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Abstra
t

This paper des
ribes a 3D graphi
s engine with texture map-

ping for Doom-style 
omputer games entirely written in Ob-

je
tive Caml. This work demonstrates the appli
ability of

ML for intera
tive 
omputer graphi
s.

1 Introdu
tion

The traditional area of appli
ation for ML is symboli
 pro-


essing: theorem proving, 
ompilers, . . . It has been 
laimed

that ML is ill-suited to other areas by la
k of speed and a
-


ess to low-level ma
hine features. Re
ent work on network

proto
ols implemented in ML [1, 4℄ has refuted this 
laim.

In this paper, we atta
k another stronghold of C (and even

assembly language) programming: realtime 3D graphi
s as

found in a
tion 
omputer games su
h as ID Software's infa-

mous \Doom".

We des
ribe a 3D graphi
s engine with texture mapping

entirely written in Obje
tive Caml. The purpose is twofold:

�rst, give a tutorial introdu
tion to the main algorithms used

in this kind of graphi
s engines; se
ond, study the adequa
y

of ML for su
h appli
ations. We show that ML's datatypes

and re
ursive fun
tions are a natural mat
h for those algo-

rithms. We also study the performan
es obtained with the

Obje
tive Caml 
ompiler and 
ompare them against those

of a C implementation of the same algorithms. The Caml

implementation delivers approximatively 75% of the perfor-

man
e of the C implementation, and a
hieves a highly re-

spe
table frame rate of 100 frames per se
ond on a 333 Mhz

Pentium II
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.

The implementation des
ribed in this paper is not state-

of-the-art: it is 
learly not optimized as it should be in order

to make a real game. More powerful algorithms exists to get

a more realisti
 rendering, but are too 
omplex for a tutorial

introdu
tion. Finally, we only deal with the rendering of the

s
enery, but not with sprites, ballisti
 aspe
ts, nor sound.

Still, the model we talk about is a good starting point before

going deeper in 3D graphi
s programming. . .

The remainder of this paper is organized as follows. We

�rst introdu
e the basi
 idea behind Doom-like engines. Then

we will inspe
t the 
ore data stru
ture of the renderer, i.e

the BSP tree, and see how it 
an be implemented in ML.

In se
tion 3 we will go deeper in the rendering me
hanism

to understand how the view is built before being displayed.

Se
tion 4 shows performan
e �gures and 
ompare them with

the C version of the same program. Se
tion 5 dis
usses pos-

sible enhan
ements to make the program more eÆ
ient.

2 Basi
s of pseudo-3D rendering

For performan
e reasons, games su
h as Doom do not per-

form full 3D rendering, but restri
t themselves to a parti
u-

lar 
lass of models that we 
all pseudo-3D. In these models,

the virtual world where players move is represented as a

2-dimensional map viewed from above, with the third di-

mension (the height) added afterwards. For instan
e, here

is how a simple re
tangular room is represented:

1

25 to 30 frames per se
ond is generally 
onsidered a

eptable, as

it 
orresponds to TV-quality animation.
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Su
h a room, also 
alled a se
tor, is 
omposed of several

verti
es (4 in our example) 
onne
ted by oriented lines, also


alled linedefs. These lines de�ne the walls of the room

where the player moves. The height is given as a separate

attribute of the se
tor.

To display this room on the s
reen, ea
h linedef is pro-

je
ted onto the player's �eld of vision, a

ording to its posi-

tion in spa
e. Be
ause a linedef represents in fa
t a surfa
e

of 
onstant height, on
e proje
ted on the plane representing

the visible part of the spa
e, it leads to a simple polygon.

(This is the reason why these graphi
s engines are 
alled

polygon-based renderers.)

Polygon

Screen
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Before going deeper in the proje
tion-rendering pro
ess,

let us address the problem of knowing whi
h walls are visi-

ble from a spe
i�
 position. This problem is important for

two reasons. First, it 
onditions the 
orre
t rendering of

overlapping walls: we draw walls starting by those that are


losest to the player, and never drawing over a wall that has

already been drawn. This way, we 
an stop rendering as

soon as the s
reen is �lled; this would not be possible with

a simple painter algorithm, whi
h for
es to draw all walls.

Se
ond, we avoid 
omputing and displaying walls that lie

outside of the player's �eld of vision.

To address this issue, we represent the s
enery by a bi-

nary spa
e partitioning (BSP) tree. This is a stati
 data

stru
ture 
omputed at the time where the virtual world is

designed, and saved in the �le des
ribing that world.

2.1 The BSP tree

A BSP tree represents a re
ursive, hierar
hi
al partitioning,

of a n-dimensional spa
e. In our 
ase, the spa
e we want to

partition is the map of the virtual world. Hen
e, our spa
e's

dimension is 2, and we will partition it with hyperplanes

that are 1-dimensional obje
ts, that is, lines.

The pro
ess for building su
h a tree is rather simple:


hoose a partition line l

p

and determine the set L of linedefs

in the map whi
h lie on the the left of l

p

, as well as the

set R of linedefs in the map whi
h lie on the the right of

l

p

. Re
ursively represent L and R by BSPs. Finally, 
reate

a node, labeled by l

p

, with left and right 
hildren the two

BSPs representing L and R.
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Consider the world depi
ted above. It is 
omposed of

two se
tors. Note that on the jun
tion of these two se
tors,

there are two linedefs of opposite dire
tion, not only one.

This is be
ause a se
tor must be a 
losed polygon.

To de
ompose this world into a BSP, we 
hoose a par-

tition line along the linedef 4. Hen
e, the top node of the

BSP tree is labeled by 4, the left 
hild represents the set


ontaining linedefs f0; 1; 2; 3g, and the right 
hild represents

f5; 6; 7; 8g.

In some 
ases, the 
hosen partition line 
an 
ross some

linedefs. Hen
e, it is impossible to determine whether these

linedefs are on the left or on the right of the partitioning

line. For instan
e, assume we partition the world above

along linedef 3. Then, segment 6 is neither on the left nor

on the right of the partition line:

0

1

2

3

4

5

6

7

8

In this 
ase, we split the 
rossed linedefs in two by adding

a new vertex at the interse
tion point. Hen
e, the left 
hild

of the top node (labeled 3) is f6

0

; 7; 8g and the right 
hild is

f0; 1; 2; 3; 4; 5; 6g.
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Note that the 
hoi
e of the partition line strongly in-


uen
es the shape of the tree. In some appli
ations, the


riterion for 
hoosing partition lines 
an be very important.

For the sake of simpli
ity, in our 
ase, we 
hoose partition

lines at random among the linedefs of the world.

To 
omplete the des
ription of the algorithm, we need a


riterion to know when to stop partitioning. This 
riterion

depends on the intended use of the BSP. For example, one


an de
ide to stop when a limit is rea
hed on the number of

linedefs 
ontained in a leaf, or the tree depth, or the number

of splits, or the number of leaves, . . . In our appli
ation, we

stop partitioning when:

� all linedefs in a leaf belong to the same se
tor,

� and all linedefs in a leaf form a 
onvex polygon

2

.

The �rst point makes sure that all linedefs in a leaf have

the same height (be
ause they belong to the same se
tor,

and the height is an attribute of the se
tor).

The se
ond point makes sure that when drawing walls

in a leaf, we 
an draw them in any order without risk of

overlapping. To see that this is not the 
ase when the poly-

gon is not 
onvex, 
onsider the following example, where the

viewing dire
tion is the bold arrow.

0 1

2

3

4

If we draw linedef 1 before linedef 0, the view looks 
or-

re
t, but in the inverse order the 
loser linedef 0 is masked

by linedef 1 and the result is visually wrong.

Now that we know how to build a BSP tree, let us dis
uss

its relevan
e to our graphi
s engine. The �rst problem was to

perform hidden surfa
e removal, i.e to display 
losest walls

�rst. To a
hieve this, all we need to do is walk the tree in

the following way:

1. Determine player's position

2. If the tree is a leaf, then display ea
h lines of this leaf

3. If the tree is a node, 
lassify the player's position a
-


ording to the partition line (i.e determine whether he

is on its left or on its right).

� If on the left, then re
urse on left subtree, display

partition line, re
urse on the right subtree.

� If on the right, then re
urse on right subtree, dis-

play partition line, re
urse on the left subtree.

� If on the partition line, 
hoose to pro
eed like one

the previous 
ases.
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In some 
ases, it is possible that there is not enough linedefs at a

leaf to form a 
losed polygon. We also a

ept non-
losed polygons as

long as they are \
onvex" in the following sense: the angle between


onse
utive linedefs l

n

and l

n+1

must be � 180

o

. This 
an easily be

determined by the sign of a dot produ
t.

It is easy to 
onvin
e oneself that if two walls overlap viewed

from the player's standpoint, then the 
loser one will be

visited �rst.

Now we still have to address the problem of determining

whi
h walls are in the player's �eld of vision. To handle

this in a simple but e�e
tive way, we add two bounding

boxes (axis-aligned) at ea
h node of the tree, one for ea
h

subtree. These boxes 
ontain 
oordinates of the minimal

re
tangle bounding linedefs of the left 
hild (respe
tively

right 
hild). So, before re
ursing in a subtree, we simply


he
k the player's �eld of vision against the bounding box.

This 
an be a
hieved qui
kly and with a suÆ
ient pre
ision

using quadrants [7℄. To a
hive this issue, we split the spa
e

(let's assume it is 
entered on the player's position) in four

parts along the x and y axis. Then we 
onsider the dire
tion

of the leftmost ray in the player's �eld of vision a

ording to

the dire
tion (by blo
k of 90

o

) the player is 
urrently looking

at.

If we only 
onsiderer that the user's 
one of vision is

the 
entral ray pointing toward the dire
tion the player is

looking at, then the following �gure shows 
onditions on

relations between player's position and bounding box 
oor-

dinates to 
onsider this bounding box 
an be visible (i.e the

ray 
an interse
t the box).
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In fa
t, the player's 
one of vision is wider that a simple

ray. We assume that the angle of this 
one is lower than

180

o

. By 
onsidering the leftmost extremity of this 
one, we

make sure that all rays in this 
one won't 
ross a quadrant

on the left of the one player is looking at. But, depending

on the real angle where the player is looking, some rays of

the 
one 
an travel into the quadrant just on the right (not

more be
ause we assumed the 
one to be lower than 180

o

).

Then to be 
orre
t, the test of visibility must not perform,

for ea
h quadrant, the two tests given in ea
h part of the

�gure, but rather the only test 
ommon to the quadrant and

the quadrant immediately on its right.



So this test of visibility is an approximation whi
h elim-

inate, for one quadrant, all bounding boxes lying on the

other semi-plane than the one de�ned by the quadrant and

the one immediately on its right.

Hen
e, test visibility is performed by:

let is_right_visible playerX playerY

playerLeftAngle

(x1, y1, x2, y2) =

if (playerLeftAngle < 90.0)

then (playerX <= x2)

else

if (playerLeftAngle < 180.0)

then (playerY < y2)

else

if (playerLeftAngle < 270.0)

then (playerX >= x1)

else (playerY >= y1)

2.2 BSP tree stru
ture

The BSP tree stru
ture is elegantly des
ribed by the follow-

ing ML datatype:

type tree =

| Leaf of int list

| Node of node

and node = {

(* Label of partition line for the 
urrent node *)

partline : int ;

(* Bounding box for the left subtree *)

leftbbox : (float * float * float * float) ;

(* Left subtree : 
ontains linedefs on *)

(* the right of the partition line *)

left : tree ;

(* Bounding box for the right subtree *)

rightbbox : (float * float * float * float) ;

(* Right subtree : 
ontains linedefs on *)

(* the right of the partition line *)

right : tree

}

Note that linedefs are represented as integers, indi
es

into a global array; this makes it easier to save the stru
ture

to disk.

The re
ursive fun
tion to walk down the tree in the order

des
ribed in se
tion 2.1 is also easily written in ML:

let re
 front_to_ba
k_tree_parsing tree =

if not (s
reen_full ()) then

mat
h tree with

| Leaf lines -> List.iter draw_lidenef lines

| Node nd ->

(* Get partition line start point *)

let v1 = lines.(nd.partline).start

(* Get partition line end point *)

and v2 = lines.(nd.partline).stop in

mat
h get_point_position !playerX !playerY

v1.x v1.y v2.x v2.y with

| P_Left ->

if is_left_visible nd.leftbbox

then front_to_ba
k_tree_parsing nd.left ;

draw_linedef nd.partline ;

if is_right_visible nd.rightbbox

then front_to_ba
k_tree_parsing nd.right

| P_Right | P_On ->

if is_right_visible nd.rightbbox

then front_to_ba
k_tree_parsing nd.right) ;

draw_linedef nd.partline ;

if is_left_visible nd.leftbbox

then front_to_ba
k_tree_parsing nd.left)

3 More on rendering

We now know how linedefs are passed to the renderer. It's

now ne
essary to render individually ea
h linedef as a wall

on the s
reen.

The �rst step is to transform linedef 
oordinates into the

player's 
oordinate system. This is simply a
hieved by a

translation plus a rotation on the linedef's verti
es 
oordi-

nates. Then the linedef obtained has to be 
lipped in 
ase

it would be behind the player.

At this point, we know that a part of the wall the linedef

represents is potentially visible. We need to proje
t it on the

virtual plane representing the s
reen using a simple me
h-

anism of perspe
tive, in order to get horizontal 
oordinates

of this wall on the s
reen surfa
e. We now know where this

wall will extend horizontally on the surfa
e of the s
reen,

but we still need to 
lip against the player's �eld (
one) of

vision to remove non visible parts (see following �gure).

Surface of the screen
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Y
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Focal distance

(xend, yend)

(xstart, ystart)

(new_xend, new_yend)

View from above

X

On
e this is done, we know the horizontal extent of the

wall on the s
reen. Now the problem is to get the height

of this wall. This height 
an 
hange along the wall be
ause

of perspe
tive e�e
t. In fa
t, 
omputing the height of the

starting and ending wall points is suÆ
ient, a linear inter-

polation will give us the height in any point between.

The des
ription above is suÆ
ient for drawing plain walls

like those of a 
losed room. In the worlds we try to model,

it is possible to have two adja
ent rooms, ea
h sharing one

of its sides with the other. This 
orresponds to \doors" and

\windows" between rooms. In this 
ase, the limit linedef

must not be drawn, otherwise it would look like the player


annot walk from one room to the other. A solution 
ould

be to 
he
k whether the linedef we want to draw is a two

se
tors jun
tion, and not to render it in this 
ase. In fa
t,

this solution is not 
orre
t be
ause our worlds 
an have two

adja
ent se
tors with di�erent 
eiling and/or 
oor altitude.

So in some 
ases the jun
tion 
an look like a step on the


oor or on the 
eiling (see the following �gure).
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For this reason ea
h linedef 
ontains 3 di�erent textures,

the upper texture whi
h is used if the wall shows a upper

visible part, the lower texture whi
h is used if the wall shows

a lower visible part, and the main texture whi
h is used to

paint the wall if it is plain (that is if it is not a jun
tion be-

tween two se
tors). We 
an noti
e that if a lower or upper

texture is needed, the main one is not used. This 
orre-

sponds to the 
ase where the wall is a se
tor jun
tion.

When lower and upper textures are used, instead of draw-

ing one plain wall, we need to draw two walls: the upper part

of the wall, and it lower part (see �gure above). Of 
ourse,

one of this part 
an be null (even the two parts, in this 
ase,

the wall is simply a jun
tion between two se
tors of same


eiling and 
oor altitude).

Hen
e, from this des
ription, we see that we need to 
om-

pute, for ea
h wall, the verti
al start and stop position of

ea
h extremity of this wall (intermediate values are 
om-

puted by linear interpolation) before being able to really

draw it.

So, the linedef drawing routine in ML looks like:

let draw_linedef linedef =

(* Transform line extremities 
oords *)

(* into the viewer spa
e system. *)

let (xstart, ystart) =

rotate_translate lines.(linedef).start in

let (xend, yend) =

rotate_translate lines.(linedef).stop in

(* Che
k if the wall is 
ompletely invisible *)

if (is_behind_us xstart) && (is_behind_us xend)

then ()

else

let (new_xstart, new_xend, new_ystart, new_yend) =


lip xstart xend ystart yend in

(* Proje
t 
oords on the 
omputer s
reen spa
e *)

let s
r_xstart = proje
t new_xstart new_ystart in

and s
r_xend = proje
t new_xend new_yend in

(* Che
k if the wall is 
ompletely out of our *)

(* s
reen. In this 
ase, do not 
ompute anymore *)

if (s
r_xstart = s
r_sxend) || (s
r_xend < 0)

|| (s
r_xstart > s
reen_width) then ()

else

if linedef.maintx <> 255 then

add_wall new_xstart new_xend

s
r_xstart s
r_xend ;

else

begin

if linedef.uppertx <> 255 then

add_wall new_xstart new_xend

s
r_xstart s
r_xend ;

if linedef.lowertx <> 255 then

add_wall new_xstart new_xend

s
r_xstart s
r_xend

end

This pseudo 
ode is a simpli�ed version of the real 
ode

implanted in O
amlDoom. We 
an see we took the 
on-

vention of 255 meaning \no texture used". In the real im-

plantation, before 
alling add wall, we need to 
ompute a

few 
oeÆ
ients used for texture mapping, and verti
al wall

extremities.

Displaying a wall (done by add wall in the above pseudo-


ode) 
onsists in drawing it verti
al line per verti
al line on

all its visible length. Ea
h time a verti
al line is drawn in a

s
reen 
olumn, if this line totally �lls the 
olumn, we mark

this 
olumn. If a 
olumn is already marked as �lled, of


ourse, we don't draw again on it (this is part of hidden fa
e

removing). If a 
olumn is partially �lled, we don't mark it,

but we re
ord whi
h part is still un�lled.

A strong invariant of Doom-like worlds is that the un-

�lled part of a wall is always a 
ontiguous spa
e 
omprised

between the bottom and the top of the s
reen. Hen
e we

only need to re
ord two integers per 
olumn. Noti
e that

adding a wall also draw the 
eiling (resp. 
oor) visible in

this 
olumn. Be
ause of simpli�
ations used in our engine,


oors and 
eilings are not textured, so a simple plain verti
al

line drawing routine is suÆ
ient in this 
ase.

3.1 Texture mapping

In order to get a more realisti
 rendering, we need to apply

textures on these walls. Several texturing te
hniques exist,

varying in quality and 
omplexity. We simply 
hoose to tile

an arbitrary bitmap. First we need to know whi
h 
olumn

of the bitmap maps on ea
h 
olumn of the wall. Then,

a

ording to the distan
e from the player to the wall we


an determine fa
tors for s
aling verti
ally this 
olumn to

make it �t the verti
al dimension of the wall. Hen
e, the

verti
al line drawing 
onsists, for ea
h point of the wall on

the s
reen, in fet
hing the 
olor of the sour
e point in the

texture and to write it on the s
reen.

Wall

Texture

let verti
al_textured_line_draw 
olumn top bottom

hindex vindex vin
r


urrent_bitmap


urrent_bitmap_height


urrent_bitmap_width =

let index_start = (top * 320 + 
olumn)

and index_end = (bottom * 320 + 
olumn) in



let re
 draw index vi =

if index < index_end then begin

let 
olor =


urrent_bitmap.(((trun
ate vi)

mod 
urrent_bitmap_height)

* 
urrent_bitmap_width

+ hindex) in

String.unsafe_set double_buffer index 
olor ;

draw (index + 320) (vi +. vin
r)

end in

draw index_start !vindex

Be
ause of restri
tions on the world we model, ea
h time

we draw a 
olumn for a wall, we 
an noti
e that for this


olumn then z 
oordinate in spa
e remains 
onstant. This is

the reason why su
h kind of engine is known to use 
onstant

Z texture mapping.

3.2 S
reen drawing

To avoid 
i
ker while drawing, we prefer to build the view

image in an o�ine bu�er and then blit this temporary image

in the video memory of the graphi
 
ard. This bu�er is

a simple 
hara
ter string representing a 320x200 array of

points, with 8 bits per point (i.e 256 
olors). Note that on

slow 
omputers (i.e when building a frame view takes longer

than the time the video 
ard needs to refresh the s
reen), it


an be useful to syn
hronize this blit with the end of video

refresh.

This low level a

ess to the video hardware is done using

SVGALib under Linux. This library provides a set of C

primitives to manipulate SVGA video 
ards. We only need

three of those primitives: obtain the address of the video

memory; a

ess the 
olor table of the video 
ard; and wait

for the end of s
reen refresh. The only other part of our

engine that is written in C is a simple \blit" fun
tion that


opies the ML string representing the o�-s
reen bu�er into

the video memory.

Note that a version running under X-Window also exists

and was used to extra
t the snapshots shown in this paper.

The amount of C 
ode is the exa
tly the same; it only uses

X primitives instead of SVGALib primitives.

3.3 Editing worlds

Given the 
omplexity of the data stru
tures, it's obvious

that world des
riptions 
annot be made by hand. For this

reason, we also developed a basi
 editor in Obje
tive Caml,

using our CamlTK library [8℄. This allows to enter world

des
ription using mouse, windows and buttons. Besides this

editor, a BSP 
ompiler also exists whi
h takes as input the

world des
ription and build the asso
iated BSP tree. Be-


ause of the re
ursive stru
ture of the tree, and its 
omplex

data stru
ture, a fun
tional language with high level data

types su
h as ML is very attra
tive to write su
h a tool.

4 Performan
es

In this se
tion, we 
ompare the performan
es of our ML en-

gine with a C implementation of the same algorithms. The

C implementation is fun
tionally equivalent to the ML ver-

sion, ex
ept that it handles only 64x64 bitmaps for textures,

while the ML version handles arbitrary bitmaps (GIF im-

ages). This allows to repla
e, in the C version, some modu-

los and multipli
ations by masks and shifts. To make 
om-

parision more pre
ise, we pat
hed the C engine in order to

simulate arbitrary sized bitmap (i.e we removed hard
oded

size 
onstants and repla
ed shifts and mask by their 
orre-

sponding arithmeti
 operations). The ML implementation

is 
ompiled by the Obje
tive Caml 1.07 native-
ode 
om-

piler, with default settings. Array bound 
he
king is not

globally turned o�; we only used the \unsafe" version of ar-

ray a

ess primitives in the verti
al textured lines drawing

fun
tion. The C implementation is 
ompiled with g

 -O2.

To 
ompare sour
es size, even if it is diÆ
ult to 
ompare

a program written in two di�erent language, we 
an say that

on
e 
omments and useless blank lines are removed the C

version is about 1000 lines of sour
e, and the ML version is

about 700 lines of 
ode. (Note that identi�ers have roughly

the same names in both versions).

The main performan
e 
riterion is the frame rate, i.e

the number of s
reen images rendered per se
ond, assuming

they are rendered 
ontinuously without intervening pauses.

The higher the frame rate, the smoother the animation.

The frame rate depends obviously on the 
omplexity of the

s
enery; the measures below are for a simple, but not trivial

s
enery.

Obje
tive Caml C

Pentium 166 Mhz 34 fps 47 fps

Pentium II 333 Mhz 64 fps 81 fps

These �gures show that the Caml version is 
ompetitive

with the C version, despite the fa
t that we use full ML

fun
tionalities su
h as datatypes, lists and their iterators,

and re
ursion. On the Pentium II, Caml a
hieves 80% of

the performan
es of C.

Both the C implementation and the Caml implementa-

tion give visually satisfying animations, without per
eptible

pauses or \hi

ups". A frame rate of 25 to 30 frames per

se
ond is usually 
onsidered 
omfortable.

The �rst implementations (both in C and ML) used 
oat-

ing point operations everywhere, for the sake of simpli
ity.

Pro�ling shows that about 80% of the running time is spent

in the verti
al textured line draw fun
tion shown above.

The inner loop of this fun
tion is exe
uted approximately

on
e for ea
h s
reen point, i.e 64000 times per frame. Exam-

ination of the assembly 
ode generated by Obje
tive Caml

and by GCC shows that by far the most expensive operation

in the inner loop is the trun
ate 
oat-to-integer 
onversion.

This operation is extremely 
ostly on the Intel x86 ar
hite
-

ture, as it involves 
hanging the rounding mode of the FPU

to \trun
ate towards zero", then performing the 
onversion,

then restoring the rounding mode. This takes a whopping

55 to 60 
y
les on the Pentium II.

To address this bottlene
k, we repla
ed 
oating-point

arithmeti
 by �xed-point arithmeti
 in the verti
al line tex-

turing fun
tion (verti
al textured line draw). This leads

to a signi�
ant speed improvement of the engine as shown

by the following �gures:

Obje
tive Caml C

Pentium 166 45 fps 61 fps

Pentium II 333 100 fps 125 fps

Garbage 
olle
tion a

ounts for a very small part of the

exe
ution time (less than 5%). This is be
ause the renderer

allo
ates all data stru
tures on
e and for all at initialization-

time. Most of the time is spent in the verti
al textured line

drawing routine. The next most time 
onsuming routine is

add wall, i.e the one whi
h 
omputes the dimensions of ea
h

wall on the s
reen and 
alls the verti
al line drawing when

needed. The remainder of the renderer, and in parti
ular

the traversing of the BSP tree, takes negligible time.



5 Possible enhan
ements

Of 
ourse, our engine is far from performan
es obtained with

the original Doom engine, and it is far from those needed by

a real game. But as we said previously it was not intended

to be a real game. It was just written to be understandable

by beginners, and to be a demonstration. To get a more

eÆ
ient engine, in both ML and C version, several enhan
e-

ments 
an be and should be done:

1. use of �xed arithmeti
 everywhere instead of 
oats,

2. tabulate trigonometri
 fun
tions like sin; 
os; tan, in-

stead of 
alling them ea
h time we need them,

3. use �xed power of 2 as dimensions for textures, whi
h

would lead to use masks and shifts instead of modulos,

multipli
ations and divisions,

4. expli
itly share 
ommon sub-expressions while 
om-

puting data needed by the rendering.

To get a more impressive result, it 
ould also be inter-

esting to add textures onto 
oors and 
eilings. This 
ompli-


ates the engine be
ause 
oors and 
eiling have to be drawn

as horizontal lines (not as verti
al in the 
urrent des
ription

of the algorithm). In this way, we keep the Z 
onstant invari-

ant we noti
ed above. Hen
e, an intermediate stru
ture has

to be used to re
ord verti
al lines making up the walls and

horizontal lines making up 
oors and 
eiling. The diÆ
ult

part for building this stru
ture lies in re
ording horizontal

runs for 
oors and 
eiling; verti
al runs for walls are 
om-

puted in the same way than we did before (we just re
ord

them instead of drawing them on the 
y).

A new texture mapper, more 
omplex but more powerful

is also needed. We then have to use 
orre
t perspe
tive tex-

ture mapping te
hniques. S
hemati
ally, for ea
h s
reen pro-

je
ted polygon we want to texture, knowing a s
reen point

lo
ation, we must be able to re
over its 
orresponding posi-

tion on the polygon in the spa
e. Hen
e knowing how the

texture is applied on the polygon in the spa
e, we 
an deter-

mine whi
h point of this texture is used, and so whi
h 
olor

to use for this s
reen point. Be
ause of 
onstant Z invari-

ant, depending on wether we are drawing a verti
al run or

an horizontal run, some 
omputation 
an be extra
ted from

the inner loop of the mapper, hen
e redu
ing the amount of

time needed to texture one run.

A version of our renderer in
orporating those enhan
e-

ments is 
urrently under development.

6 Con
lusion

Our OCamlDoom renderer demonstrates that ML 
an also

be used for intera
tive graphi
al appli
ations, where response

time is an important fa
tor and heavy 
omputations are per-

formed in real time. For these appli
ations, using sophisti-


ated data stru
tures and algorithms is as important as raw


omputing power in a
hieving good performan
es; what ML

loses in raw exe
ution speed on numeri
al 
omputations is


ompensated by the ease with whi
h it handles the 
omplex

data stru
tures.

On OCamlDoom, the Obje
tive Caml native-
ode 
om-

piler delivers about three fourths of the performan
es of an

optimizing C 
ompiler. This is 
onsistent with the general


laim that good, modern fun
tional 
ompilers su
h as Obje
-

tive Caml or GHC stay within a fa
tor of two of C 
ompilers.

The di�eren
e in exe
ution speed is a

eptable in pra
ti
e,

and the time saved in debugging and 
oding 
an give ML

a great advantage. We have also implemented other graph-

i
al appli
ations in Caml: a real-time mouse driven image

\warper", and several image pro
essing algorithms. All of

them deliver entirely satisfa
tory performan
es.
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