause

of perspetive e�et. In fat, omputing the height of the

starting and ending wall points is suÆient, a linear inter-

polation will give us the height in any point between.

The desription above is suÆient for drawing plain walls

like those of a losed room. In the worlds we try to model,

it is possible to have two adjaent rooms, eah sharing one

of its sides with the other. This orresponds to \doors" and

\windows" between rooms. In this ase, the limit linedef

must not be drawn, otherwise it would look like the player

annot walk from one room to the other. A solution ould

be to hek whether the linedef we want to draw is a two

setors juntion, and not to render it in this ase. In fat,

this solution is not orret beause our worlds an have two

adjaent setors with di�erent eiling and/or oor altitude.

So in some ases the juntion an look like a step on the

oor or on the eiling (see the following �gure).

Screen

Ceiling 2

Floor 1

Wall 3 - upper part

Wall 3 lower part

Ceiling 1

Wall 6 - main part

Wall 1 Wall 2

Wall 4 Wall 5

Screen column

For this reason eah linedef ontains 3 di�erent textures,

the upper texture whih is used if the wall shows a upper

visible part, the lower texture whih is used if the wall shows

a lower visible part, and the main texture whih is used to

paint the wall if it is plain (that is if it is not a juntion be-

tween two setors). We an notie that if a lower or upper

texture is needed, the main one is not used. This orre-

sponds to the ase where the wall is a setor juntion.

When lower and upper textures are used, instead of draw-

ing one plain wall, we need to draw two walls: the upper part

of the wall, and it lower part (see �gure above). Of ourse,

one of this part an be null (even the two parts, in this ase,

the wall is simply a juntion between two setors of same

eiling and oor altitude).

Hene, from this desription, we see that we need to om-

pute, for eah wall, the vertial start and stop position of

eah extremity of this wall (intermediate values are om-

puted by linear interpolation) before being able to really

draw it.

So, the linedef drawing routine in ML looks like:

let draw_linedef linedef =

(* Transform line extremities oords *)

(* into the viewer spae system. *)

let (xstart, ystart) =

rotate_translate lines.(linedef).start in

let (xend, yend) =

rotate_translate lines.(linedef).stop in

(* Chek if the wall is ompletely invisible *)

if (is_behind_us xstart) && (is_behind_us xend)

then ()

else

let (new_xstart, new_xend, new_ystart, new_yend) =

lip xstart xend ystart yend in

(* Projet oords on the omputer sreen spae *)

let sr_xstart = projet new_xstart new_ystart in

and sr_xend = projet new_xend new_yend in

(* Chek if the wall is ompletely out of our *)

(* sreen. In this ase, do not ompute anymore *)

if (sr_xstart = sr_sxend) || (sr_xend < 0)

|| (sr_xstart > sreen_width) then ()

else

if linedef.maintx <> 255 then

add_wall new_xstart new_xend

sr_xstart sr_xend ;

else

begin

if linedef.uppertx <> 255 then

add_wall new_xstart new_xend

sr_xstart sr_xend ;

if linedef.lowertx <> 255 then

add_wall new_xstart new_xend

sr_xstart sr_xend

end

This pseudo ode is a simpli�ed version of the real ode

implanted in OamlDoom. We an see we took the on-

vention of 255 meaning \no texture used". In the real im-

plantation, before alling add wall, we need to ompute a

few oeÆients used for texture mapping, and vertial wall

extremities.

Displaying a wall (done by add wall in the above pseudo-

ode) onsists in drawing it vertial line per vertial line on

all its visible length. Eah time a vertial line is drawn in a

sreen olumn, if this line totally �lls the olumn, we mark

this olumn. If a olumn is already marked as �lled, of

ourse, we don't draw again on it (this is part of hidden fae

removing). If a olumn is partially �lled, we don't mark it,

but we reord whih part is still un�lled.

A strong invariant of Doom-like worlds is that the un-

�lled part of a wall is always a ontiguous spae omprised

between the bottom and the top of the sreen. Hene we

only need to reord two integers per olumn. Notie that

adding a wall also draw the eiling (resp. oor) visible in

this olumn. Beause of simpli�ations used in our engine,

oors and eilings are not textured, so a simple plain vertial

line drawing routine is suÆient in this ase.

3.1 Texture mapping

In order to get a more realisti rendering, we need to apply

textures on these walls. Several texturing tehniques exist,

varying in quality and omplexity. We simply hoose to tile

an arbitrary bitmap. First we need to know whih olumn

of the bitmap maps on eah olumn of the wall. Then,

aording to the distane from the player to the wall we

an determine fators for saling vertially this olumn to

make it �t the vertial dimension of the wall. Hene, the

vertial line drawing onsists, for eah point of the wall on

the sreen, in fething the olor of the soure point in the

texture and to write it on the sreen.

Wall

Texture

let vertial_textured_line_draw olumn top bottom

hindex vindex vinr

urrent_bitmap

urrent_bitmap_height

urrent_bitmap_width =

let index_start = (top * 320 + olumn)

and index_end = (bottom * 320 + olumn) in

let re draw index vi =

if index < index_end then begin

let olor =

urrent_bitmap.(((trunate vi)

mod urrent_bitmap_height)

* urrent_bitmap_width

+ hindex) in

String.unsafe_set double_buffer index olor ;

draw (index + 320) (vi +. vinr)

end in

draw index_start !vindex

Beause of restritions on the world we model, eah time

we draw a olumn for a wall, we an notie that for this

olumn then z oordinate in spae remains onstant. This is

the reason why suh kind of engine is known to use onstant

Z texture mapping.

3.2 Sreen drawing

To avoid iker while drawing, we prefer to build the view

image in an o�ine bu�er and then blit this temporary image

in the video memory of the graphi ard. This bu�er is

a simple harater string representing a 320x200 array of

points, with 8 bits per point (i.e 256 olors). Note that on

slow omputers (i.e when building a frame view takes longer

than the time the video ard needs to refresh the sreen), it

an be useful to synhronize this blit with the end of video

refresh.

This low level aess to the video hardware is done using

SVGALib under Linux. This library provides a set of C

primitives to manipulate SVGA video ards. We only need

three of those primitives: obtain the address of the video

memory; aess the olor table of the video ard; and wait

for the end of sreen refresh. The only other part of our

engine that is written in C is a simple \blit" funtion that

opies the ML string representing the o�-sreen bu�er into

the video memory.

Note that a version running under X-Window also exists

and was used to extrat the snapshots shown in this paper.

The amount of C ode is the exatly the same; it only uses

X primitives instead of SVGALib primitives.

3.3 Editing worlds

Given the omplexity of the data strutures, it's obvious

that world desriptions annot be made by hand. For this

reason, we also developed a basi editor in Objetive Caml,

using our CamlTK library [8℄. This allows to enter world

desription using mouse, windows and buttons. Besides this

editor, a BSP ompiler also exists whih takes as input the

world desription and build the assoiated BSP tree. Be-

ause of the reursive struture of the tree, and its omplex

data struture, a funtional language with high level data

types suh as ML is very attrative to write suh a tool.

4 Performanes

In this setion, we ompare the performanes of our ML en-

gine with a C implementation of the same algorithms. The

C implementation is funtionally equivalent to the ML ver-

sion, exept that it handles only 64x64 bitmaps for textures,

while the ML version handles arbitrary bitmaps (GIF im-

ages). This allows to replae, in the C version, some modu-

los and multipliations by masks and shifts. To make om-

parision more preise, we pathed the C engine in order to

simulate arbitrary sized bitmap (i.e we removed hardoded

size onstants and replaed shifts and mask by their orre-

sponding arithmeti operations). The ML implementation

is ompiled by the Objetive Caml 1.07 native-ode om-

piler, with default settings. Array bound heking is not

globally turned o�; we only used the \unsafe" version of ar-

ray aess primitives in the vertial textured lines drawing

funtion. The C implementation is ompiled with g -O2.

To ompare soures size, even if it is diÆult to ompare

a program written in two di�erent language, we an say that

one omments and useless blank lines are removed the C

version is about 1000 lines of soure, and the ML version is

about 700 lines of ode. (Note that identi�ers have roughly

the same names in both versions).

The main performane riterion is the frame rate, i.e

the number of sreen images rendered per seond, assuming

they are rendered ontinuously without intervening pauses.

The higher the frame rate, the smoother the animation.

The frame rate depends obviously on the omplexity of the

senery; the measures below are for a simple, but not trivial

senery.

Objetive Caml C

Pentium 166 Mhz 34 fps 47 fps

Pentium II 333 Mhz 64 fps 81 fps

These �gures show that the Caml version is ompetitive

with the C version, despite the fat that we use full ML

funtionalities suh as datatypes, lists and their iterators,

and reursion. On the Pentium II, Caml ahieves 80% of

the performanes of C.

Both the C implementation and the Caml implementa-

tion give visually satisfying animations, without pereptible

pauses or \hiups". A frame rate of 25 to 30 frames per

seond is usually onsidered omfortable.

The �rst implementations (both in C and ML) used oat-

ing point operations everywhere, for the sake of simpliity.

Pro�ling shows that about 80% of the running time is spent

in the vertial textured line draw funtion shown above.

The inner loop of this funtion is exeuted approximately

one for eah sreen point, i.e 64000 times per frame. Exam-

ination of the assembly ode generated by Objetive Caml

and by GCC shows that by far the most expensive operation

in the inner loop is the trunate oat-to-integer onversion.

This operation is extremely ostly on the Intel x86 arhite-

ture, as it involves hanging the rounding mode of the FPU

to \trunate towards zero", then performing the onversion,

then restoring the rounding mode. This takes a whopping

55 to 60 yles on the Pentium II.

To address this bottlenek, we replaed oating-point

arithmeti by �xed-point arithmeti in the vertial line tex-

turing funtion (vertial textured line draw). This leads

to a signi�ant speed improvement of the engine as shown

by the following �gures:

Objetive Caml C

Pentium 166 45 fps 61 fps

Pentium II 333 100 fps 125 fps

Garbage olletion aounts for a very small part of the

exeution time (less than 5%). This is beause the renderer

alloates all data strutures one and for all at initialization-

time. Most of the time is spent in the vertial textured line

drawing routine. The next most time onsuming routine is

add wall, i.e the one whih omputes the dimensions of eah

wall on the sreen and alls the vertial line drawing when

needed. The remainder of the renderer, and in partiular

the traversing of the BSP tree, takes negligible time.

5 Possible enhanements

Of ourse, our engine is far from performanes obtained with

the original Doom engine, and it is far from those needed by

a real game. But as we said previously it was not intended

to be a real game. It was just written to be understandable

by beginners, and to be a demonstration. To get a more

eÆient engine, in both ML and C version, several enhane-

ments an be and should be done:

1. use of �xed arithmeti everywhere instead of oats,

2. tabulate trigonometri funtions like sin; os; tan, in-

stead of alling them eah time we need them,

3. use �xed power of 2 as dimensions for textures, whih

would lead to use masks and shifts instead of modulos,

multipliations and divisions,

4. expliitly share ommon sub-expressions while om-

puting data needed by the rendering.

To get a more impressive result, it ould also be inter-

esting to add textures onto oors and eilings. This ompli-

ates the engine beause oors and eiling have to be drawn

as horizontal lines (not as vertial in the urrent desription

of the algorithm). In this way, we keep the Z onstant invari-

ant we notied above. Hene, an intermediate struture has

to be used to reord vertial lines making up the walls and

horizontal lines making up oors and eiling. The diÆult

part for building this struture lies in reording horizontal

runs for oors and eiling; vertial runs for walls are om-

puted in the same way than we did before (we just reord

them instead of drawing them on the y).

A new texture mapper, more omplex but more powerful

is also needed. We then have to use orret perspetive tex-

ture mapping tehniques. Shematially, for eah sreen pro-

jeted polygon we want to texture, knowing a sreen point

loation, we must be able to reover its orresponding posi-

tion on the polygon in the spae. Hene knowing how the

texture is applied on the polygon in the spae, we an deter-

mine whih point of this texture is used, and so whih olor

to use for this sreen point. Beause of onstant Z invari-

ant, depending on wether we are drawing a vertial run or

an horizontal run, some omputation an be extrated from

the inner loop of the mapper, hene reduing the amount of

time needed to texture one run.

A version of our renderer inorporating those enhane-

ments is urrently under development.

6 Conlusion

Our OCamlDoom renderer demonstrates that ML an also

be used for interative graphial appliations, where response

time is an important fator and heavy omputations are per-

formed in real time. For these appliations, using sophisti-

ated data strutures and algorithms is as important as raw

omputing power in ahieving good performanes; what ML

loses in raw exeution speed on numerial omputations is

ompensated by the ease with whih it handles the omplex

data strutures.

On OCamlDoom, the Objetive Caml native-ode om-

piler delivers about three fourths of the performanes of an

optimizing C ompiler. This is onsistent with the general

laim that good, modern funtional ompilers suh as Obje-

tive Caml or GHC stay within a fator of two of C ompilers.

The di�erene in exeution speed is aeptable in pratie,

and the time saved in debugging and oding an give ML

a great advantage. We have also implemented other graph-

ial appliations in Caml: a real-time mouse driven image

\warper", and several image proessing algorithms. All of

them deliver entirely satisfatory performanes.

Referenes

[1℄ Edoardo Biagioni, Rober Harper, Peter Lee, and Brian

G. Milnes. Signatures for a Network Protool Stak: A

Systems Appliation of Standard ML. Lisp and Fun-

tional Programming, ACM Press, 1994.

[2℄ Matthew S. Fell. The unoÆial DOOM spes, April 1994.

WEB: http://doomgate.s.buffalo.edu/dos/FAQ/

DOOM.FAQ.Spes.html

[3℄ J. Foley, A. van Dam, S. Feiner, J. Huges Computer

Graphis Priniples and Pratie, seond edition, 1990.

Addison-Wesley Publishing Company

[4℄ Mark Hayden. The Ensemble System, Cornell University

Tehnial Report, TR98-1662, January 1998.

[5℄ Xavier Leroy, J�erôme Vouillon, and Damien Doligez. Ob-

jetive Caml, INRIA 1998. Software and doumentation

available at http://aml.inria.fr

[6℄ Fran�ois Pessaux. BSP Trees pour la 3D Mapp�ee,

Nov 1996. Available at http://pauilla.inria.fr/

�pessaux/bspartile.html

[7℄ Fran�ois Pessaux. R�ealisation d'un moteur graphique en

pseudo-3D mapp�ee, January 1997. Software and do-

umentation available at http://pauilla.inria.fr/

�pessaux/engine.html

[8℄ Fran�ois Pessaux and Fran�ois Rouaix, Projet Cristal.

The CamlTk interfae, INRIA Roquenourt. Software

and doumentation available at http://aml.inria.fr/

�rouaix/amltk-readme.html

[9℄ Mel Slater. A Comparison of Three Shadow Volume Al-

gorithms, The Visual Computer, (1992), Vol. 9(1), 25-38.

[10℄ omp.graphis.algorithms newsgroup FAQ

Available at http://wuarhive.wustl.edu/graphis/

graphis/faq/omp.graphis.algorithms-faq

[11℄ Bsp Tree Frequently Asked Questions

http://reality.sgi.om/bspfaq/index.shtml

[12℄ The soure ode for Doom is now available on the WEB

(Deember 1997)

ftp://ftp.idsoftware.om/idstuff/soure/

doomsr.zip

More snapshots

