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Abstract—In this paper, a new generic problem formulation 
dedicated to railway electrification systems is proposed. This 
formulation meets the needs for evolutivity of modern simulation 
tools by using meta-models for the railway network components. 
This approach has been applied to developp a new general-
purpose electrified railway simulator. As an example, a DC 
electrification system has been simulated and the results 
compared to those of a classical simulator for validation purpose. 
A comparison of different resolution algorithms is also presented 
as a result of the possibilities offered by the new simulator.  

Keywords—simulation; modeling; railway application. 

I.  INTRODUCTION 

The growth of traffic or the construction of a new electrified 
railway require a sizing study for power supply facilities in 
order to meet standard needs and expected performance. This 
type of study is conducted using railway simulators based on 
assumptions whose outcomes serve as evidence for proposals 
to size or reinforce the power supply system. Several 
simulators of this type are now available [1-4], but they all 
face the same limitations. The first one is the lack of 
generality: each simulator is dedicated to a specific 
electrification system. The second challenge deals with 
evolutivity:  new types of components, such as power storage 
systems [3] [5], are more and more implemented in existing 
electrification systems, and must be accounted for in 
simulation. Last, an emerging issue regards the optimal design 
of the railway network and its residual development 
capabilities. Powerful optimization methods are now 
available, but they require fast and robust models. The purpose 
of the work presented hereafter is to build a new railway 
simulator meeting those requirements: flexibility, robustness 
and evolution capability are obtained by using the concept of 
meta-models.  

The paper is organized as follows: the principles of railway 
modeling are recalled, then the constitution of the meta-model 
is proposed and the principles of its implementation in a 
railway simulator are discussed. A comparison between 
different solving algorithms available for this type of 
simulator is performed. Finally, the results of the new 
simulator and those of a reference simulator are compared in 
the case of a DC system. 

 

II.  PRINCIPLES OF RAILWAY POWER SUPPLY MODELING  

A railway electrification system is the set of facilities used to 
supply electrical power to the trains: feeding sub-station, 
transformers, rectifiers, catenaries, motors ... The trains are 
supplied with high voltage alternative- or direct-current by a 
third rail or catenary and the return current flows either 
through the rails of the track or a fourth dedicated rail. The 
electrical network is described using lines, tracks and 
kilometer points, which allow locating the different 
components relatively to each other. 
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Fig. 1. Block diagramm of railway power supply simulator. 

The main principles of railway simulation are well defined 
[1] [2] [4] [6]. The goal is to assess the capability of a given 
power supply network to provide the trains with the electrical 
power they need to fulfill their mission at the desired 
performance level. The spatial characterization of the trains' 
missions allows to determine what power the network must 



 

provide. Most vehicles use regulation devices, in order to 
adapt the power actually drawn to what is available on the 
network. This leads to a non-linear behavior of the system and 
forbids the use of power flow techniques [2] [6] to model it. 
Hence, circuit-style methods are required. All available 
simulators proceed in an equivalent fashion (Fig. 1): they 
simulate the dynamic of traffic flows by generating a non-
linear electrical circuit at each step of time, and then calculate 
all of the electrical values within the  circuit.  

The existence of many electrification systems [7] has led to 
the creation of different dedicated simulators, each one using 
models and problem-solving methods specific to the 
considered system [1] [2] [4] [6]. Analyzing these various 
methods did not allow us to identify the one that would allow 
a generic, expandable representation of the modeled system, 
which is why we have developed a new methodology based on 
meta-models, and built a general-purpose, expandable electric 
railway simulator.  

III.  PROPOSED GENERIC PROBLEM FORMULATION 

The power supply system consists of so-called 
"longitudinal" components (rails, catenaries ...) and "parallel" 
ones (substations, transformers, train ...). The usual way of 
modeling the railway electrical circuit is to build up a bus 
admittance matrix, defined by the longitudinal components of 
the line and stamped with predefined models of the parallel 
components [1]. The different components are represented by 
semi-analytical models, whose parameters include position 
information (line, track, position on the line if applicable). The 
structure of the stamp that a component model must fulfill 
depends on the considered electrification system. A drawback 
of this approach when applied to railway is that the bus may 
vary a lot, as its structure is defined by whatever installations 
are present in the system. Additionally, the network is 
constantly being reconfigured according to the trains' 
positions. Furthermore, the very notion of a bus complicates 
the formulation of the circuit problem when the railway 
network consists of multiple lines and tracks. The use of graph 
theory allows for clever solutions to problems related to 
network reconfiguration [8] [9], but imposes conditions on the 
depiction of the elements in the graph. For example, a 
catenary will necessary appear as an edge, while a substation 
will appear as a vertex.  This reduces the evolving capability 
of the problem formulation. As our goal is to depict and 
simulate various railway systems in a generic way, we have 
chosen a different approach and implemented a dynamic 
graph. 

A. Reconstructing a parallel/serial multi-graph 

Formulating a generic circuit problem requires to be able 
to use component models that can be defined afterward, at the 
time when the simulation is carried out. We have therefore 
designed a meta-model of railway network component relying 
on a set of predefined properties. Given the positions of the 
elements within the network (lines and tracks it belongs to, 
kilometer point), it is possible to build the graph of 
relationships between the elements. The predefined properties 
of the meta-model are: 

- Type of component (discrete or continuous) 
- Transversality 
- Desired mutual effect 
- List of desired outside connections 
- List of internal connections 

Using these properties, an element may form one or more arcs 
on the graph, generate one or more vertices, or even be part of 
the structure of those vertices. The potential connections do 
not need to be specified in advance: if two elements positioned 
at the same place want to make the same connection defined 
afterward, then they are both part of the creation of a vertex. 
Presence in a single location is defined spatially by the lines, 
the tracks that make them up, and the kilometer points. It is 
also defined electrically according to the property "discrete" or 
"continuous", which indicates the element's ability to form a 
single vertex regardless its spatial position, or one vertex on 
each of the spatial positions, respectively. The element 
property "transversality" indicates its ability to form different 
vertices on each track. For example, a single sub-station 
connected to several lines, each of them feeding a track at a 
different kilometer point, will constitute a single catenary 
vertex on the graph. Fig.2 gives an example of algorithm 
which interpretes a component's properties. All algorithms 
developed for each element are called when that element is 
assigned to a new position. In response, they modify only part 
of the graph. This local reconstruction reduces computation 
time. The graph is initially constructed by all the elements of 
the power supply network. As a large railway network consist 
of many elements, this initial formulation may be rather long, 
but the successive reconstructions, performed at the local level 
as the trains are moving, are fast. 
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Fig. 2. Portion of an algorithm developed to modify the multigraph when a 
new element is associated to a new position. 



 

B. Graph coloring and optimal route 

The graph formed by defining relationships between the 
elements by correlating their properties does not directly 
produce a solvable circuit graph. This is because the use of the 
graph as-is may lead to the creation of a singular matrix when 
the problem is formulated. This would happen if a vertex were 
formed because two elements in the same position share the 
same connectivity while being associated with the vertex that 
has the circuit's reference node. To handle this problem, we 
use the fact that the elements can be directly assigned to the 
vertices that they form in the graph, so that each vertice can be 
colored according to the element model. We therefore have 
added to the meta-model a graph-coloring method, which 
works as follows. The elements that define the reference nodes 
assign the indicator α to the corresponding vertices; the 
elements that use a source of voltage assign the indicator β, 
and the elements that use a source of current assign an 
indicator δ. The indicator α takes precedence over β and δ. 
Next, a depth-first search within the graph starts from the 
reference node and retains only the sub-graphs in which the 
indicators β or δ appear at least once. 
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Fig. 3. Dynamic building of the graph and circuit formulation for 2 earthed 

substations suppling 2 tracks. Each track consists of a catenary and a 
rail. One engine is moving on track 1. 

C. Problem formulation by the components 

We have created a set of algorithms that make it possible to 
build the graph representing the solvable portion of the circuit 
given a set of predefined general properties of the elements. 
There are several analysis methods for formulating a circuit 
problem, including mesh analysis, nodal analysis, or the use of 
a modified nodal analysis [6]. Given its ease at locating the 
circuit's nodes and the options for representation, modified 
nodal analysis with linked sources of current and voltage was 
a natural choice for us [10]. Next we build the problem in the 
form of a matrix. The use of modified nodal analysis 
introduces constraints on potentials that increase the matrix 
size. An additional property of the meta-model is used to 
define this mechanism. We therefore establish a pre-assembly 
phase, at the end of which the problem's matrix structure is 
defined. As each vertex and arc in the graph is formed by the 
elements (Fig. 3), those elements possess the nodes which they 
form in the circuit, and ultimately their link indices in the 
problem's structure. The element models may then explicitly 
formulate the non-linear problem in the matrix form: 

�. �	– 	�(�) 	= 	0                (1)	

where A is the admittance matrix plus the distribution of 
constraints on the potentials, x is the vector of the potentials 
concatenated with the current of the constraints and b(x) is the 
vector of the injected currents concatenated with the 
potentials' values. Each element locally participates in 
formulating the problem through its link indices. This means 
that it is represented by increasing or decreasing the values of 
the quantities located at the indices in the matrices and vectors 
(admittance or current, whichever is present). As the problem 
is non-linear, the element models are needed to calculate the 
second member and the Jacobian matrix. The element meta-
model is therefore completed by two methods used for 
processing non-linear elements: 

- Evaluation of the second member 
- Evaluation of the Jacobian 

Just as with the formulation, these evaluations are performed 
at the model's local level, and the models express their non-
linearity by increasing or decreasing the values of the 
quantities located at the link indices. It should be noted that 
the non-linearity of certain component models affect the 
problem's topology itself.  This is true, to give on example, for 
linear modeling using diode pieces for substations. Taking this 
ideal behavior into account requires reconfiguring the network 
in order to eliminate the equivalent admittance of turned-off 
diodes. To handle these topological changes, a convergence 
loop testing the state of the diodes has been added. 

IV.  SOLVING ALGORITHMS PERFORMANCES 

The proposed method leads to the same type of evolutive 
circuit problems than other simulators: at each step of time, 
one has to solve a non linear problem, characterized by a 
sparse and symmetrical matrix [2] [6]. We can benefit from 
their experience in how to numerically handle this type of 
problem, but we must also anticipate the fact that new 
components are to be integrated in our simulator, and that their 
behavior may lead to numerical difficulties not encountered at 
the time being. For this reason, we have decided to use a 
powerful parallel computing library, Petsc [11], which 
provides us with a wide range of solving methods. In this 
section, we analyze the performances of some of them. 

Railway network power supply simulations include the 
prediction of the train displacement. Hence, the state of the 
network calculated at a given time depends on the results 
calculated at the past time (Fig. 1). If convergence fails at a 
given time, none of the results obtained after can be trusted. 
For this reason, the first criterion when choosing a solver is 
robustness: the solving method must be able to converge for 
every problem formulated during the simulation. The second 
criterion is the computing time.  

In order to determine which algorithms are the most efficient 
to solve our problem, we have tested and compared a number 
of them: linear and non linear solvers, matrix ordering 
methods, and preconditionners. The test case is described in 
section V. The simulations were performed on a laptop with a 
processor Intel® Core ™ i7-3840QM clocked at 2.80 GHz 



 

with 32 GB RAM. Over hundred combinations of algorithms 
were tested, but only the most interesting results are presented 
here. Fig. 4 to 6 report the computation time for different 
algorithm combinations. The average number of iterations 
required by the linear solver and its standard deviation are also 
given. The latest figure is interpreted as a measure of 
robustness: a small standard deviation indicates that the linear 
solver behaves in a similar way whatever the system to solve. 

 

 
Fig. 4. Influence of matrix ordering on GMRES and PCG linear solver 

performances. The non linearity is handled using the trust region algorithm. 

The matrix ordering was found to strongly influence the 
linear solver efficiency, some methods being more sensitive 
than others. For example, Fig. 4 shows that the PCG method is 
less affected than the GMRES one, but that the reverse 
Cuthill-McKee ordering method allows to achieve similar very 
good performances in all cases. 
 

 
Fig. 5. Performances of different linear solver algorithms. The reverse  

Cuthill-McKee ordering and the trust region algorithm are used. 

Fig. 5 focuses on the linear solver performances and show 
that direct methods are the fastest ones. However, iterative 
methods with a good preconditioner are scarcely less effective. 
One must also consider that the GMRES and PCG methods 
are easy to parallelize, but since the test was performed on a 
single processor machine, the efficiency gain could not be 
assessed. 
 

 
Fig. 6. Performances of different nonlinear methods, coupled with LU 

factorization linear solvers. 

Fig. 6 shows that all the nonlinear methods we have tested 
are equivalent, but the backtracking line search method 
sometime fails to converge and should be avoided. 

This comparison of different available methods 
corroborates the conclusions found in literature [2] [4]. It 
shows that several choices with good performances are 
possible and one can think that finding an efficient 
combination of method will not be an issue when considering 
new models. 

V. APPLICATION TO A TEST CASE 

A.  Description of the test case 

The proposed approach has been tested in the case of a 
direct-current network. The components used in this type of 
power supply have been modeled in the context of the meta-
model described in section III. These components are: 

- Sub-station with diode 
- Catenary 
- Rail 
- Rolling stock 
- Track paralleling hut 
- Cross bond 
- Line intersections 

A test case involving a two-track line 50 km long with 
variable topography was simulated. Eight sub-stations supply 
the traffic, consisting of six trains: four high-speed, one 
suburban and one freight train. This test case was the one used 
to evaluate the solving algorithms in section IV. Fig. 7 shows 
an example of results. The same case was also studied in 
outage conditions, and Fig. 8 shows results when five 
substations are out of order. 
 

Matrix ordering Linear solver
Computation 

time in s

Average of 
iteration 
number 

required by 
linear solver

Standard deviation of 
iteration number 
required by linear 

solver

Nested 
Dissection

GMRES 58 342 61

Nested 
Dissection

PCG 20 95 9

Natural Ordering GMRES 20 17 6

One-way 
Dissection

GMRES 49 223 282

Quotient 
Minimum Degree

GMRES 18 17 4

Reverse Cuthill-
McKee

GMRES 15 17 2

Reverse Cuthill-
McKee

PCG 16 17 2

Linear solver Type Preconditioner
Computation 

time in s

Average of 
iteration 
number 

required by 
linear solver

Standard 
deviation of 

iteration 
number 

required by 
linear solver

PCG iterative none 29 262 37

PCG iterative
incomplete 
Cholesky 

factorization
16 17 2

PCG iterative
incomplete LU 
factorization

16 17 2

PCG iterative diagonal scaling 26 198 28

GMRES iterative none 507 3719 535

GMRES iterative
incomplete 
Cholesky 

factorization
15 17 2

GMRES iterative
incomplete LU 
factorization

15 17 2

GMRES iterative diagonal scaling failure 1206 1385

LU factorization direct none 13 1 0

Cholesky 
factorization

direct none 14 1 0

Nonlinear solver Numbers of failures
Computation 

time in s

Average of iteration 
number required by 

nonlinear solver

Standard 
deviation of 

iteration number 
required by 

nonlinear solver

Trust region 0 14 7 3

Basic newton's 
method

0 13 7 3

Secant search in 
the L2 norm of the 

function
0 13 6 2

Critical point line 
search

0 13 6 2

Backtracking line 
search

6 13 7 3



 

 
Fig. 7. Simulation results in nominal case : line voltage, traffic graph, dynamic of trains. 

 
Fig. 8. Simulation results in outage case : line voltage, traffic graph, dynamic of trains. 

B. Comparison with a standard simulator 

The results calculated with the new simulator are compared 
to those obtained with the standard tool ESMERALDA [12] in 
Fig. 9 and 10 and a good agreement is observed.  

Fig. 9 shows the relative difference between the speed and 
voltage calculated by both simulators, in terms of maximum 
instantaneous discrepancy, average discrepancy over the 
whole simulation and standard deviation. The total travel time 
of  the different trains is also reported and found to be very 
close for both simulators. The numerical implementation of 
the railway network model is different in both simulators, so 

that their results cannot be exactly the same. Some punctual 
discrepancies are observed, which may be rather important for 
outage conditions, but the average relative difference over the 
whole simulation is always less than 3%. This indicates that 
both simulators predict the same overall dynamic evolution of 
the system.  



 

 

Fig. 9. Comparative table of dynamic evolution of speed                            
and voltage level for the six trains. 

Once that it has been checked that the global dynamics of the 
train are similar for both simulators, we can expect similar 
results at the level of the substations. For this reason, we 
restrain the analysis to the maximum mean power supplied by 
the different substations. Fig. 10 reports the results calculated 
by both simulators. The "1 min" (resp. "60 min") column 
corresponds to a mean value calculated over a 1 minute (resp. 
60 min) sliding time interval. The results are very close with a 
relative difference always less than 2%. 

 

 
Fig. 10. Comparative table of maximum of mean of power supply for 

installations. 

Through these comparisons we have proven that the new 
simulator performs as well as ESMERALDA and is suitable 
for study. This new simulator provides different numerical 
methods to solve the non linear circuit problem involved at 
each step of time and evolutivity capabilities to simulate 
tomorrow’s railway networks. 

VI.  CONCLUSION 

A new methodology for generic formulation of railway 
electrical simulation problems has been proposed, based on an 
original meta-model of the network's components. The use of 
this meta-model makes the simulator expandable to new 
components, whose models are not known yet. The methods 
developed around this meta-model allow to explicitly 
formulate the non-linear circuit problem to be solved. Its use 
has been tested in the case of direct-current electrification 
systems. Dissociating the explicit formulation of the problem 
allowed us to compare and select the most effective solving 
algorithms. A comparison with a standard simulator has also 
been performed, so as to validate the new simulator. The 
creation of a component library for alternating-current 
electrification systems using the meta-model is currently being 
studied in order to confirm the genericity of the proposed 
method. Furthermore, this methodology will also be integrated 
into a rail simulation software platform in order to handle 
larger problems related to optimization of the power supply 
network. 
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