N

N

Statistical Model Checking of Simulink Models with
Plasma Lab

Axel Legay, Louis-Marie Traonouez

» To cite this version:

Axel Legay, Louis-Marie Traonouez. Statistical Model Checking of Simulink Models with Plasma Lab.
Fourth International Workshop on Formal Techniques for Safety-Critical Systems, Nov 2015, Paris,
France. hal-01241249

HAL Id: hal-01241249
https://hal.science/hal-01241249
Submitted on 10 Dec 2015

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.


https://hal.science/hal-01241249
https://hal.archives-ouvertes.fr

Statistical Model Checking of Simulink Models
with Plasma Lab

Axel Legay and Louis-Marie Traonouez

Inria Rennes — Bretagne Atlantique

Abstract. We present an extension of the statistical model-checker Plasma
Lab capable of analyzing Simulink models.

1 Introduction

Formal methods comprise a wide range of techniques capable of proving or eval-
uating the safety of a system. Model based techniques, like model-checking, rely
on a formal model of the system in order to perform an exhaustive exploration of
its state-space. The technique reaches its limit when the state-space of the model
is too large to be explored entirely, or when the model mixes heterogeneous data
like time, quantities and probabilities. Statistical Model Checking (SMC) is an
alternative technique that combines formal analysis with statistical methods. It
relies on a finite number of simulations of a formal model in order to compute
an evaluation of the system’s safety as a probability measure. This lightweight
approach can be applied on complex systems, even with infinite state-space.

SMC can be implemented easily for a wide range of formal models or even
directly applied to a system simulator. It only depends on three basic compo-
nents: 1. a simulator of the model or the system, capable of generating random
traces, specified as a finite sequence of states; 2. a monitor, that determines if
a trace satisfies a property expressed in a formal logic like the Bounded Lin-
ear Temporal Logic; 3. an SMC algorithm from the statistic area that evaluates
the probability to satisfy the formal property. For instance, the Monte Carlo
algorithm computes N executions p and it estimates the probability ~ that the
system satisfies a logical formula ¢ using the following equation:

1 N
T=y 21l k)

where 1 is an indicator function that returns 1 if ¢ is satisfied and 0 otherwise.
It guarantees that the estimate ¥ is close enough to the true probability v with
a probability of error that is controlled by the number N of simulations.
Several model-checking tools have added SMC as a complement to exhaus-
tive model-checking. This includes the model-checker UPPAAL [5] for timed
automata, the probabilistic model-checker PRISM [7], and the model-checker
Ymer [9] for continuous time Markov chains. Plasma Lab [3] is the first plat-
form entirely dedicated to SMC. Contrary to other tools, that target a specific



domain and offer several analysis techniques, including basic SMC algorithms,
Plasma Lab is designed as a generic platform that offers several advanced SMC
algorithms that can be applied to various models. Indeed to apply Plasma Lab
algorithms to a new model or system it is only required to implement a simula-
tor that extends public interfaces from Plasma Lab API. Currently, Plasma Lab
can already be used with the PRISM language, biological models, the SystemC
language, and Simulink models, the extension presented in this paper.

Simulink is a graphical programming language for multidomain dynamic sys-
tems. It is part of the MATLAB environment, a widely used tool in the industry.
Simulink models can be formally translated to hybrid automata [I], that inter-
leave discrete state automata with complex dynamic behaviors described by
differential equations. Model-checking of these models is however undecidable.
It is therefore interesting to use SMC to provide a formal analysis technique
for these models. Rather than translating Simulink models to a specific formal
language, we have been able to directly interface Plasma Lab and Simulink, and
we apply SMC algorithms by using the simulation engine provided by Simulink.
This approach facilitates the adoption of formal methods by non experts, who
can launch SMC analyses directly from a small MATLAB App.

2 Plasma Lab Architecture

Plasma Lab is a compact, efficient and flexible platform for SMC. The tool offers
a series of SMC algorithms, included advanced techniques for rare events simula-
tion, distributed SMC, non-determinism, and optimization. The main difference
between Plasma Lab and other SMC tools is that Plasma Lab proposes an
API abstraction of the concepts of stochastic model simulator, property checker
(monitoring) and SMC algorithm. In other words, the tool has been designed
to be capable of using external simulators, input languages, or SMC algorithms.
This not only reduces the effort of integrating new algorithms, but also allows
us to create direct plug-in interfaces with industry used specification tools. The
latter being done without using extra compilers.

Fig. 1] presents Plasma Lab architecture. More specifically, the relations be-
tween model simulators, property checkers, and SMC algorithms components.
The simulators features include starting a new trace and simulating a model
step by step. The checkers decide a property on a trace by accessing to state
values. They also control the simulations, with a state on demand approach that
generates new states only if more states are needed to decide the property. A
SMC algorithm component is a runnable object. It collect samples obtained from
a checker component. Depending on the property language, their checker either
returns Boolean or numerical values. The algorithm then notifies progress and
sends its results through the Controller API.

In coordination with this architecture, we use a plugin system to load models
and properties components. It is then possible to support new model or property
languages. Adding a simulator or a checker is pretty straightforward as they share
a similar plugin architecture. Thus, it requires only a few classes and methods



-

~TYC)
uy 3
Suo .

suc oo NG

J’ = ")

Property checker Wi e

Plugins CHE: | MATLAB

o ] - . q

Model simulator ong = —

Fig.2: Interface between Plasma

Fig. 1: Plasma Lab architecture Lab and Simulink

to get a new component running. Each plugin contains a factory class used by
Plasma Lab to instantiate component objects. These components implement
the corresponding interface defining their behavior. Some companion objects
are also required (results, states, identifiers) to allow communication between
components and the Controller API.

One of the goal of Plasma Lab is also to benefit from a massive distribution of
the simulations, which is one of the advantage of the SMC approach. Therefore
Plasma Lab API provides generic methods to define distributed algorithms.

3 Plasma Lab and Simulink Integration

We now show how we have integrated Plasma Lab within Simulink, hence lifting
the power of our simulation approaches directly within the tool.

In order to obtain significant results with SMC the Simulink models should
include randomly generated events. By default the Simulink library provides
some random generators, but these are not compatible with SMC: they always
generate the same random sequence of values at each execution. To overcome
this limitation we use some custom C-code blocks that generate independent
sequences of random draws.

Our objective was to reuse the simulation engine provided with Simulink
and to integrate it in Plasma Lab. To do so, we developed a simulator plugin
whose architecture is showed in Fig. [2| One of the key points of our integration
has been to exploit MATLAB Controﬂ a library that allows to interact with
MATLAB from Java. This library uses a proxy object connected to a MATLAB
session. Function calls and variables access are transmitted and executed on the
MATLAB session through the proxy. This allowed us to implement a MATLAB
program that controls a Simulink simulation. Calls to this implementation are
then done in Java from the Plasma Lab plugin.

Regarding the monitoring of properties, we exploit the simulation output of
Simulink. More precisely, BLTL properties are checked over sequences of states

! https://code.google.com/p/matlabcontrol/


https://code.google.com/p/matlabcontrol/

and time stamps, based on a set of state variables defined by declaring some
Simulink signals as log output. During the simulation these signals are logged
in a data structure containing time stamps and are then retrieved as states in
Plasma Lab. One important point is that Simulink discretizes the signals trace,
its sample frequency being parameterized by each block. In terms of monitoring
this means that the sample frequency must be configured to observe any relevant
change in the model. In practice, the frequency can be set as a constant value,
or, if the model mixes both continuous data flow and state flow, the frequency
can be aligned on the transitions, i.e., when a state is newly visited.

Usage We provide a Simulink plugin for the main interface of Plasma Lab.
Simulink models can be loaded in the interface and a MATLAB instance is
started to simulate the models. Alternatively we provide PLASMA2Simulink, a
MATLAB App that can be installed in MATLAB. It contains all the necessary
components to verify Simulink models: the simulator plugin, a BLTL monitor
and SMC algorithms. Then, SMC experiments can be directly started in MAT-
LAB from this App: it allows to select a model, a property and an algorithm,
to specify the parameters of the experiment and it displays the results. Both
Plasma Lab and PLASMA2Simulink can be downloaded from our website

Applications We also describe in this Webpageﬂ two case-studies developed
with Simulink and verified with Plasma Lab. The first is a fuel control system
provided by MathWorks. The second described the temperature controller of a
pig shed.

In the first one, we replace manual switches, used in the standard model to
introduce failures in the system sensors, by random generators that implement
a Poisson probability distribution using C-code blocks. We then analyze the
probability of a long engine shutdown and compare our results obtained with
Plasma Lab with the results from [10].

4 Related Works

A first experiment with SMC and Simulink was presented in [I0]. Their approach
consists in programming one SMC algorithm within the Simulink toolbox. On
the contrary, the flexibility of our tool will allow us to incrementally add new
algorithms to the toolbox without new programming efforts.

A few other works consider formal verification of Simulink models via model-
checking. None consider adding stochastic behaviors to Simulink, but consider
the hybrid automata semantics of these models. However, model-checking hybrid
automata is undecidable, and therefore, the existing approaches restrict the type
of blocks that can be used in Simulink models: in general by removing continu-
ous behaviors in order to obtain a finite state machine. For instance Honeywell

2 https://project.inria.fr/plasma-lab/download/
3 https://project.inria.fr/plasma-lab/examples/


https://project.inria.fr/plasma-lab/download/
https://project.inria.fr/plasma-lab/examples/

presents in [8] a tool that translates certain Simulink models to the input lan-
guage of the model-checker NuSMV. [2] also presents a tool chain that translates
Simulink models to the input language of the LTL model-checker DiViNE. This
tool chain uses the tool HiLiTe [6], also developed by Honeywell, that can per-
form semantic analyses of Simulink models. Contrary to these model-checking
approaches, SMC techniques are not restricted by the model, and our Simulink
plugin for Plasma Lab is able to handle any type of Simulink and Stateflow
diagrams, with both continuous and discrete behaviors.

Finally, our approach is also different from the one in [4] that consists in
translating parts of Simulink models into the UPPAAL language. This makes it
difficult to analyze counter examples as it implies remapping traces from UP-
PAAL to the Simulink model. Therefore Plasma Lab offers the first integrated
verification tool for Simulink models with stochastic information.

Acknowledgement This work was supported by the European Union Seventh
Framework Programme under grant agreement number 318490 (SENSATION).

References

1. Agrawal, A., Simon, G., Karsai, G.: Semantic Translation of Simulink/Stateflow
Models to Hybrid Automata Using Graph Transformations. Electron. Notes Theor.
Comput. Sci. 109, 43-56 (Dec 2004)

2. Barnat, J., Beran, J., Brim, L., Kratochvila, T., Rockai, P.: Tool Chain to Support
Automated Formal Verification of Avionics Simulink Designs. In: Formal Methods
for Industrial Critical Systems, LNCS, vol. 7437, pp. 78-92. Springer (2012)

3. Boyer, B., Corre, K., Legay, A., Sedwards, S.: PLASMA-lab: A Flexible, Dis-
tributable Statistical Model Checking Library. In: Proceedings of QEST. LNCS,
vol. 8054, pp. 160-164. Springer (2013)

4. David, A., Du, D., Larsen, K.G., Legay, A., Mikucionis, M., Poulsen, D.B., Sed-
wards, S.: Statistical Model Checking for Stochastic Hybrid Systems. In: Proceed-
ings of HSB. EPTCS, vol. 92, pp. 122-136 (2012)

5. David, A., Larsen, K.G., Legay, A., Mikucionis, M., Wang, Z.: Time for Statistical
Model Checking of Real-Time Systems. In: Proceedings of CAV. vol. 6806, pp.
349-355. Springer (2011)

6. Devesh Bhatt, Gabor Madl, David Oglesby, Kirk Schloegel: Towards Scalable Ver-
ification of Commercial Avionics Software. In: ATAA Infotech@Aerospace (2010)

7. Kwiatkowska, M.Z., Norman, G., Parker, D.: PRISM 4.0: Verification of Proba-
bilistic Real-Time Systems. In: Proceedings of CAV. LNCS, vol. 6806, pp. 585-591.
Springer (2011)

8. Meenakshi, B., Bhatnagar, A., Roy, S.: Tool for Translating Simulink Models into
Input Language of a Model Checker. In: Formal Methods and Software Engineering,
LNCS, vol. 4260, pp. 606-620. Springer (2006)

9. Younes, H.L.S.: Verification and Planning for Stochastic Processes with Asyn-
chronous Events. Ph.D. thesis, Carnegie Mellon (2005)

10. Zuliani, P., Platzer, A., Clarke, E.M.: Bayesian statistical model checking with
application to Stateflow/Simulink verification. Formal Methods in System Design
43(2), 338-367 (2013)



	Statistical Model Checking of Simulink Models with Plasma Lab

