
HAL Id: hal-01241369
https://hal.science/hal-01241369

Submitted on 10 Dec 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Goodness-of-Fit Tests in Reverberation Chambers: Is
Sample Independence Necessary?
Florian Monsef, Ramiro Serra, Andrea Cozza

To cite this version:
Florian Monsef, Ramiro Serra, Andrea Cozza. Goodness-of-Fit Tests in Reverberation Chambers: Is
Sample Independence Necessary?. IEEE Transactions on Electromagnetic Compatibility, 2015, 57 (6),
pp.1748 - 1751. �10.1109/TEMC.2015.2451211�. �hal-01241369�

https://hal.science/hal-01241369
https://hal.archives-ouvertes.fr


1

Goodness-Of-Fit tests in Reverberation Chambers :
Is Sample Independence Necessary?

Florian Monsef∗, Ramiro Serra†, Andrea Cozza∗
∗GeePs UMR 8507, Univ Paris-Sud, CentraleSupelec, CNRS, UPMC, Gif-sur-Yvette, France,

E-mail: florian.monsef@geeps.centralesupelec.fr
†Eindhoven University of Technology, Eindhoven, The Netherlands.

Abstract—Goodness-of-fit (GoF) tests are interesting tools
to test the overmodedness of the field inside a reverberation
chamber (RC). In the definition of GoF tests independent and
identically-distributed samples are required. In the present paper
we focus on the effect of partial data correlation on GOF tests.
We analyze the sensitivity of the most common GOF tests used in
electromagnetic compatibility. The results presented herein are
based on numerical and experimental data. We show that most
of GOF tests are insensitive to correlations up to rather high
values depending on the type of GOF test chosen. Implications
for practical applications are discussed.

Index Terms—Autocorrelation Coefficient, Data Independence,
Random Fields, Reverberation Chambers, Statistical Electromag-
netism.

I. INTRODUCTION

Statistical dispersion of field-related quantities in a re-
verberation chamber (RC) is conditioned by the degree of
homogeneity of the field inside the chamber. Ideally, the
excitation of a minimum number of modes [1] allows the field
to approximatively follow a Gaussian law.

It is common to quantify stirrer efficiency by assessing the
number of stirrer steps for which the field can be regarded
as reasonably uncorrelated between two contiguous steps [2].
The question of how to estimate this number of positions
has been the topic of many papers [3]–[6] and will not be
considered here. If the case of the standards are considered, a
large number of samples is used in order to obtain a more ac-
curate estimate of the autocorrelation coefficient, from which a
decimation factor can then be deduced. This decimation factor
allows reducing the number of stirrer positions to the one that
ideally corresponds to independent test configurations within
the RC, avoiding redundant test results and ultimately saving
time.

In order to check the Gaussian fit of the field, goodness-of-
fit (GOF) tests can be used as explained in [2]. To the best of
our knowledge, it is not clear if the set of data to use must be
the decimated one, i.e., the set made up of uncorrelated data,
or the complete set of data which provides more samples, even
though partially correlated. It is indeed commonly thought
that GoF need independent samples to be applied. In practice,
samples being correlated, the condition of using independent
samples is cut short and one may wonder about the possible
use of correlated (and whence dependent) data.

The present work aims to give some insight into this ques-
tion. To that end, we will recall in Section II the most common

GOF tests used in the context of RCs, while Section III will
analyze GOF outcomes according to the autocorrelation model
used to generate correlated data. Section III-C will also focus
on GOF results but in the case of measured data. Finally,
a tentative interpretation of the results will be proposed in
Sec. IV.

Our findings show to what extent different GOF tests usually
implemented within the EMC community are sensitive to data
autocorrelation.

II. GOODNESS-OF-FIT TESTS

In order to determine if a set of samples belong to a given
probability distribution, GOF tests can be used as a statistical
decision tool. These tests can be performed, e.g., with the
real and/or imaginary parts of the electric field in order to
check if these follow a Gaussian law. But these tests can
also be applied to field modulus samples in order to check
whether these follow a Rayleigh distribution. In both cases, a
null hypothesis, referred to as H0, is formulated and tested.

There are several existing GOF tests, and, with the same
set of data, the outcome can differ from one GOF test to
another. This is due to the fact that each GOF is based on
a different metric. The question raised herein is not to know
which GOF is the more adequate to RC applications but rather
to use the most popular ones and to analyze their sensitivity to
correlated data. Although not exhaustive, the most commonly
encountered ones are the following:
• the χ2 test [7],
• The Lilliefors (L) test [8],
• the Kolmogorov-Smirnov (KS) test [9],
• the Anderson-Darling (AD) test [5], [10].
The χ2 test determines whether there is a significant

difference between the theoretical frequencies of occurrence
and the observed frequencies. It tells if the inevitable dif-
ference between the expected and observed values is due
to stochastic dispersion in the sample, or if it there is a
significant underlying difference. The Lilliefors and KS tests
both estimate the maximum distance between the empirical
cumulative distribution function (cdf ) and the expected one.
The distance is compared to a critical value, often referred to as
DKS , in order to decide whether the sample data belong to the
expected distribution. The Lilliefors test uses sample moments
unlike KS for which the moments of the expected distribution
need to be specified a priori. The AD test integrates a weighted
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difference between the sample cdf and the expected one. The
weighted function is such that the test focuses more on the
tails of the distribution than in other tests.

In what follows, these GOF tests will be performed on
synthetic data generated numerically and on data obtained
experimentally.

III. SENSITIVITY OF GOF ON SYNTHESIZED DATA

In this section we will present an approach where the first
lag correlation coefficient is controlled in order to analyze if
the outcomes of GOF tests are somewhat related to the degree
of correlation.

A. Correlation Models

The idea is to generate correlated data to emulate, on aver-
age, what one could obtain by using a stirrer in practice. We
are interested in generating two different correlation models.
This allows us to see if the sensitivity is only linked to the
lag-1 correlation, referred to as ρl, or if the correlation model
itself has an impact on GOF outcomes.

We consider a set xi whose samples follow a standardized
normal law. For such a case, let us recall that the lag-1
coefficient is such that ρl = E [xixi−1], where E [·] is the
ensemble average operator.

The first model is a first-order autoregressive (AR(1)) [11]
model based on the following recursive equation:

x1 = η1,

xi = ρxi−1 + ηi
√
1− ρ2, (1)

where the random variable η is standardized, i.e., η ∼ N (0, 1).
For such an AR(1) model, we report in Fig. 1 the autocorre-
lation function obtained (by using 5000 samples) for ρ = 0.3
and ρ = 0.7, respectively. It is clear that ρl corresponds to ρ.

The second model considered herein is an AR(2) model for
the correlation that may exist between a field value obtained
at a given position and those obtained at the two preceding
positions. The recursive equation reads in that case,

xi = ρxi−1 + ρ′xi−2 + γηi. (2)

Note that (2) can be regarded as a dynamic system that may
be unstable1if {ρ, ρ′} are not properly chosen. As in (1), the
coefficient weighting ηi, here γ, is set to ensure xi to be

standardized such that γ =

√
1− (ρ+ ρ′)

2. This condition
also provides a restriction on the possible values of ρ and ρ′

since (ρ+ ρ′)
2 must be less than 1. The (somewhat arbitrary)

choice made to fulfill the constraints on ρ and ρ′ is such that
ρ′ = 0.25 ρ. Although not intuitive, for an AR(2) model, ρl is
a function of ρ and ρ′ such that ρl = ρ/(1− ρ′), i.e., is larger
than for an AR(1) model for a given ρ and ρ′ 6= 0. In what
follows, the number of data per set will be referred to as N .

B. Results

By considering a AR(1) model and by using (1), we
generated data used as input to the GOF tests. The simulation

1if the poles modulus is larger than 1.
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Fig. 1. Autocorrelation function obtained by using the model given by (1)
for ρ = 0.3 (asterisks) and ρ = 0.7 (squares), respectively.
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Fig. 2. Rejection rates (α = 5%), obtained with an AR(1) model, for
different samples sizes and GOF tests as a function of data autocorrelation.

study is carried out by generating sets of xi with N = 50 and
N = 500 and for 50 values of ρ uniformly distributed over
[0:1]. To reduce statistical uncertainties, each realization was
repeated a thousand times.

Fig. 2 summarizes the percentage of rejected null hy-
potheses of normality for different GOF tests under study and
different sample numbers, for a significance level α = 5% (p-
value). We stress the fact that these rejection rates are solely
coming from data correlation, since the tested data sets come
from a normal parent distribution, as described by the process
in (1).

It can be seen that the KS test shows a higher sensitivity to
data autocorrelation than other GOF tests. It seems also more
robust against different sample sizes. From these results, it
appears that KS test could be suggested as a way of identifying
residual autocorrelation on data, even for low values of ρ.

In order to highlight the case of the KS test sensitivity,
critical values are plotted in Fig. 3 for a varying number of
independent realizations2 and different correlation levels. We
can see that DKS values are shifted upwards as the correlation
rises. For ρ < 0.5, we notice that DKS is almost insensitive
to the degree of correlation, i.e., is almost similar to the iid
case.

Another interesting way to tackle this analysis is to wonder
which correlation level corresponds to an average p-value of
5%, the average being performed over sets of p-values taken
from tests repeated a thousand times. Fig. 4 shows the results

2that correspond to stirrer states ideally independent in practice.
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Fig. 3. The KS threshold obtained for different correlation levels as a
function of the number of stirrer states. The threshold obtained for the classic
(uncorrelated) case (solid line) is shown as well as the thresholds obtained
for values of ρ reported in the figure and running from 0 to 0.9.
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Fig. 4. Correlation threshold leading to an average empirical p-value of 5%
as a function of the number of stirrer states.

obtained for the different GOF tests (see legend). We observe
that the correlation level for non-KS tests is quite high and
almost independent of the number of stirrer states.

Now, let us analyze the rejection rate obtained when using
an AR(2) model. Fig. 5 shows the corresponding results. It
can be seen that non-KS tests (dashed line, dashed-dotted line
and green line) are still insensitive to correlation, whereas the
KS rejection rate increases faster (solid line) than what was
obtained with an AR(1) model (dotted line). In a way, the
AR(2) provides a higher average correlation level2which could
explain the difference of slopes in the rejection-rate curves
obtained for the two AR models considered here.

C. Experimental Setup and Measurements

We will check now if the sensitivity of the GOF tests studied
herein is also observed when experimental data are used.

Measurements were performed in the RC facility of the
Eindhoven University of Technology. The chamber is 4 ×
5× 2.85 (h) m with a lowest useable frequency of 200 MHz,
according to the criteria in [2]. A signal generator, a RF power

2as the for the lag-1 case, for a given ρ, the lag-2 coefficient is larger for the
case of an AR(2) model than for an AR(1) model; it equals ρ′+ρ2/(1−ρ′)
for the former and only ρ2 for the latter.
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Fig. 5. Rejection rates obtained with an AR(2) model for N = 500. χ2

(dashed line) AD (dashed dotted line) and Lilliefors (Green) do not seem to
be sensitive to correlation, unlike the KS test, for which the AR(1) result has
been reported for comparison.
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Fig. 6. Average lag-1 autocorrelation coefficient of measured data inside an
RC at 1GHz, for different levels of sample decimation (different sample size).
Vertical bars stand for 95% confidence intervals.

amplifier and a log-periodic antenna (80 MHz - 1 GHz) were
used in order to inject electromagnetic energy into the RC at
a fixed frequency of 1 GHz. The three cartesian components
of the electric field magnitude were measured by an electric
field probe located inside the working volume for a total of
3600 stirrer positions (one field sample every 0.1 ◦). As is well
known, ideally each field component is expected to follow a
Rayleigh distribution. By taking such small stirrer step angles,
we intend to generate highly correlated data that are also
reasonably Rayleigh distributed as well.

The procedure is to start with the complete set of 3600
samples, estimate ρl and apply the different GOF tests. Sub-
sequently, we will decimate the set, in order to get a lower ρl
(as well as a lower number of samples) and again apply the
different GOF tests. We perform this process with increasing
decimation until reaching a set of 12 samples. Fig. 6 shows the
estimated ρl by using the three field components as a function
of the sample size. As expected, the degree of correlation
lowers as the decimation factor increases.

Three different GOF tests were applied to the increasingly
decimated data: the χ2, the KS, and the AD tests. The
Lilliefors test could be applied to test against a Rayleigh
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Fig. 7. Rejection rates (α = 5%) for different GOF tests (see legend) as a
function of lag-1 autocorrelation for measured data.

distribution but tables needed for that specific case are not
available. Fig. 7 highlights the rejection rates as a function
of lag-1 correlation for the measured (and decimated) sets of
data. Similar conclusions as from the simulation study can be
drawn: GOF tests other than the KS appear insensitive to data
autocorrelation, even for relatively high values of ρl, whereas
KS tests seem to be as sensitive as what was observed with
numerical results.

IV. DISCUSSION

To understand the pertinence of the results presented in the
previous sections, it is worth recalling that the main effect
of correlation is to reduce the range value spanned by the
successive data samples, by introducing a direct dependence,
roughly said, a sort of drag or inertia.

This has a impact on the number of bins that need to be
set for the χ2 test. As long as the correlation allows the
data to span a sufficiently wide range of values to balance
the frequencies in the different classes according to Cochran’s
criterion, the χ2 test remains operational. When the correlation
becomes too strong, the values spread collapses to a narrow
value interval that makes possible only the definition of a
single bin. And then the test fails.

The same idea can be transposed to the AD test where
the empirical cdf fails to be representative of the whole real
distribution; only a small portion of the cdf becomes accessible
and the comparison to a reference distribution becomes no
longer possible.

Concerning the KS test, the outcome is conditioned by
Kolmogorov statistics. This statistics are sometimes called the
Brownian bridge that assumes a random Brownian motion.
Variations are due to trajectories, assumed to be indepen-
dent. This independence is not the same concept required
for independent data samples, as repeatedly used throughout
the present work. However, a causality seems to exist. The
correlation has an impact on the KS critical value, but to the
best of our knowledge, there is no simple relation between
the proper DKS value and ρl. From the results presented in
the previous section, the typical critical value 1.36/

√
N (solid

line in Fig. 3) seems too be low when correlation intervenes,
such that H0 is often rejected.

Finally, the Lilliefors test seems to be more robust by using
sample moments than the KS test, but it is not easy to be more
specific on the reasons that make it more robust.

V. CONCLUSIONS

Uncorrelated data were shown not to be necessary when
performing χ2, Anderson-Darling, or Lilliefors GOF tests. It
seems that these tests fail when a correlation of about 90% is
reached. However, the Kolmogorov-Smirnov test was shown
to be very sensitive to correlation. These results were obtained
by using synthetic data and experimental data. The rejection
rate obtained highlighted the same clear trends.

As stated in standards, GoF evaluates the mismatch between
the measured and the theoretical (ideal) distribution functions
of field or power density. As highlighted in the present work,
an RC user can perform some of these GoF tests without caring
about the possible correlation that may exist between samples.
In other terms, if the test is well chosen, there is no need to
decimate the data to have an insight on the overmodedness of
the chamber.

As a perspective, the KS GOF test could be thought as a way
to detect correlation in scenarios where the data distribution
is known in advance.
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