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On the reconstruction of obstacles and of rigid bodies immersed in a

viscous incompressible fluid

Jorge San Mart́ın∗ Erica L. Schwindt† Takéo Takahashi ‡§¶

September 23, 2015

Abstract

We consider the geometrical inverse problem consisting in recovering an unknown obstacle in a viscous
incompressible fluid by measurements of the Cauchy force on the exterior boundary. We deal with the
case where the fluid equations are the non stationary Stokes system and using the enclosure method, we can
recover the convex hull of the obstacle and the distance from a point to the obstacle. With the same method,
we can obtain the same result in the case of a linear fluid–structure system composed by a rigid body and a
viscous incompressible fluid. We also tackle the corresponding nonlinear systems: the Navier–Stokes system
and a fluid–structure system with free boundary. Using complex spherical waves, we obtain some partial
information on the distance from a point to the obstacle.

Mathematics Subject Classification (2010): 35R30, 35Q35, 76D07, 35R35, 74F10, 76D05.

Keywords: geometrical inverse problems, fluid-structure interaction, Navier–Stokes system, enclosure method,
complex geometrical solutions.

1 Introduction

This paper is devoted to reconstructing an unknown structure S included in a bounded cavity Ω ⊂ RN (N = 2, 3)
filled by a viscous incompressible fluid. More precisely, we aim to obtain some geometrical information on S
by measurement on the boundary ∂Ω of Ω. Such a geometrical inverse problem is important in several applied
areas such as medicine (foreign bodies in the bloodstream), biology (fishes), naval engineering (submarines),
etc.

We assume in what follows that S is a compact connected subset of Ω with nonempty interior and that

F = Ω \ S (1.1)

is connected.
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In the first part of the article, the fluid equations that we consider are the non stationary Stokes system:

∂u

∂t
− divσ(u, p) = 0 in (0, T )×F , (1.2)

divu = 0 in (0, T )×F , (1.3)

u = 0 on (0, T )× ∂S, (1.4)

u = f on (0, T )× ∂Ω, (1.5)

u(0, ·) = 0 in F . (1.6)

In the above system, (u, p) are the velocity and the pressure of the fluid. Moreover, we have denoted by
σ(u, p) the Cauchy stress tensor, which is defined by the Stokes law as

σ(u, p) = −pIN + 2D(u)

where IN is the identity matrix of MN (R), with MN (R) denoting the space of real square matrices of order
N , and where D(u) is the strain tensor defined by

[D(u)]kl =
1

2

(
∂uk
∂xl

+
∂ul
∂xk

)
. (1.7)

To simplify the writing, we take in this paper the kinematic viscosity of the fluid equal to 1.
The idea is to impose a condition f in (1.5) and to measure the corresponding Cauchy force

σ(u, p)n|(0,T )×∂Ω (1.8)

in order to deduce information on the obstacle S. Here and in all what follows, n denotes the unit outer normal
to the fluid domain.

We also consider in this paper the following linear fluid–rigid body system:

∂u

∂t
− divσ(u, p) = 0 in (0, T )×F , (1.9)

divu = 0 in (0, T )×F , (1.10)

u = f on (0, T )× ∂Ω, (1.11)

u = `+ ω × y on (0, T )× ∂S, (1.12)

m`′ +

∫
∂S
σ(u, p)n dγ = 0 in (0, T ), (1.13)

I0ω
′ +

∫
∂S
y × σ(u, p)n dγ = 0 in (0, T ), (1.14)

u(0, ·) = 0 in F , (1.15)

`(0) = 0, ω(0) = 0. (1.16)

Here ` and ω represents respectively the linear and angular velocity of the rigid body. Let us note that in this
simplified fluid-rigid body system, the structure domain S is fixed. We assume that the density ρS of the rigid
body is a positive constant. In particular, the mass m and the inertia tensor I0 are defined as follows

m = ρSµ3(S), I0 = ρS
∫
S
|x|2I3 − (x⊗ x) dx, (1.17)

where µ3 denotes the Lebesgue measure in R3 and where I3 is the 3× 3 identity matrix.
In dimension N = 2, the above system is slightly modified: ω ∈ R, I0 ∈ R, equation (1.12) and equation

(1.14) write respectively

u = `+ ωy⊥, I0ω
′ +

∫
∂S
y⊥ · σ(u, p)n dγ = 0,
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where [
x1

x2

]⊥
=

[
−x2

x1

]
.

Finally, I0 is defined by

I0 = ρS
∫
S
|x|2 dx. (1.18)

System (1.2)–(1.6) is a linear simplification of the classical Navier–Stokes system

∂u

∂t
+ u · ∇u− divσ(u, p) = 0 in (0, T )×F , (1.19)

divu = 0 in (0, T )×F , (1.20)

u = f on (0, T )× ∂Ω, (1.21)

u = 0 on (0, T )× ∂S, (1.22)

u(0, ·) = 0 in F , (1.23)

and system (1.9)–(1.16) is a linear simplification of the “full” fluid-rigid body system that can be written in
dimension N = 2 as

∂u

∂t
+ u · ∇u− divσ(u, p) = 0 t ∈ (0, T ), x ∈ F(t), (1.24)

divu = 0 t ∈ (0, T ), x ∈ F(t), (1.25)

u = f t ∈ (0, T ), x ∈ ∂Ω, (1.26)

u = `+ ω(x− h)⊥ t ∈ (0, T ), x ∈ ∂S(t), (1.27)

m`′ +

∫
∂S(t)

σ(u, p)n dγ = 0 t ∈ (0, T ), (1.28)

I0ω
′ +

∫
∂S(t)

(x− h)⊥ · σ(u, p)n dγ = 0 t ∈ (0, T ), (1.29)

h′ = ` t ∈ (0, T ), (1.30)

θ′ = ω t ∈ (0, T ), (1.31)

u(0, ·) = 0 x ∈ F(0), (1.32)

`(0) = 0, ω(0) = 0, (1.33)

h(0) = h0, θ(0) = θ0, (1.34)

S(t) = h(t) +Rθ(t)S0. (1.35)

Here h(t) ∈ R2 and θ(t) ∈ R are respectively the center of mass and the orientation of S(t). In particular, the
center of mass of S0 is located at 0. We have denoted by Rθ the matrix of rotation of angle θ. Contrary to
system (1.9)–(1.16), here the solid is moving (equation (1.35)). Let us emphasize that system (1.9)–(1.16) is
important to study the system (1.24)–(1.35): for instance, this linear system is used in [36, 37] to prove the
existence of strong solutions for system (1.24)–(1.35) with the aid of a fixed point argument. Let us also note
that equations (1.28), (1.29) for the rigid body are the Newton laws.

As for the previous systems, the idea is to take some particular choice of f and to measure the corresponding
Cauchy force given by (1.8) in order to obtain geometrical information on S(t). However, here there is an
important difference: applying f at the boundary of ∂Ω makes the rigid body moves through the (unknown)
trajectory (h(t), θ(t)). Moreover, with such a boundary condition, it could possible that the rigid body touches
∂Ω and it is not clear what happens after this contact (see [34]).

We also consider a simplification of system (1.24)–(1.35) obtained by assuming that the Reynolds number is
very small. In that case, neglecting the inertia forces, the 3D version of system (1.24)–(1.35) can be approximated
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by

− divσ(u, p) = 0 t ∈ (0, T ), x ∈ F(t), (1.36)

divu = 0 t ∈ (0, T ), x ∈ F(t), (1.37)

u = f t ∈ (0, T ), x ∈ ∂Ω, (1.38)

u = `+ ω × (x− h) t ∈ (0, T ), x ∈ ∂S(t), (1.39)∫
∂S(t)

σ(u, p)n dγ = 0 t ∈ (0, T ), (1.40)∫
∂S(t)

(x− h)× σ(u, p)n dγ = 0 t ∈ (0, T ), (1.41)

h′ = ` t ∈ (0, T ), (1.42)

Q′ = A(ω)Q t ∈ (0, T ), (1.43)

S(t) = h(t) +Q(t)S0 t ∈ (0, T ). (1.44)

The map A is defined as follows

A(r) =

 0 −r3 r2

r3 0 −r1

−r2 r1 0

 (r ∈ R3). (1.45)

This map is related to the vector product by the formula

A(r)x = r × x.

Let us remark that the above system is not linear since S(t) is not given. This system is studied in [7] where
the identifiability of the rigid body is obtained through the measurement of the Cauchy forces on the boundary.
Like system (1.24)–(1.35), the solid moves through the action of f on this system.

These geometrical inverse problems for fluid systems were already considered in [1] where the authors tackle
the problem of recovering the shape and location of a fixed obstacle in a viscous incompressible fluid modeled
by the Navier–Stokes system. They show the identifiability of the fixed obstacle: if f not identically equal to 0,
then the mapping that associates to S the measurement given by (1.8) is one-to-one. They also prove a stability
result: if two measurements are close, it implies that the two corresponding obstacles are close. Extensions of
this result in the case of a fixed obstacle are obtained in [9] and in [10]. In [2], the authors consider a similar
problem in the 2D case and for a fluid modeled by the Stokes system. They develop an integral method in order
to recover the structure. The identifiability result of [1] is extended in [7] to the case of a moving rigid body,
but only in the case of the stationary Stokes system. In the case of a potential fluid (thus inviscid), one can
use, in 2D, complex analysis ([5], [6]) to detect a moving rigid body of particular shape (ball, ellipse) if the fluid
fills the exterior of the structure domain.

Numerical aspects are considered in [3]: the authors use shape optimization techniques to detect a fixed
obstacle in a viscous incompressible fluid. They prove in particular that the shape Hessian is compact and thus
that the problem is ill-posed.

Here we are interested in obtaining geometrical information on the obstacle such as the distance from a fixed
point to the obstacle or its convex hull. The problem of finding the distance from a fixed point was considered
in [16], in the case of a fixed obstacle in a stationary Stokes fluid. In that study, they use a method based on
complex geometrical solutions that was introduced in [35] and that has been applied in several inverse problems
([12], [30], [31] [8], [29], [15], etc.). In order to recover the convex hull of the obstacle, Ikehata introduced the
enclosure method and used it in [22], [21], [23], etc. The above references were devoted to works on stationary
problems. The case of the heat equation was considered in [13] with the use of complex geometrical solutions
and [24], [27], [28] for the enclosure method.
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2 Main results

In this work, we consider both methods to deal with non stationary fluid or fluid–structure systems. More
precisely, we use the approach in [27] in order to deal with the non stationary Stokes system. A first step consists
in considering the Laplace transform of the system in order to transform it into a stationary Stokes type system.
Then we show that if (v̂α, q̂α) is a family of solutions the same (stationary) system but on the whole domain Ω
(see (2.1)–(2.2)), then a quantity (see (2.7)) based on the measurement given by (1.8) behaves in similar way as
the H1 norm of v̂α on S as α goes to ∞ (Theorem 2.1). The idea is then to construct solutions v̂α so that the
H1 norm on S gives geometrical information on the domain. One of the difficulties in this construction comes
from the fact that here the test functions are divergence free. In particular, in the case of the distance of S to
a point x0, we need to impose x0 /∈ ch(Ω) and N = 3. These hypothesis are not considered in the case of the
heat equation (see [27]).

The above method can not be adapted to the case of nonlinear systems such as (1.19)–(1.23) and (1.24)–
(1.35). As a consequence, for these nonlinear systems we use complex geometrical solutions constructed in [16].
This allows us to recover only some partial information, and more precisely, at the contrary to the linear case,
we lose one of the inequalities. Nevertheless, these two approaches give some first results in the case of non
stationary fluid systems.

The plan of the paper is the following: in Section 2, we state our main results, for the linear systems and for
the nonlinear systems. We recall some preliminaries in Section 3, that allow us to prove our first main result
in Section 4: the relation between the measurement and the H1 norm of v̂α on S, as explained above. Then in
Section 5, we construct v̂α in order to recover the convex hull of S and in Section 6, we construct v̂α in order to
recover the distance from a fixed point to S. Section 7 is devoted to inverse problems for the nonlinear systems:
we use there complex geometrical solutions.

2 Main results

Let us first describe the method used to recover geometric information on the obstacle S in the case of the linear
systems (1.2)–(1.6) and (1.9)–(1.16).

First we consider a family (v̂α, q̂α) ∈ C2(Ω)× C1(Ω) of solutions of a Stokes system

αv̂α − divσ(v̂α, q̂α) = 0 in Ω̃, (2.1)

div v̂α = 0 in Ω̃, (2.2)

for some domain Ω̃ ⊇ Ω and for α > 0.
We then consider fα defined by

fα(t,x) := χα(t)v̂α(x), (2.3)

with χα ∈ C∞([0, T ]) such that χα(0) = 0 and χα(t) > 0 in (0, T ] and such that∫ T

0

e−αtχα(t) dt = 1.

For instance, in what follows, we take

χα(t) =
α2t

1− (1 + αT )e−αT
(t ∈ [0, T ]). (2.4)

In particular,

f̂α(x) :=

∫ T

0

e−αtfα(t,x) dt = v̂α(x), x ∈ ∂Ω. (2.5)

We can remark that since fα is given by (2.3), then it satisfies the condition∫
∂Ω

fα · n dγ = 0 on (0, T ).
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The above equation allows us to consider the solution (uα, pα) of the Stokes system (1.2)–(1.6), with the
boundary condition

uα = fα on (0, T )× ∂Ω. (2.6)

Let us set

Eα :=

∫
∂Ω

∫ T

0

e−αt (v̂α · σ(uα, pα)n− uα · σ(v̂α, q̂α)n) dt dγ. (2.7)

We are now in position to state our first main result.

Theorem 2.1. Assume (v̂α, q̂α) satisfies (2.1)–(2.2) and (uα, pα) is the solution of (1.2)–(1.6) with (2.3) and
(2.6). Then Eα defined by (2.7) satisfies(∫

S
α|v̂α|2 + 2|D(v̂α)|2 dx

)
− Cα2e−αT ‖v̂α‖2H1(Ω) 6 Eα

6 C(α+ 1)

(∫
S
|v̂α|2 + 2|D(v̂α)|2 dx

)
+ Cα2e−αT ‖v̂α‖2H1(Ω). (2.8)

The above result and the two corollaries below correspond the closure method associated with the evolu-
tionary Stokes system. A general framework for this method in the case of heat type equations is developed in
[25]. The first extension of this method to a system of partial differential equation was developed in [26].

The first corollary of Theorem 2.1 corresponds to the reconstruction of the support function hS of S. Let
us recall that for any subset G of R3, the support function hG of G is defined by

hG(κ) = sup
x∈G

κ · x (κ ∈ S2), (2.9)

where S2 is the unit sphere of R3. This function is classically used in the theory of convex sets (see for instance
[4, p.26]). In particular, if G is convex,

G =
{
x ∈ R3 ; ∀κ ∈ S2, x · κ 6 hG(κ)

}
.

Corollary 2.2 (Recovering the support function). Assume ∂S is of class C2. There exists a family of solutions
(v̂α, q̂α) of (2.1)–(2.2) such that the solution (uα, pα) of (1.2)–(1.6) with (2.6) and (2.3) verifies

lim
α→+∞

1

2
√
α

log(Eα) = hS(κ). (2.10)

The second corollary of Theorem 2.1 allows us to obtain the distance d(x0,S) of S to a point x0 /∈ ch(Ω)
(the convex hull of Ω).

Corollary 2.3 (Recovering the distance to a point). Assume N = 3, ∂S is of class C2 and x0 /∈ ch(Ω). There
exists a family of solutions (v̂α, q̂α) of (2.1)–(2.2) such that the solution (uα, pα) of (1.2)–(1.6) with (2.6) and
(2.3) verifies

lim
α→+∞

1

2
√
α

log(Eα) = −d(x0,S). (2.11)

Remark 2.4. In contrast to [27], [28], in the above result, we have to assume that x0 /∈ ch(Ω). This restriction
comes from the fact that we need in our construction that the family (v̂α, q̂α) satisfies the condition div v̂α = 0.
In [27], [28], the authors also manage to reconstruct the smallest sphere centered at a point and enclosing the
obstacle. Here, we can not extend their construction since we need the free divergence condition for v̂α.

We have similar results for the linear system (1.9)–(1.16):

Theorem 2.5. Assume ∂S is of class C2.
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2 Main results

1. There exists a family of solutions (v̂α, q̂α) satisfying (2.1)–(2.2) such that the solution (uα, pα, `α,ωα) of
(1.9)–(1.16) with (2.3), (2.6) verifies

lim
α→+∞

1

2
√
α

log(Eα) = hS(κ). (2.12)

2. Assume x0 /∈ ch(Ω) and N = 3. There exists a family of solutions (v̂α, q̂α) satisfying (2.1)–(2.2) such that
the solution (uα, pα, `α,ωα) of (1.9)–(1.16) with (2.3), (2.6) verifies

lim
α→+∞

1

2
√
α

log(Eα) = −d(x0,S). (2.13)

The proof of the previous theorem is completely similar to the proof of Theorem 2.1, with the same families
constructed in Corollary 2.2 and Corollary 2.3. Therefore, we omit its proof.

In the case of the nonlinear system (1.36)–(1.44), we use a family of solutions (vα, qα) ∈ C2(Ω)× C1(Ω) of

− divσ(vα, qα) = 0 in Ω̃, (2.14)

div vα = 0 in Ω̃, (2.15)

for some domain Ω̃ ⊇ Ω. Here α > 0 is a parameter in the construction of these solutions that eventually goes
to ∞. We then consider fα defined by

fα(x) := vα(x). (2.16)

As in the linear case, we then consider the solution (uα, pα) of systems (1.36)–(1.44) (respectively (1.24)–
(1.35), and (1.19)–(1.23)), with the boundary condition

uα = fα on (0, T )× ∂Ω. (2.17)

We set

Fα :=

∫
∂Ω

(vα · σ(uα, pα)n− uα · σ(vα, qα)n) dγ. (2.18)

As explained in the previous section, one difficulty for stating result for this system is that the rigid body
can touch ∂Ω. We thus assume that for all regular f ,

d(S(t), ∂Ω) > 0 (∀t ∈ [0, T ]). (2.19)

Such an hypothesis is satisfied for instance in the case where S0 and Ω are balls (see [17], [18], [19]).
We fix x0 /∈ ch(Ω) (the convex hull of Ω) and d > 0. Then, we have the following results.

Theorem 2.6. Assume ∂S is of class C2, d > 0 and x0 /∈ ch(Ω). Assume also that (2.19) holds. Then, there
exists a family of solutions (vα, qα) satisfying (2.14)–(2.15) such that the solution (u, p, `,ω) of (1.36)–(1.44)
with (2.17) verifies

1. If d < d(x0,S(t)) then Fα 6 CAα for some constants C > 0 and A ∈ (0, 1).

2. If d > d(x0,S(t)) then Fα > CBα for some constants C > 0 and B > 1 and for α > 1.

Remark 2.7. The above result is based on the construction of spherical geometrical optics solutions. In the
case of Stokes type system, such a construction has been done in [16]. Let us point out that in their method
use the Hahn-Banach theorem. In the case of the Calderon problem, another construction that is not using the
Hahn-Banach theorem is done in [20].
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For systems (1.24)–(1.35), and (1.19)–(1.23), we slightly modify the boundary condition by using (vα, qα)
depending on time and satisfying (2.14)–(2.15) for all t and we consider the following measurement

Kα :=

∫ T

0

∫
∂Ω

(vα · σ(uα, pα)n− uα · σ(vα, qα)n) dt dγ −
∫ T

0

∫
∂Ω

(fα · n)
|fα|2

2
dγ. (2.20)

In the case of system (1.24)–(1.35), we need to assume again (2.19) to prevent possible contacts. Again this
condition is satisfied for instance in the case where S0 and Ω are balls (see [17], [18], [19]). It is probably true
for other geometries but up to now this has not been proven.

For both systems (1.19)–(1.23) and (1.24)–(1.35), we also impose that N = 2 since we are working with
regular solutions and for N = 3 the existence of global (in time) regular solutions is an open problem. In
particular, in the case N = 3, one should need to show that the times Tα of existence of the family of solutions
(vα, qα) can be chosen uniformly with respect to α.

Theorem 2.8. Suppose N = 2. Assume ∂S is of class C2, d > 0 and x0 /∈ ch(Ω). There exists a family of
solutions (vα, qα) satisfying (2.14)–(2.15) such that

1. the solution (uα, pα) of (1.19)–(1.23) with (2.17) verifies the following implication: if (Kα)α>α0 is bounded,
then d < d(x0,S).

2. the solution (u, p, `, ω) of (1.24)–(1.35) with (2.17) verifies the following implication: if (Kα)α>α0
is

bounded, then d < d(x0,S(t)) for all t ∈ [0, T ].

As explained in the introduction, the above result is only partial since with the other case (as in Theorem 2.6)
is not present here. As it appear in the proof, it would imply to prove an estimate on the solutions (u, p, `, ω)
for the system (1.24)–(1.35).

For simplicity, we suppress in the proofs below the explicit dependence on α in the notation. For example,
we write v̂ instead of v̂α.

3 Preliminaries

Lemma 3.1. Assume v̂ ∈ H1(Ω) such that div v̂ = 0 in Ω. Consider (w, π) ∈ H1(F) × L2(F) such that
divσ(w, π) ∈ L2(F). Then there exists a constant C = C(Ω,S) such that∣∣∣∣∫

∂Ω

v̂ · σ(w, π)n dγ

∣∣∣∣ 6 C‖v̂‖H1(Ω)

(
‖D(w)‖L2(F) + ‖divσ(w, π)‖L2(F)

)
, (3.1)

∣∣∣∣∫
∂S
v̂ · σ(w, π)n dγ

∣∣∣∣ 6 C‖v̂‖H1(S)

(
‖D(w)‖L2(F) + ‖divσ(w, π)‖L2(F)

)
. (3.2)

Proof. We use relations (III.3.31) and (III.3.32) in [14, p.176]: there exists V̂ ∈ H1(F) such that

div V̂ = 0 in F , V̂ = v̂ on ∂Ω, V̂ = 0 on ∂S, (3.3)

with
‖V̂ ‖H1(F) 6 C‖v̂‖H1/2(∂Ω) 6 C‖v̂‖H1(Ω). (3.4)

We then use integration by parts∫
∂Ω

v̂ · σ(w, π)n dγ =

∫
∂F
V̂ · σ(w, π)n dγ =

∫
F

divσ(w, π) · V̂ dx+

∫
F

2D(w) : D(V̂ ) dx,

and (3.1) follows from (3.4).
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The proof of (3.2) is similar, we consider (instead of V̂ ) a function Ŵ ∈ H1(F) such that

div Ŵ = 0 in F , Ŵ = 0 on ∂Ω, Ŵ = v̂ on ∂S, (3.5)

with
‖Ŵ ‖H1(F) 6 C‖v̂‖H1/2(∂S) 6 C‖v̂‖H1(S). (3.6)

Proposition 3.2. Assume f = χv̂, with χ ∈ H1(0, T ), v̂ ∈ H3/2(∂Ω) satisfying

χ(0) = 0,

∫
∂Ω

v̂ · n dγ = 0. (3.7)

Then

1. there exists a unique solution (u, p) of system (1.2)–(1.6)

u ∈ L2(0, T ;H2(F)) ∩ C([0, T ];H1(F)) ∩H1(0, T ;L2(F)), (3.8)

p ∈ L2(0, T ;H1(F)/R); (3.9)

2. there exists a unique solution (u, p, `,ω) of system (1.9)–(1.16) satisfying (3.8), (3.9) and `,ω ∈ H1(0, T ).

The above result is quite classical for system (1.2)–(1.6) and is similar for system (1.9)–(1.16). We only give
here some ideas of the proof. Note that the particular form of f is not needed to obtain the result and the
result remains true for more general boundary conditions.

Proof. Using, for instance [33], there exists V̂ ∈ H2(F) such that

div V̂ = 0 in F , V̂ = v̂ on ∂Ω, V̂ = 0 on ∂S.

Using this lifting, we consider the change of variables

U = u− χV̂

and the equations for (U , p) can be written as

∂U

∂t
− divσ(U , p) = F in (0, T )×F , (3.10)

divU = 0 in (0, T )×F , (3.11)

U = 0 on (0, T )× ∂F , (3.12)

U(0, ·) = 0 in F , (3.13)

with
F = χ∆V̂ − χ′V̂ ∈ L2(0, T ;L2(F)). (3.14)

To end the proof, one can write (3.10)–(3.13) with the Stokes operator A = −P 0∆ as

U ′ +AU = P 0F,

where P 0 : L2(F)→ H0 is the Leray projection on

H0 :=
{
w ∈ L2(F) ; divw = 0, w · n = 0 on ∂F

}
.

Using that A is self-adjoint and positive, we obtain the result.

9
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For system (1.9)–(1.16), we can proceed with the same proof. Using the lifting V̂ , we are reduced to solve

∂U

∂t
− divσ(U , p) = F in (0, T )×F , (3.15)

divU = 0 in (0, T )×F , (3.16)

U = 0 on (0, T )× ∂Ω, (3.17)

U = `+ ω × y on (0, T )× ∂S, (3.18)

m`′ +

∫
∂S
σ(U , p)n dγ = `F in (0, T ), (3.19)

I0ω
′ +

∫
∂S
y × σ(U , p)n dγ = ωF in (0, T ), (3.20)

U(0, ·) = 0 in F , (3.21)

`(0) = 0, ω(0) = 0, (3.22)

with F given by (3.14) and

`F = −2χ

∫
∂S
D(V̂ )n dγ, ωF = −2χ

∫
∂S
y ×D(V̂ )n dγ.

We recall that the operator D is defined in (1.7). It is classical that Dw = 0 on S if and only if there exists
`w,ωw ∈ R3 such that w(y) = `w + ωw × y for y ∈ S (see, for instance, in [32, p.51]).

If we extend U and F in S by

U(t,y) = `(t) + ω(t)× y, F (t,y) = `F (t) + ωF (t)× y,

then the above system can be written as
U ′ +AU = PF ,

with
H :=

{
w ∈ L2(Ω) ; divw = 0, w · n = 0 on ∂Ω, Dw = 0 in S

}
,

D(A) :=
{
w ∈ H ∩H1(Ω) ; w = 0 on ∂Ω, w|F ∈ H2

}
,

Aw :=

 −∆w in F(∫
∂S
D(w)n dγ

)
+

(∫
∂S
y ×D(w)n dγ

)
× x x ∈ S.

A := PA

and P : L2(Ω) → H is the orthogonal projection. We have PF ∈ L2(0, T ;H) and it is proved in [37] that A
is self-adjoint and positive in H, and this allows us to prove the result by using classical result on parabolic
systems.

Lemma 3.3. Assume that (u, p) is the solution of (1.2)–(1.6) with f defined by (2.3). Then for α large enough,
there exists a constant C (independent of α) such that

‖u‖L∞(0,T ;L2(F)) + ‖D(u)‖L2(0,T ;L2(F)) 6 Cα2‖v̂‖H1(Ω). (3.23)

Proof. Let us multiply (1.2) by u and integrate by parts:∫
F

d

dt

(
|u|2

2

)
dx+

∫
F

2|D(u)|2 dx = χ(t)

∫
∂Ω

σ(u, p)n · v̂ dγ. (3.24)

In the above relation, we have used (2.3).
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Then we use the same function V̂ used in the proof of Lemma 3.1 and integrate by parts:∫
∂Ω

σ(u, p)n · v̂ dγ =

∫
∂F
σ(u, p)n · V̂ dγ =

∫
F

divσ(u, p) · V̂ + 2D(u) : D(V̂ ) dx

=
d

dt

∫
F
u · V̂ dx+ 2

∫
F
D(u) : D(V̂ ) dx. (3.25)

Combining (3.24) and (3.25) and integrating on (0, t) we obtain

1

2

∫
F
|u(t)|2 dx+

∫ t

0

∫
F

2|D(u)|2 dx ds

= χ(t)

∫
F
u(t) · V̂ dx−

∫ t

0

∫
F
χ′u · V̂ dx ds+

∫ t

0

∫
F

2χD(u) : D(V̂ ) dx ds. (3.26)

Using Gronwall’s lemma, we deduce the existence of constant depending only on T such that

sup
(0,T )

∫
F
|u|2 dx+

∫ T

0

∫
F

2|D(u)|2 dx ds 6 C‖v̂‖2H1(Ω)‖χ‖
2
H1(0,T ). (3.27)

With the choice (2.4), taking α large enough, we conclude that there exists C = C(T,Ω,S) > 0 such that (3.23)
holds.

We can obtain in a similar way the following lemma.

Lemma 3.4. Assume that (u, p, `,ω) is the solution of (1.9)–(1.16) with f defined by (2.3). Then for α large
enough, there exists a constant C (independent of α) such that

‖u‖L∞(0,T ;L2(Ω)) + ‖D(u)‖L2(0,T ;L2(Ω)) 6 Cα2‖v̂‖H1(Ω). (3.28)

In the above result, we have extended u in S by setting

u(t,x) := `(t) + ω(t)× x, x ∈ S.

Finally, we end this section by recalling existence results for systems (1.19)–(1.23) and (1.24)–(1.35), for
N = 2.

Proposition 3.5. Assume N = 2 and assume f = χv̂, with χ ∈ H1(0, T ), v̂ ∈ H3/2(∂Ω) satisfying

χ(0) = 0,

∫
∂Ω

v̂ · n dγ = 0. (3.29)

1. There exists a unique solution (u, p) of system (1.19)–(1.23) with (3.8), (3.9).

2. Assume (2.19). There exists a unique solution (u, p, `, ω) of system (1.24)–(1.35) satisfying h, θ ∈ H2(0, T )
and

u ∈ L2(0, T ;H2(F(h, θ))) ∩ C([0, T ];H1(F(h, θ))) ∩H1(0, T ;L2(F(h, θ))), (3.30)

p ∈ L2(0, T ;H1(F(h, θ))/R). (3.31)

The first result is classical and the second result was proved in [36]. It is possible to prove the first result by
using a fixed point approach: one can consider the mapping

F 7→ −(u · ∇)u (3.32)

11



J. San Mart́ın, E. Schwindt, T. Takahashi

where (u, p) is the solution of

∂u

∂t
− divσ(u, p) = F in (0, T )×F ,

divu = 0 in (0, T )×F ,
u = 0 on (0, T )× ∂S,
u = f on (0, T )× ∂Ω,

u(0, ·) = 0 in F .

Using the Banach fixed point theorem and the above mapping, we can obtain the local in time existence of
system (1.19)–(1.23). Then, we derive H1 estimate (that is possible since N = 2) to deduce the global in time
existence.

For system (1.24)–(1.35), the approach is similar but with several additional difficulties. First since we
are working with a moving domain, it is convenient to consider a change of variables X(t, ·) : F(0) → F(t)
(construct from h, θ) and transform u in ũ := Cof(∇X)>(u ◦X) (where Cof(∇X)> is the transpose of the
cofactor matrix of ∇X) and p in p̃ := (det∇X)(p ◦X). In the above proposition, (3.30)-(3.31) means that

ũ ∈ L2(0, T ;H2(F(0))) ∩ C([0, T ];H1(F(0))) ∩H1(0, T ;L2(F(0))),

p̃ ∈ L2(0, T ;H1(F(0))/R).

Then we can consider a fixed point as above but with using (1.9)–(1.16) instead of (1.2)–(1.6) and where in
the application (3.32) we have to add nonlinear terms coming from the change of variables (see [36] for more
details).

4 Proof of Theorem 2.1

Let us define for all α > 0

û(x) :=

∫ T

0

e−αtu(t,x) dt, p̂(x) :=

∫ T

0

e−αtp(t,x) dt. (4.1)

Then, we deduce from (1.2)–(1.6) that

αû− divσ(û, p̂) = −e−αTu(T ) in F , (4.2)

div û = 0 in F , (4.3)

û = f̂ on ∂Ω, (4.4)

û = 0 on ∂S, (4.5)

with f̂ defined by (2.5).
We consider the solution (ŵ, r̂) of the problem

αŵ − divσ(ŵ, r̂) = 0 in F , (4.6)

div ŵ = 0 in F , (4.7)

ŵ = f̂ on ∂Ω, (4.8)

ŵ = 0 on ∂S. (4.9)

The couple (û− ŵ, p̂− r̂) satisfies the system

α(û− ŵ)− divσ((û− ŵ), (p̂− r̂)) = −e−αTu(T ) in F , (4.10)

div(û− ŵ) = 0 in F , (4.11)

(û− ŵ) = 0 on ∂F . (4.12)

12
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Taking the inner product of (4.10) with û− ŵ and integrating by parts, we obtain

α‖û− ŵ‖2L2(F) + 4‖D(û− ŵ)‖2L2(F) 6
1

α
e−2αT ‖u(T )‖2L2(F). (4.13)

Since (v̂, q̂) satisfies (2.1)–(2.2), the couple (v̂ − ŵ, q̂ − r̂) is solution of the system

α(v̂ − ŵ)− divσ((v̂ − ŵ), (q̂ − r̂)) = 0 in F , (4.14)

div(v̂ − ŵ) = 0 in F , (4.15)

(v̂ − ŵ) = v̂ on ∂S, (4.16)

(v̂ − ŵ) = 0 on ∂Ω. (4.17)

Taking the inner product of (4.14) with (v̂ − ŵ) and integrating by parts, it follows

0 =

∫
F
α|v̂ − ŵ|2 + 2|D(v̂ − ŵ)|2 dx−

∫
∂S
σ((v̂ − ŵ), (q̂ − r̂))n · v̂ dγ. (4.18)

Taking the inner product of (4.14) with v̂, taking the inner product of (2.1) with (v̂ − ŵ) and integrating
by parts yield

0 = −
∫
∂F
σ((v̂ − ŵ), (q̂ − r̂))n · v̂ dγ +

∫
∂F
σ(v̂, q̂)n · (v̂ − ŵ) dγ. (4.19)

The above relation implies

0 = −
∫
∂Ω

σ((v̂ − ŵ), (q̂ − r̂))n · v̂ dγ −
∫
∂S
σ((v̂ − ŵ), (q̂ − r̂))n · v̂ dγ +

∫
∂S
σ(v̂, q̂)n · v̂ dγ. (4.20)

Taking the inner product of (2.1) with v̂ and integrating by parts on S, we obtain∫
S
α|v̂|2 + 2|D(v̂)|2 dx+

∫
∂S
σ(v̂, q̂)n · v̂ dγ = 0. (4.21)

Combining (4.18), (4.20) and (4.21), we deduce

−
∫
∂Ω

σ((v̂ − ŵ), (q̂ − r̂))n · v̂ dγ =

∫
F
α|v̂ − ŵ|2 + 2|D(v̂ − ŵ)|2 dx+

∫
S
α|v̂|2 + 2|D(v̂)|2 dx. (4.22)

We are now in position to deal with Eα defined by (2.7). First we rewrite it as

Eα =

∫
∂Ω

(v̂ · σ(û, p̂)n− û · σ(v̂, q̂)n) dγ =

∫
∂Ω

f̂ · (σ(û, p̂)n− σ(v̂, q̂)n) dγ. (4.23)

We can split Eα into two parts:

Eα =

∫
∂Ω

f̂ · (σ(ŵ, r̂)n− σ(v̂, q̂)n) dγ +

∫
∂Ω

f̂ · (σ(û, p̂)n− σ(ŵ, r̂)n) dγ. (4.24)

The second term in the right-hand side of the above relation can be estimated by using (3.1):∣∣∣∣∫
∂Ω

f̂ · (σ(û, p̂)n− σ(ŵ, r̂)n) dγ

∣∣∣∣ 6 C‖v̂‖H1(Ω)

(
‖D(û− ŵ)‖L2(F) + ‖divσ(û− ŵ, p̂− r̂)‖L2(F)

)
and combining the above estimate with (4.10), we obtain∣∣∣∣∫

∂Ω

f̂ · (σ(û, p̂)n− σ(ŵ, r̂)n) dγ

∣∣∣∣
6 C‖v̂‖H1(Ω)

(
‖D(û− ŵ)‖L2(F) + α‖û− ŵ‖L2(F) + ‖e−αTu(T )‖L2(F)

)
. (4.25)
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Gathering the above inequality, (4.13) and Lemma 3.3, we finally deduce that, for α > 1,∣∣∣∣∫
∂Ω

f̂ · (σ(û, p̂)n− σ(ŵ, r̂)n) dγ

∣∣∣∣ 6 Cα2e−αT ‖v̂‖2H1(Ω). (4.26)

To estimate the first term in the right-hand side of (4.24), we use (4.22), (4.18) and (3.2)∫
F
α|v̂ − ŵ|2 + 2|D(v̂ − ŵ)|2 dx =

∫
∂S
σ((v̂ − ŵ), (q̂ − r̂))n · v̂ dγ

6 C‖v̂‖H1(S)

(
‖D(v̂ − ŵ)‖L2(F) + ‖divσ((v̂ − ŵ), (q̂ − r̂))‖L2(F)

)
. (4.27)

Therefore, using (4.14) we deduce that, for α > 1,∫
F
α|v̂ − ŵ|2 + 2|D(v̂ − ŵ)|2 dx 6 C(α+ 1)

(∫
S
|v̂|2 + 2|D(v̂)|2 dx

)
. (4.28)

We conclude from (4.24), (4.26), (4.22) and (4.28) the relation (2.8).

5 Proof of Corollary 2.2

The aim of this section is to prove Corollary 2.2, and in particular to construct a family (v̂, q̂) depending on
α > 0 allowing to recover the support function hS defined by (2.9).

The proof is similar to the one in [22] or in [25], but we include here the proof for completeness.
We set

v̂(x) := `e
√
ακ·x, q̂(x) = 0 (x ∈ R3), (5.1)

with
`,κ ∈ S2, ` · κ = 0. (5.2)

We can check that
∆v̂(x) = αv̂(x), div v̂ = 0,

so that (v̂, q̂) is a solution of (2.1), (2.2).
In order to estimate Eα, we first recall the following proposition (see Proposition 3.2 in [22] )

Proposition 5.1. Assume G is an open subset of R3. If ∂G is of class C2, then for any κ ∈ S2, there exist
constants M = Mκ > 0, ε = εκ > 0 and p = pκ ∈ [0, 1] such that

µ2 ({x ∈ G ; x · κ = hG(κ)− r}) >Mrp, ∀r ∈ (0, ε) (5.3)

where µ2 denotes the Lebesgue measure of R2.

As can be seen in the remaining part of the proof, we only need relation (5.3), and thus the corollary is
valid for “regular sets” in this sense (see [22] for more details about this notion). Let us introduce the following
notation

Gκ(δ) := {x ∈ G ; hG(κ)− δ < x · κ 6 hG(κ)}.

Now we are in position to prove Corollary 2.2. First, it is straightforward from the definition of the support
function (recalled in (2.9)) that ∫

S
e2
√
ακ·x dx 6 µ3(S)e2

√
αhS(κ), (5.4)

where µ3 is the Lebesgue measure in R3. Second,
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∫
S
e2
√
α(κ·x−hS(κ)) dx >

∫
Sκ(δ)

e2
√
α(κ·x−hS(κ)) dx

=

∫ δ

0

∫
{x∈S ; κ·x−hS(κ)=−r}

e2
√
α(κ·x−hS(κ)) dx dr

=

∫ δ

0

µ2({x ∈ S ; κ · x− hS(κ) = −r})e−2
√
αr dr

>M

∫ δ

0

rpe−2
√
αr dr

>Me−2
√
αδ δ

p+1

p+ 1
.

Then, if we take δ = α−1/2 we obtain∫
S
e2
√
ακ·x dx > C2(S,κ)e2

√
αhS(κ) 1

α(p+1)/2
. (5.5)

Setting β = p+1
2 ∈ [0, 1], we deduce

C2
1

αβ
e2
√
αhS(κ) 6

∫
S
e2
√
ακ·x dx 6 C1e

2
√
αhS(κ). (5.6)

Using (5.1), we can check that∫
S
|v̂|2 dx =

∫
S
e2
√
ακ·x dx and

∫
S
|D(v̂)|2 dx = α

∣∣∣∣`⊗ κ+ κ⊗ `
2

∣∣∣∣2 ∫
S
e2
√
ακ·x dx. (5.7)

We can also see that

‖v̂‖2H1(Ω) 6 C(1 + α)e2
√
αhΩ(κ), (5.8)

where C = C(Ω) is a positive constant.

Therefore, from (5.6), (5.7) and (5.8), (2.8) yields

Cα(1−β)e2
√
αhS(κ)−Cα2e−αT (α+ 1)e2

√
αhΩ(κ) 6 Eα 6 C(α+ 1)2e2

√
αhS(κ) +Cα2e−αT (α+ 1)e2

√
αhΩ(κ). (5.9)

Since

α(β+1)(α+ 1)e−αT e2
√
αhΩ(κ)e−2

√
αhS(κ) → 0

and

α2(α+ 1)−1e−αT e2
√
αhΩ(κ)e−2

√
αhS(κ) → 0

as α→ +∞, (5.9) implies

logC

2
√
α

+
(1− β) log(α)

2
√
α

+ hS(κ) + o(1) 6
1

2
√
α

log(Eα) 6
logC

2
√
α

+
log((α+ 1)α)

2
√
α

+ hS(κ) + o(1)

for α→ +∞. This allows us to conclude the proof of Corollary 2.2.
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6 Proof of Corollary 2.3

In this section, we prove Corollary 2.3. In order to do this, we construct a family (v̂, q̂) depending on α > 0
allowing to recover the distance d(x0,S) of S to a point x0 /∈ ch(Ω).

In order to construct (v̂, q̂), we use spherical coordinates for a frame centered in x0 and such that the e3

direction is parallel to a plane separating x0 and Ω. More precisely, every point of the space is defined by its
spherical coordinates (r, θ, ϕ) ∈ R+ × [0, π]× [0, 2π] through the formula

x1 = r sin θ cosϕ,

x2 = r sin θ sinϕ,

x3 = r cos θ.

Since x0 /∈ ch(Ω), we can assume that Ω is contained in a region of the form {(r, θ, ϕ) ; r > 0, θ1 < θ < θ2} ,
where 0 < θ1 < θ2 < π.

With the customary abuse of notation, the same symbol is used for the function of x = (x1, x2, x3) and of
(r, θ, ϕ). In the orthonormal basis (er, eθ, eϕ) associated to the spherical coordinates, we take

v̂(r, θ, ϕ) :=
e−
√
αr

r sin θ
eϕ, q̂(r, θ, ϕ) = 0, r > 0, θ1 < θ < θ2. (6.1)

In what follows, we write

g(r, θ) :=
e−
√
αr

r sin θ
. (6.2)

We are going now to use several classical formulas of operators in spherical coordinates (see, for instance,
[11, pp. 285–287]). First, for the divergence, we have

div v̂ =
1

r sin θ

∂g

∂ϕ
= 0.

We also have the Laplacian operator in spherical coordinates:

∆v̂ = (∆v̂)r er + (∆v̂)θ eθ + (∆v̂)ϕ eϕ, (6.3)

with

(∆v̂)r = − 2

r2 sin θ

∂g

∂ϕ
= 0, (∆v̂)θ = − 2 cos θ

r2 sin2 θ

∂g

∂ϕ
= 0, (6.4)

(∆v̂)ϕ =
∂2g

∂r2
+

1

r2

∂2g

∂θ2
+

2

r

∂g

∂r
+

cos θ

r2 sin θ

∂g

∂θ
− 1

r2 sin2 θ
g. (6.5)

Some calculation gives
∂g

∂r
= −

(√
α+

1

r

)
g, (6.6)

∂2g

∂r2
=

(
α+

2
√
α

r
+

2

r2

)
g, (6.7)

∂g

∂θ
= −cos θ

sin θ
g, (6.8)

∂2g

∂θ2
=

(
−1 +

2

sin2 θ

)
g. (6.9)

Inserting (6.6)–(6.9) in (6.5) yields

(∆v̂)ϕ =

(
α+

2
√
α

r
+

2

r2
− 1

r2
+

2

r2 sin2 θ
− 2
√
α

r
− 2

r2
− cos2 θ

r2 sin2 θ
− 1

r2 sin2 θ

)
g = αg. (6.10)
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The above relation, (6.3), (6.5) and (6.4) imply

∆v̂ = αv̂,

so that (v̂, q̂) defined by (6.1) is a solution of (2.1), (2.2).
We can thus use this family and apply Theorem 2.1 to prove Corollary 2.3. More precisely, this corollary

will be proved if we can estimate the integrals of v̂, D(v̂) and ∇v̂. We use again classical formula for differential
operators in spherical coordinates (see, for instance, [11, pp. 285–287]): setting

Mij = Mei · ej i, j ∈ {r, θ, ϕ},

we have
(∇v̂)rr = (∇v̂)θθ = (∇v̂)rθ = (∇v̂)θr = 0, (6.11)

(∇v̂)ϕϕ =
1

r sin θ

∂g

∂ϕ
= 0, (6.12)

(∇v̂)θϕ = −g cos θ

r sin θ
, (∇v̂)ϕθ =

1

r

∂g

∂θ
, (6.13)

(∇v̂)ϕr =
∂g

∂r
, (∇v̂)rϕ = −g

r
, (6.14)

and
D(v̂)rr = D(v̂)θθ = D(v̂)rθ = D(v̂)θr = 0, (6.15)

D(v̂)ϕϕ =
1

r sin θ

∂g

∂ϕ
= 0, (6.16)

D(v̂)θϕ = D(v̂)ϕθ =
1

2

(
1

r

∂g

∂θ
− g cos θ

r sin θ

)
, (6.17)

D(v̂)rϕ = D(v̂)ϕr =
1

2

(
∂g

∂r
− g

r

)
. (6.18)

Using (6.6) and (6.8), we deduce

D(v̂)rϕ = −
(√

α

2
+

1

r

)
g and D(v̂)θϕ = − cos θ

r sin θ
g.

The above relation implies

I :=

∫
S
α|v̂|2 + 2|D(v̂)|2 dx =

∫
S

(
2α+ 4

√
α

r
+ 4

1

r2 sin2 θ

)
|g|2r2 sin θ drdθdϕ. (6.19)

Using the hypothesis on x0 and Ω, we can assume that

S ⊆ {(r, θ, ϕ) ; 0 < r1 6 r < r2, 0 < θ1 < θ < θ2 < π} . (6.20)

We can take r1 such that
r1 = min

S
r = min

x∈S
|x− x0| = d(x0,S). (6.21)

From (6.20), we can assume that
sin θ > s∗ > 0 in S. (6.22)

In what follows, α is taken large enough (for instance α > 1). Using (6.20), (6.21) and (6.22), we can
estimate I defined by (6.19) as

I 6 µ3(S)

(
2α+ 4

√
α

r1
+ 4

1

r2
1(s∗)2

)
e−2
√
αr1

r2
1(s∗)2

6 C1(S)(α+ 1)e−2
√
αd(x0,S). (6.23)

The lower bound on the integral is obtained from the following result that is proved, for instance in [27,
Proposition 3.2].
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Proposition 6.1. Assume ∂S is of class C2. There exists γ ∈ R such that

lim inf
α→∞

αγe2
√
αd(x0,S)

∫
S
e−2
√
α|x−x0| dx > 0.

Using the above proposition and (6.20), we deduce that

I > C(S)

(
2α+ 4

√
α

r2
+ 4

1

r2
2

)
1

r2
2

α−γe−2
√
αd(x0,S) > C2(S)α1−γe−2

√
αd(x0,S). (6.24)

On the other hand, using (6.11)–(6.14), (6.6), (6.7), we can check (as in (6.19))

‖v̂‖2H1(Ω) 6 C(Ω)

∫
Ω

(
1 + α+

1

r2

)
|g|2r2 sin θ drdθdϕ 6 C(Ω)(α+ 1)e−2

√
αd(x0,Ω). (6.25)

Therefore, by the same kind of reasoning as in the end of Section 5, we conclude the proof of Corollary 2.3.

7 Spherical geometrical optics solutions

In this section, we prove Theorem 2.6 and Theorem 2.8 by using the spherical geometrical optics solutions. Let
us first recall the following result proved in [16]:

Theorem 7.1. For all x0 /∈ ch(Ω) (the convex hull of Ω) and d > 0, there exists a family (vα, qα) ∈ C2(Ω)×
C1(Ω) such that

− divσ(vα, qα) = 0 in Ω̃, (7.1)

div vα = 0 in Ω̃, (7.2)

for some domain Ω̃ ⊇ Ω and for α > 0 and such that for α > α0

cα2

(
d

d(x0,S)

)2α

6
∫
S
|vα|2 dx 6 Cα2

(
d

d(x0,S)

)2α

(7.3)

and

cα4

(
d

d(x0,S)

)2α

6
∫
S
|D(vα)|2 dx 6 Cα4

(
d

d(x0,S)

)2α

. (7.4)

Here c and C are constants that may depend on S.

7.1 Proof of Theorem 2.6

For simplicity, we suppress in the proofs below the explicit dependence on α in the notation. For example, we
write v instead of vα.

Multiplying (1.36) by u, integrating by part and using (1.37)–(1.41), we obtain∫
∂Ω

σ(u, p)n · f dγ =

∫
F(t)

2|D(u)|2 dx. (7.5)

Multiplying (7.1) by v, integrating by part and using (2.16) we deduce∫
∂Ω

σ(v, q)n · f dγ =

∫
Ω

2|D(v)|2 dx. (7.6)
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7 Spherical geometrical optics solutions

Multiplying (7.1) by a smooth divergence free map w and integrating on S(t), we obtain∫
∂S(t)

σ(v, q)n · w dγ + 2

∫
S(t)

D(v) : D(w) dx = 0. (7.7)

Consequently, taking particular choices of w, we have∫
∂S(t)

σ(v, q)n dγ =

∫
∂S(t)

x× σ(v, q)n dγ = 0. (7.8)

Then multiplying (7.1) by u, integrating on F(t), integrating by parts and using (7.8) implies∫
∂Ω

σ(v, q)n · f dγ =

∫
F(t)

2D(v) : D(u) dx. (7.9)

Combining (7.5), (7.9) and (7.6)∫
∂Ω

σ(u− v, p− q)n · f dγ = 2

∫
S(t)

|D(v)|2 dx+ 2

∫
F(t)

|D(v − u)|2 dx. (7.10)

On the other hand, combining (1.36)–(1.41), (7.1)-(7.2) and (7.8), we deduce

− divσ(u− v, p− q) = 0 in F(t), t ∈ (0, T ), (7.11)

div(u− v) = 0 in F(t), t ∈ (0, T ), (7.12)

(u− v) = 0 on ∂Ω, t ∈ (0, T ), (7.13)

(u− v) = `+ ω × (x− h)− v on ∂S(t), t ∈ (0, T ), (7.14)∫
∂S(t)

σ(u− v, p− q)n dγ = 0 t ∈ (0, T ), (7.15)∫
∂S(t)

(x− h)× σ(u− v, p− q)n dγ = 0 t ∈ (0, T ). (7.16)

Therefore, multiplying (7.11) by u− v, using (7.12)–(7.16), and applying Lemma 3.1 and the Korn inequality,
we deduce

‖(u− v)(t)‖H1(F(t)) 6 C‖v‖H1(S(t)). (7.17)

Consequently, we obtain

2

∫
S(t)

|D(v)|2 dx 6
∫
∂Ω

σ(u− v, p− q)n · f dγ 6 C

(∫
S(t)

2|D(v)|2 + |v|2 dx

)
. (7.18)

Using Theorem 7.1, we obtain

cα4

(
d

d(x0,S(t))

)2α

6
∫
∂Ω

σ(u− v, p− q)n · f dγ 6 C(α2 + α4)

(
d

d(x0,S(t))

)2α

.

If d < d(x0,S(t)) then the above estimate yields Fα 6 C
(

d
d(x0,S(t))

)α
. If d > d(x0,S(t)), then we deduce

Fα > c
(

d
d(x0,S(t))

)2α

.

We conclude the proof of Theorem 2.6.
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7.2 Proof of Theorem 2.8

Here we only prove the result for the system (1.24)–(1.35). A similar and simpler proof can be done for the
Navier–Stokes system (1.19)–(1.23).

We modify the function (vα, qα) of Theorem 7.1 by multiplying it by a function χ ∈ C∞([0, T ]) such that
χ(0) = 0, χ > 0 in (0, T ]. This modification allows us to have regular solutions for system (1.24)–(1.35) or for
the Navier–Stokes system (1.19)–(1.23) if N = 2 (see Proposition 3.5).

First, the Reynolds formula implies

d

dt

∫
F(t)

|u|2

2
dx =

∫
F(t)

∂u

∂t
· u dx+

∫
∂S(t)

u · n |u|
2

2
dγ. (7.19)

On the other hand, an integration by parts gives∫
F(t)

(u · ∇)u · u dx =

∫
∂F(t)

u · n |u|
2

2
dγ =

∫
∂S(t)

u · n |u|
2

2
dγ +

∫
∂Ω

f · n |f |
2

2
dγ. (7.20)

Multiplying (1.24) by u, using (7.19)–(7.20) and integrating by parts yields

0 =
d

dt

∫
F(t)

|u|2

2
dx+

∫
F(t)

2|D(u)|2 dx+

∫
∂Ω

(f ·n)
|f |2

2
dγ+mh′′ ·h′+ I0ω

′ω−
∫
∂Ω

σ(u, p)n ·f dγ. (7.21)

Let us extend u in S(t) by

u(t,x) = `(t) + ω(t)(x− h(t))⊥ in S(t). (7.22)

We also define a global density function ρ as

ρ(t,x) :=

{
1 if x ∈ F(t),
ρS if x ∈ S(t).

(7.23)

Using (1.18), we can prove that

d

dt

∫
S(t)

ρS
|u|2

2
dx = mh′′(t) · h′(t) + I0ω

′(t)ω(t).

Combining the above equation with (7.21) and using the notation (7.22)–(7.23), we deduce∫
∂Ω

σ(u, p)n · f dγ =
d

dt

∫
Ω

ρ
|u|2

2
dx+

∫
F(t)

2|D(u)|2 dx+

∫
∂Ω

(f · n)
|f |2

2
dγ. (7.24)

Multiplying (7.1) by v, integrating by part and using (2.16), it follows∫
∂Ω

σ(v, q)n · f dγ =

∫
Ω

2|D(v)|2 dx. (7.25)

Using (7.8) and using (2.16) and multiplying (7.1) by u, we obtain∫
∂Ω

σ(v, q)n · f dγ =

∫
F(t)

2D(v) : D(u) dx. (7.26)

By combining (7.24), (7.25) and (7.26), we deduce∫
∂Ω

σ(u− v, p− q)n · f dγ =

∫
S(t)

2|D(v)|2 dx+

∫
F(t)

2|D(v − u)|2 dx

+
d

dt

∫
Ω

ρ
|u|2

2
dx+

∫
∂Ω

(f · n)
|f |2

2
dγ. (7.27)
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We deduce that∫ T

0

∫
∂Ω

σ(u− v, p− q)n · f dγ dt−
∫ T

0

∫
∂Ω

(f · n)
|f |2

2
dγ dt >

∫ T

0

∫
S(t)

2|D(v)|2 dx dt. (7.28)

As a consequence, if the observation Kα defined by (2.20) remains bounded as α→∞, then it implies that∫ T

0

∫
S(t)

|D(v)|2 dx dt

is also bounded as α → ∞. From Theorem 7.1, this yields that for almost all t ∈ [0, T ], d < d(x0,S(t)). Since
h et Q are continuous, it implies that

S(t) ∩B(x0, d) = ∅ (∀t ∈ [0, T ]).

This ends the proof of Theorem 2.8.
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[8] D. Dos Santos Ferreira, C. E. Kenig, J. Sjöstrand, and G. Uhlmann, Determining a magnetic
Schrödinger operator from partial Cauchy data, Comm. Math. Phys., 271 (2007), pp. 467–488.
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