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Abstract

This tutorial provides an introduction to conditioning in spatial

point processes or so-called Palm distributions. Initially, in the con-

text of finite point processes, we give an explicit definition of Palm

distributions in terms of their density functions. Then we review Palm

distributions in the general case. Finally we discuss some examples of

specific models and applications.
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1 Introduction

A spatial point process X is briefly speaking a random subset of the d-
dimensional Euclidean space R

d, where d = 2, 3 are the cases of most prac-
tical importance. When studying spatial point process models and making
statistical inference, the conditional distribution of X given a realization of
X on some specified region or given the locations of one or more points in
X plays an important role, see e.g. Møller and Waagepetersen (2004) and
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Chiu et al. (2013). In this paper we focus on the latter type of conditional
distributions which are formally defined in terms of so-called Palm distribu-
tions, first introduced by Palm (1943) for stationary point processes on the
real line. Rigorous definitions and generalizations of Palm distributions to R

d

and more abstract spaces have mainly been developed in probability theory,
see Jagers (1973) for references and an historical account. Palm distributions
are, at least among many applied statisticians and among most students, con-
sidered one of the more difficult topics in the field of spatial point processes.
This is partly due to the general definition of Palm distributions which re-
lies on measure theoretical results, see e.g. Møller and Waagepetersen (2004)
and Daley and Vere-Jones (2008). The account of conditional distributions
for point processes in Last (1990) is mainly intended for probabilists and is
not easily accessible due to an abstract setting and extensive use of measure
theory.

This tutorial provides an introduction to Palm distributions for spatial
point processes. Our setting and background material on point processes are
given in Section 2. Section 3, in the context of finite point processes, provides
an explicit definition of Palm distributions in terms of their density functions
while Section 4 reviews Palm distributions in the general case. Section 5
discusses examples of Palm distributions for specific models and Section 6
considers applications of Palm distributions in the statistical literature.

2 Prerequisites

2.1 Setting and notation

We view a point process as a random locally finite subset X of a Borel set
S ⊆ R

d; for measure theoretical details, see e.g. Møller and Waagepetersen
(2004) or Daley and Vere-Jones (2003). Denoting XB = X∩B the restriction
of X to a set B ⊆ S, and N(B) the number of points in XB, local finiteness
of X means that N(B) < ∞ almost surely (a.s.) whenever B is bounded.
We denote by B0 the family of all bounded Borel subsets of S and by N the
state space consisting of the locally finite subsets (or point configurations)
of S. Section 3 considers the case where S is bounded and hence N is all
finite subsets of S, while Section 4 deals with the general case where S is
arbitrary, i.e., including the case S = R

d.
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2.2 Poisson process

The Poisson process is of its own interest and also used for constructing other
point processes as demonstrated in Section 2.3 and Section 5.

Suppose ρ : S 7→ [0,∞) is a locally integrable function, that is, α(B) :=
∫

B
ρ(x) dx < ∞ whenever B ∈ B0. ThenX is a Poisson process with intensity

function ρ if for any B ∈ B0, N(B) is Poisson distributed with mean α(B),
and conditional on N(B) = n, the n points are independent and identically
distributed, with a density proportional to ρ (if α(B) = 0, then N(B) = 0).
In fact, this definition is equivalent to that for any B ∈ B0 and any non-
negative measurable function h on {x ∩ B|x ∈ N}, letting |B| denote the
Lebesgue measure of B,

Eh(XB) =

∞
∑

n=0

exp(−|B|)

n!
∫

B

· · ·

∫

B

h({x1, . . . , xn})ρ(x1) · · ·ρ(xn) dx1 · · · dxn , (1)

where for n = 0 the term is exp(−|B|)h(∅), where ∅ is the empty point
configuration.

Note that the definition of a Poisson process only requires the existence
of the intensity measure α, since a point of the process restricted to B ∈ B0

has probability distribution α(· ∩B)/α(B) provided α(B) > 0. We shall use
this extension of the definition in Section 5.3.2.

2.3 Finite point processes specified by a density

Assume S is bounded, let Z be a unit rate Poisson process on S, and assume
the distribution of X is absolutely continuous with respect to the distribution
of Z (in short with respect to Z) with density f . Thus, for any non-negative
measurable function h on N ,

Eh(X) = E{f(Z)h(Z)}. (2)

Moreover, by (1),

Eh(X) =

∞
∑

n=0

exp(−|S|)

n!
∫

S

· · ·

∫

S

h({x1, . . . , xn})f({x1, . . . , xn}) dx1 · · · dxn. (3)
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This motivates considering probability statements in terms of exp(−|S|)f(·).
For example, with h(x) = 1(x = ∅), where 1(·) denotes indicator function,
we obtain that P (X = ∅) is exp(−|S|)f(∅). Further, for n ≥ 1,

exp(−|S|)f({x1, . . . , xn}) dx1 · · · dxn

is the probability that X consists of precisely n points with one point in each
of n infinitesimally small sets B1, . . . , Bn around x1, . . . , xn with volumes
dx1, . . . dxn, respectively. Loosely speaking this event is ‘X = {x1, . . . , xn}’.

Suppose we have observed X ∩ B = xB and we wish to predict the
remaining point process XS\B. Then it is natural to consider the conditional
distribution of XS\B given X ∩ B = xB. By definition of a Poisson process,
Z = ZB ∪ ZS\B where ZB and ZS\B are each independent unit rate Poisson
processes on respectively B and S \ B. Thus, in analogy with conditional
densities for multivariate data, this conditional distribution can be specified
in terms of the conditional density

fS\B(xS\B|xB) =
f(xB ∪ xS\B)

fB(xB)

with respect to ZS\B and where

fB(xB) = Ef(ZS\B ∪ xB)

is the marginal density ofXB with respect to ZB. Thus the conditional distri-
bution given a realization of X on some prespecified region B is conceptually
quite straightforward. Conditioning on that some prespeficied points belong
to X is more intricate but an explicit account of this is provided in the next
section where it is still assumed that X is specified in terms of a density.

3 Palm distributions in the finite case

For understanding the definition of a Palm distribution, it is useful to assume
first that S is bounded and that X has a density as introduced in Section 2.3
with respect to a unit rate Poisson process Z. We make this assumption in
the present section, while the general case will be treated in Section 4.
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3.1 Conditional intensity and joint intensities

Suppose f is hereditary, i.e., for any pairwise distinct x0, x1, . . . , xn ∈ S,
f({x1, . . . , xn}) > 0 whenever f({x0, x1, . . . , xn}) > 0. We can then define
the so-called nth order Papangelou conditional intensity by

λ(n)(x1, . . . , xn,x) = f(x ∪ {x1, . . . , xn})/f(x) (4)

for pairwise distinct x1, . . . , xn ∈ S and x ∈ N \{x1, . . . , xn}, setting 0/0 = 0.
By the previous interpretation of f , λ(n)(x1, . . . , xn,x) dx1 · · · dxn can be
considered as the conditional probability of observing one point in each of the
abovementioned infinitesimally small sets Bi conditional on that X outside
∪n
i=1Bi agrees with x.
For any n = 1, 2, . . ., we define for pairwise distinct x1, . . . , xn ∈ S the

nth order joint intensity function ρ(n) by

ρ(n)(x1, . . . , xn) = Ef(Z ∪ {x1, . . . , xn}) (5)

provided the right hand side exists. Particularly, ρ = ρ(1) is the usual inten-
sity function. If f is hereditary, then ρ(n)(x1, . . . , xn) = Eλ(n)(x1, . . . , xn,X)
and by the interpretation of λ(n) it follows that ρ(n)(x1, . . . , xn) dx1 · · · dxn

can be viewed as the probability that X has a point in each of n infinites-
imally small sets around x1, . . . , xn with volumes dx1, . . . dxn, respectively.
Loosely speaking, this event is ‘x1, . . . , xn ∈ X’.

Combining (2) and (5) with either (3) or the extended Slivnyak-Mecke
formula for the Poisson process given later in (17), it is straightforwardly
seen that

E

6=
∑

x1,...,xn∈X

h(x1, . . . , xn)

=

∫

S

· · ·

∫

S

h(x1, . . . , xn)ρ
(n)(x1, . . . , xn) dx1 . . . dxn (6)

for any non-negative measurable function h on Sn, where 6= over the summa-
tion sign means that x1, . . . , xn are pairwise distinct. Denoting N = N(S)
the number of points in X, the left hand side in (6) with h = 1 is seen to be
the factorial moment E{N(N − 1) · · · (N − n+ 1)}.
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3.2 Definition of Palm distributions in the finite case

Now, suppose x1, . . . , xn ∈ S are pairwise distinct and ρ(n)(x1, . . . , xn) > 0.
Then we define the reduced Palm distribution of X given points at x1, . . . , xn

as the distribution P!
x1,...,xn

for the point process X!
x1,...,xn

with density

fx1,...,xn
(x) =

f(x ∪ {x1, . . . , xn})

ρ(n)(x1, . . . , xn)
, x ∈ N , x ∩ {x1, . . . , xn} = ∅, (7)

with respect to Z. If x1, . . . , xn ∈ S are not pairwise distinct or ρ(n)(x1, . . . , xn)
is zero, the choice of X!

x1,...,xn
and its distribution P!

x1,...,xn
is not of any im-

portance for the results in this paper. Furthermore, the (non-reduced) Palm
distribution of X given points at x1, . . . , xn is simply the distribution of the
union X!

x1,...,xn
∪ {x1, . . . , xn}.

3.3 Remarks

By the previous infinitesimal interpretations of f and ρ(n), we can view
exp(−|S|)fx1,...,xn

(x) as the ‘joint probability’ that X equals the union x ∪
{x1, . . . , xn} divided by the ‘probability’ that x1, . . . , xn ∈ X. Thus P!

x1,...,xn

has an interpretation as the conditional distribution of X\{x1, . . . , xn} given
that x1, . . . , xn ∈ X. Conversely,

exp(−|S|)f({x1, . . . , xn}) = ρ(n)(x1, . . . , xn)P
(

X!
{x1,...,xn} = ∅

)

(8)

provides a factorization into the ‘probability’ of observing {x1, . . . , xn} times
the conditional probability of not observing further points.

We obtain immediately from (5) and (7) that for any pairwise distinct
x1, . . . , xn ∈ S and m = 1, 2, . . ., X!

x1,...,xn
has mth order joint intensity

function

ρ(m)
x1,...,xn

(u1, . . . , um) =

{

ρ(m+n)(u1,...,um,x1,...,xn)

ρ(n)(x1,...,xn)
if ρ(n)(x1, . . . , xn) > 0

0 otherwise
(9)

for pairwise distinct u1, . . . , um ∈ S \ {x1, . . . , xn}. Moreover, the so-called
pair correlation function is for u, v ∈ S defined as

g(u, v) = ρ(2)(u, v)/{ρ(u)ρ(v)}

provided ρ(u)ρ(v) > 0 (otherwise we set g(u, v) = 0). If ρ(u)ρ(v) > 0, then

g(u, v) = ρv(u)/ρ(u) = ρu(v)/ρ(v), (10)
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cf. (9). Thus, g(u, v) > 1 (g(u, v) < 1) means that the presence of a point at
u yields an elevated (decreased) intensity at v and vice versa.

For later use, notice that

E

6=
∑

x1,...,xn∈X

h(x1, . . . , xn,X \ {x1, . . . , xn})

=

∫

S

· · ·

∫

S

Eh(x1, . . . , xn,X
!
x1,...,xn

)ρ(n)(x1, . . . , xn) dx1 · · · dxn (11)

for any non-negative measurable function h on Sn ×N . This is straightfor-
wardly verified using (3) and (7). Assuming f is hereditary and rewriting
the expectation in the right hand side of (11) in terms of

fx1,...,xn
(x) = f(x)λ(n)(x1, . . . , xn,x)/ρ

(n)(x1, . . . , xn) ,

the finite point process case of the celebrated Georgii-Nguyen-Zessin (GNZ)
formula

E

6=
∑

x1,...,xn∈X

h(x1, . . . , xn,X \ {x1, . . . , xn})

=

∫

S

· · ·

∫

S

Eh(x1, . . . , xn,X)λ(n)(x1, . . . , xn,X) dx1 · · · dxn (12)

is obtained (Georgii, 1976; Nguyen and Zessin, 1979). We return to the GNZ
formula in connection to Gibbs processes in Section 5.2.

4 Palm distributions in the general case

The definitions and results in Section 3 extend to the general case where S
is any Borel subset of R

d. However, if |S| = ∞, the unit rate Poisson process
on S will be infinite and we can not in general assume that X is absolutely
continuous with respect to the distribution of this process. Thus we do not
longer have the direct definitions (5) and (7) of ρ(n) and X!

x1,...,xn
in terms of

density functions.

4.1 Definition of Palm distributions in the general case

In fact (6) is usually taken as the definition of the nth order joint intensity
for X, provided there exists such a non-negative measurable function ρ(n).
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Technically speaking, viewing the left hand side in (6) as an integral
∫

h dα(n),
where α(n) is called the nth order factorial moment measure on Sn, ρ(n) is
assumed to be a density for α(n) with respect to Lebesgue measure on Sn.
Here, α(n) is required to be a locally finite measure, i.e.,

∫

B

· · ·

∫

B

ρ(n)(x1, . . . , xn) dx1 · · · dxn < ∞ for all B ∈ B0. (13)

Thereby (11) can be used as the definition of the reduced Palm distribu-
tions, where their existence follows by measure theoretical arguments, see
e.g. Møller and Waagepetersen (2004). This definition thus extends in a
mathematically sound manner the previous definition of Palm distributions
to point processes in general but seems intuitively less appealing. Further-
more, the (non-reduced) Palm distribution of X given points at x1, . . . , xn is
the distribution of X!

x1,...,xn
∪ {x1, . . . , xn}.

4.2 Remarks

In the general setting, ρ(n)(x1, . . . , xn) and P!
x1,...,xn

are then clearly only
determined up to a Lebesgue nullset of Sn. For simplicity and since usually
there are natural choices of ρ(n)(x1, . . . , xn) and P!

x1,...,xn
, such nullsets are

often ignored. Further, as in the finite case, ρ(n)(x1, . . . , xn) and P!
x1,...,xn

are
invariant under permutations of the points x1, . . . , xn, and

(

X!
x1,...,xm

)!

xm+1,...,xn

= X!
x1,...,xn

(14)

whenever 0 < m < n and x1, . . . , xn are pairwise distinct.
Suppose thatX is stationary, i.e., its distribution is invariant under trans-

lations in R
d and so S = R

d (unless X = ∅ which is not a case of our interest).
This is a specially tractable case, which makes an alternative description of
Palm distributions possible. Let ρ denote the constant intensity of X and let
o denote the origin in R

d. First, we define

P!
o(F ) =

1

ρ|B|
E

∑

x∈XB

1(X \ {x} − x ∈ F ) (15)

for any B ∈ B0 with |B| > 0, where by stationarity of X the right hand side
does not depend on the choice of B. Second, we define

P!
x(F ) = P!

o(F − x) (16)

8



for any x ∈ R
d. One can then check that the P!

x, x ∈ R
d, defined in this way

satisfy (11) so that (16) indeed defines a Palm distribution, see Appendix C.2
in Møller and Waagepetersen (2004) for details. Note that (16) is equivalent
to that X!

x − x and X!
o are identically distributed. The reduced Palm distri-

bution P!
o is often interpreted as the ‘conditional distribution for the further

points in X given a typical point of X’.

5 Examples of Palm distributions

For some classes of point processes, explicit characterizations of the Palm
distributions are possible. Below we consider Poisson processes, Gibbs pro-
cesses, and log Gaussian Cox processes (LGCPs) which share the property
that their Palm distributions of any order are again respectively Poisson,
Gibbs, and LGCPs. We also consider shot-noise Cox processes, where one
point Palm distributions are not shot-noise Cox processes but have simple
characterizations as cluster processes.

5.1 Poisson processes

In the finite case, by (1), a Poisson process X with intensity function ρ has
density f(x) ∝

∏

u∈x ρ(u), and so by (7), X!
x1,...,xn

is distributed as X. In the
general case, we appeal to the extended Slivnyak-Mecke formula which for a
Poisson process X with intensity function ρ states that

E

6=
∑

x1,...,xn∈X

h(x1, . . . , xn,X \ {x1, . . . , xn})

=

∫

S

· · ·

∫

S

Eh(x1, . . . , xn,X)ρ(x1) · · ·ρ(xn) dx1 · · · dxn (17)

for any non-negative measurable function h on Sn ×N , see Theorem 3.3 in
Møller and Waagepetersen (2004) and the references therein. This implies
that

ρ(n)(x1, . . . , xn) = ρ(x1) · · ·ρ(xn)

and X!
x1,...,xn

is just distributed as X. In fact, the property that X!
x ∼ X for

all x ∈ S is characterizing the Poisson process, see e.g. Proposition 5 in Jagers
(1973). Further, it makes it possible to calculate various useful functional
summaries, see e.g. Møller and Waagepetersen (2004), and constructions such
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as stationary Poisson-Voronoi tessellations become manageable, see Møller
(1989, 1994).

5.2 Gibbs processes

Gibbs processes play an important role in statistical physics and spatial
statistics, see Møller and Waagepetersen (2004) and the references therein.
Below, for ease of presentation, we consider first a finite Gibbs process.

A finite Gibbs process on a bounded set S ⊂ R
d is usually specified in

terms of its density or equivalently in terms of the Papangelou conditional
intensity, where the density is of the form

f(x) = exp

{

−
∑

y⊆x

Φ(y)

}

for a so-called potential function Φ on N . It follows that the nth order
Palm distribution of a Gibbs process with respect to x1, . . . , xn is itself a
Gibbs process with potential function Φx1,...,xn

(y) = Φ({x1, . . . , xn} ∪ y).
Moreover, for pairwise distinct u1, . . . , um, x1, . . . , xn ∈ S and x ∈ N \
{u1, . . . , um, x1, . . . , xn}, the mth order Papangelou conditional intensity of
X!

x1,...,xn
is simply

λ!(m)
x1,...,xn

(u1, . . . , um,x) = λ(m)(u1, . . . , um,x ∪ {x1, . . . , xn}).

For instance, a first order inhomogeneous pairwise interaction Gibbs point
process has first order potential Φ({u}) = Φ1(u), second order potential
Φ({u, v}) = Φ2(v − u), and Φ(y) = 0 whenever the cardinality of y is
larger than two; see Møller and Waagepetersen (2004) for conditions on the
functions Φ1 and Φ2 ensuring that the model is well-defined. The Strauss
model (Strauss, 1975; Kelly and Ripley, 1976) is a particular case with
Φ1(u) = θ1 ∈ R and Φ2(u − v) = θ21(‖u − v‖ ≤ R), for θ2 ≥ 0 and
0 < R < ∞. The Palm process X!

x1,...,xn
becomes again an inhomogeneous

pairwise interaction Gibbs process with inhomogeneous first order potential
Φx1,...,xn

({u}) = Φ1(u)+
∑n

i=1Φ2(u−xi) and second order potential identical
to that of X.

In the general case, a Gibbs process can be defined (Nguyen and Zessin,
1979) in terms of the GNZ formula (12) briefly discussed at the end of Sec-
tion 3: X is a Gibbs point process with Papangelou conditional intensity λ

10



if λ is a non-negative measurable function on S ×N such that

E
∑

x∈X

h(x,X \ {x}) = E

∫

S

λ(x,X)h(x,X) dx (18)

for any non-negative measurable function h on S×N . For conditions ensuring
that (18) holds, we refer to Ruelle (1969) and Georgii (1988).

By the extensions of (6) and (11) to the general case, (18) implies ρ(x) =
Eλ(x,X). Unfortunately, in general it is not feasible to express ρ(x) =
Eλ(x,X) on closed form, though approximations exist (Baddeley and Nair,
2012). Also, for Gibbs processes, the pair correlation function g(u, v) can
be below or above 1 depending on u and v (see e.g. pages 240-241 in Illian
et al., 2008), and so from (10), ρv(u) may be smaller or larger than ρ(u),
depending on u and v. Moreover, for pairwise distinct x1, . . . , xn ∈ S, P!

x1,...,xn

is absolutely continuous with respect to the distribution of X, with density
λ(n)(x1, . . . , xn, ·), where

λ(n)(x1, . . . , xn,x) = λ(x1,x)λ(x2,x ∪ {x1})

· · ·λ(xn,x ∪ {x1, . . . , xn−1})

for x1, . . . , xn ∈ S and x ∈ N . This follows from (12) and (18) and is in
accordance with (4) and (14).

5.3 Cox processes

Let Λ = {Λ(x)}x∈S be a non-negative random field such that Λ is locally
integrable a.s., that is, for any B ∈ B0, the integral

∫

B
Λ(x) dx exists and

is finite a.s. Suppose X is a Cox process with random intensity function
Λ, i.e., conditional on Λ, X is a Poisson process with intensity function Λ.
Apart from very simple models of Λ such as all Λ(x) being equal to the
same random variable following e.g. a gamma distribution, the density of X
restricted to a set B ∈ B0 is intractable. However, if Λ has moments of any
order n = 1, 2, . . ., then by conditioning on Λ and using (11) and (17), we
immediately get the following: For any pairwise distinct x1, . . . , xn ∈ S and
any non-negative measurable function h on Sn × N , the product densities
are

ρ(n)(x1, . . . , xn) = E

{

n
∏

i=1

Λ(xi)

}

(19)
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and the reduced Palm distributions satisfy

E
{

h
(

x1, . . . , xn,X
!
x1,...,xn

)}

ρ(n)(x1, . . . , xn)

= E

{

h(x1, . . . , xn,X)
n
∏

i=1

Λ(xi)

}

. (20)

In the sequel, we consider distributions of Λ, where (19)-(20) become useful.

5.3.1 Log Gaussian Cox processes

Let Λ(x) = exp{Y (x)}, where Y = {Y (x)}x∈S is a Gaussian process with
mean function µ and covariance function c so that Λ is locally integrable
a.s. (simple conditions ensuring this are given in Møller et al., 1998). Then
X is a log Gaussian Cox process (LGCP) as introduced by Coles and Jones
(1991) in astronomy and independently by Møller et al. (1998) in statistics.
By Møller et al. (1998, Theorem 1), for pairwise distinct x1, . . . , xn ∈ S,

ρ(n)(x1, . . . , xn) =

{

n
∏

i=1

ρ(xi)

}{

∏

1≤i<j≤n

g(xi, xj)

}

, (21)

where ρ(x) = exp{µ(x) + c(x, x)/2} is the intensity function and the pair
correlation function (10) is g(u, v) = exp{c(u, v)}. The intensity of X!

x1,...,xn

takes the form

ρx1,...,xn
(u) = ρ(u)

n
∏

i=1

g(u, xi) (22)

so in the common case where c is positive, the intensity of X!
x1,...,xn

is larger
than that of X.

In Coeurjolly et al. (2015) it is verified that for pairwise distinct
x1, . . . , xn ∈ S, X!

x1,...,xn
is an LGCP with underlying Gaussian process

{Y (x) +
∑n

i=1 c(x, xi)}x∈S. Note that this Gaussian process also has covari-
ance function c but its mean function is µx1,...,xn

(x) = µ(x) +
∑n

i=1 c(x, xi).
Coeurjolly et al. (2015) discuss how this result can be exploited for functional
summaries. Moreover, if the covariance function c is non-negative, X is dis-
tributed as an independent thinning of X!

x1,...,xn
with inclusion probabilities

p(u) = exp{−
∑n

i=1 c(x, xi)}.
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5.3.2 Shot noise Cox processes

For a shot noise Cox process (Møller, 2003),

Λ(x) =
∑

j

γjk(cj , x),

where k(cj, ·) is a kernel (i.e., a density function for a continuous d-dimensional
random variable) and the (cj , γj) are the points of a Poisson process Φ on
R
d × (0,∞) with intensity measure α so that Λ becomes locally integrable

a.s. It can be viewed as a cluster process X = ∪jYj, where conditional on
Φ, the cluster Yj is a Poisson process with intensity function γjk(cj, ·) and
the clusters are independent.

The intensity function is

ρ(x) =

∫

γk(c, x) dα(c, γ),

provided the integral is finite for all x ∈ S. Making this assumption, it can
be verified that for x ∈ S with ρ(x) > 0, X!

x is a Cox process with random
intensity function Λ(·) + Λx(·), where Λx(·) = γxk(cx, ·), and where (cx, γx)
is a random variable independent of Φ and defined on S × (0,∞) such that
for any Borel set B ⊆ S × (0,∞),

P {(cx, γx) ∈ B} =

∫

B
γk(c, x) dα(c, γ)

ρ(x)
,

cf. Møller (2003, Proposition 2). In other words, X!
x is distributed as X∪Yx,

where Yx is independent of X and conditional on (cx, γx), the ‘extra cluster’
Yx is a finite Poisson process with intensity function γxk(cx, ·). Thus, as for
an LGCP with positive covariance function, P !

x has a higher intensity than
X!

x.
For instance, if dα(c, γ) = dc dχ(γ), where χ is a locally finite measure

on (0,∞), then ρ(x) = κf(x), where it is assumed that κ =
∫

γ dχ(γ) <
∞ and f(x) =

∫

k(c, x) dc < ∞, and furthermore, for ρ(x) > 0, cx and
γx are independent, cx follows the density k(·, x)/f(x), and P(γx ∈ A) =
κ−1

∫

A
γ dχ(γ). The special case of a Neyman-Scott process (Neyman and

Scott, 1958) occurs when S = R
d, χ is concentrated at a given value γ > 0,

χ({γ}) < ∞, and k(c, ·) = ko(·−c), where ko is a density function. Then X is
stationary, ρ = κ = γχ({γ}), cx has density ko(x− ·), and conditional on cx,

13



Yx is a finite Poisson process with intensity function γko(· − cx). Examples
include a (modified) Thomas process, where ko is a zero-mean normal density,
and a Matérn cluster process, where ko is a uniform density on a ball centered
at the origin. For n > 1, the nth order reduced Palm distributions become
more complicated.

In a Neyman-Scott process, the number of points in the clusters are in-
dependent and identically Poisson distributed. A stationary Poisson cluster
process is obtained by replacing the Poisson distribution by any discrete dis-
tribution on the non-negative integers. Finally, we notice that the Palm
distribution for stationary Poisson cluster processes and more generally in-
finitely divisible point processes can also be derived, see Chiu et al. (2013)
and the references therein.

6 Examples of applications

In this section we review a number of applications of Palm distributions in
spatial statistics.

6.1 Functional summary statistics

Below we briefly consider two popular functional summary statistics, which
are used for exploratory purposes as well as model fitting and model assess-
ment.

First, suppose X is stationary, with intensity ρ > 0. The nearest-
neighbour distribution function G is defined by G(t) = P!

o{X ∩ b(o, t) 6= ∅},
where b(o, t) is the ball centered at o and of radius t > 0. Thus G(t) is inter-
preted as the probability of having a point within distance t from a typical
point. Moreover, Ripley’s K-function (Ripley, 1976) times ρ is defined by
ρK(t) = E

∑

v∈X!
o

1(‖v‖ ≤ t), that is, the expected number of further points
within distance t of a typical point.

Second, if the pair correlation function g(u, v) = g0(u− v) only depends
on v − u (see (10)), the definition of the K-function can be extended: The
inhomogeneous K-function (Baddeley et al., 2000) is defined by

K(t) =

∫

‖v‖≤t

g0(v) dv.

14



By (10), it follows that

K(t) = E
∑

v∈X!
u

1(‖v − u‖ ≤ t)

ρ(v)

for any u ∈ S with ρ(u) > 0. If for ‖v − u‖ ≤ t, ρ(v) is close to ρ(u), we
obtain ρ(u)K(t) ≈ E

∑

v∈X!
u

1(‖v − u‖ ≤ t). This is a ‘local’ version of the

interpretation of K(t) in the stationary case.
Nonparametric estimation of K and G is based on empirical versions ob-

tained from (15). For some parametric Poisson and Cox process models, K
or G are expressible on closed form and may be compared with correspond-
ing nonparametric estimates when finding parameter estimates or assessing
a fitted model. See Møller and Waagepetersen (2007) and the references
therein.

6.2 Prediction given partial observation of point pro-

cess

Suppose S is bounded and we observe a point process Y contained in a finite
point process X specified by some density f with respect to the unit rate
Poisson process Z. If B ⊂ S with |B| > 0 and Y = XB, then prediction
of XS\B given Y = y can be based on the conditional density fS\B(·|y)
introduced in Section 2.3. On the other hand, if we just know that y ⊆ X,
then it could be tempting to try to predict X \ y using X!

y. This would
in general be incorrect. For instance, for an LGCP with positive covariance
function, the intensity of X!

y can be much larger than the one of X, cf.
(22). Thus on average X!

y ∪ y would contain more points than X. The issue
here is that the reduced Palm distribution is concerned with the conditional
distribution of X conditional on that prespecified points fall in X. Hence the
sampling mechanism that leads from X to Y must be taken into account.
For instance, if the distribution of Y conditional on X = x is specified by
a probability density function p(·|x) (on the set of all subsets of x), then
by Proposition 1 in Baddeley et al. (2000), the marginal density of Y with
respect to Z is

g(y) = ρ(n)(y) exp(|S|)E
{

p(y|X!
y ∪ y)

}

,
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where n = n(y) is the cardinality of y. Thus the conditional distribution of
X \ y given Y = y has density

f(x|y) = p(y|x ∪ y)f(x ∪ y) exp(|S|)/g(y)

with respect to Z.

6.3 Matérn-thinned Cox processes

Some applications of spatial point processes require models that combine
clustering at a large scale with regularity at a local scale (Lavancier and
Møller, 2015). Andersen and Hahn (2015) study a class of so-called Matérn
thinned Cox processes where (clustered) Cox processes are subjected to de-
pendent Matérn type II thinning (Matérn, 1986) that introduces regularity in
the resulting point processes. The intensity function and second-order joint
intensity of the Matérn-thinned Cox process is expressed in terms of uni-
variate and bivariate inclusion probabilities which in turn are expressed in
terms of one- and two-point Palm probabilities for an independently marked
version of the underlying Cox process. In case of an underlying shot-noise
Cox process, explicit expressions for the univariate inclusion probabilities are
obtained using the simple characterization of one-point Palm distributions
described in Section 5.3.2.

6.4 Palm likelihood

Minimum contrast estimators based on the K-function or the pair corre-
lation function or composite likelihood methods are standard methods to
estimate parametric models (see e.g. Jolivet, 1991; Guan, 2006; Møller and
Waagepetersen, 2007; Waagepetersen and Guan, 2009; Biscio and Lavancier,
2015). Tanaka et al. (2008) proposed an approach based on Palm intensities
to estimate parametric stationary models, which is briefly presented below.

Given a parametric model g(u, v) = g0(v − u; θ) for the pair correlation
function of X and a location u ∈ S, the intensity function of X!

u is ρu(v; θ) =
ρg0(v−u; θ) where ρ is the constant intensity ofX assumed here to be known.
Following Schoenberg (2005), the so-called log composite likelihood score

∑

v∈X!
u∩b(u,R)

d

dθ
log ρu(v; θ)−

∫

b(u,R)

ρu(v; θ) dv
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forms an unbiased estimating function for θ, where R > 0 is a user-specified
tuning parameter. Usually X!

u is not known. However, suppose that X

is observed on W ∈ B0 and in order to introduce a border correction let
W ⊖R = {u ∈ W |b(u,R) ⊆ W}. Then, by (15),

6=
∑

u∈X∩W⊖R,
v∈X∩b(u,R)

d

dθ
log ρu(v; θ)−N(W ⊖ R)

∫

b(o,R)

ρo(v; θ) dv (23)

is an unbiased estimate of the above composite likelihood score times ρ|W ⊖
R|. Tanaka et al. (2008) coined the antiderivative of (23) the Palm likelihood.
Asymptotic properties of Palm likelihood parameter estimates are studied by
Prokešová and Jensen (2013) who also proposed the border correction applied
in (23).
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