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Abstract. This paper is originally motivated by an application where
the objective is to generate a video summary, built using intervals ex-
tracted from a video source. In this application, the constraints used
to select the relevant pieces of intervals are based on Allen’s algebra.
The best state-of-the-art results are obtained with a small set of ad hoc
solution techniques, each specific to one combination of the 13 Allen’s
relations. Such techniques require some expertise in Constraint Program-
ming. This is a critical issue for video specialists. In this paper, we design
a generic constraint, dedicated to a class of temporal problems that cov-
ers this case study, among others. ExistAllen takes as arguments a vector
of tasks, a set of disjoint intervals and any of the 213 combinations of
Allen’s relations. ExistAllen holds if and only if the tasks are ordered
according to their indexes and for any task at least one relation is satis-
fied, between the task and at least one interval. We design a propagator
that achieves bound-consistency in O(n + m), where n is the number of
tasks and m the number of intervals. This propagator is suited to any
combination of Allen’s relations, without any specific tuning. Therefore,
using our framework does not require a strong expertise in Constraint
Programming. The experiments, performed on real data, confirm the
relevance of our approach.

1 Introduction

The study of temporal relations between elements of a process is a very active
topic of research, with a wide range of applications: biomedical informatics [5,20],
law [17], media [2,4,8] etc. Temporal reasoning enables to analyze the content of
a document in order to infer high-level information. In particular, a summary of
a tennis match may be generated from the match recording with Artificial Intel-
ligence techniques [2,4]. The summarization requires to extract some noticeable
time intervals and annotate them with qualitative attributes using signal recog-
nition techniques. Then, the summary generation may be formulated as a Con-
straint Satisfaction Problem (CSP) where variables are the video segments to
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be displayed whereas constraints stem from different considerations: displaying
relevant information, balancing the selected content, having nice transitions etc.
Then, the CSP may be solved quite efficiently with a Constraint-Programming
(CP) solver. At first sight, this seems an easy task.

Unfortunately, things get harder when it comes to practice. Designing a CP
model requires some expert knowledge, in order to achieve good performances
on hard problems. This is particularly true when one has to design a global
constraint that would be missing in the solver. For instance, the summariza-
tion model of [2] relied on many disjunctions that are poorly propagated by
constraint engines and thus lead to unsatisfiable performances. Therefore, the
authors collaborated with CP experts to design ad hoc global constraints, which
lead to significant speedups [4]. Alternatively, one may have used temporal logic
models, to benefit from solution techniques and solvers dedicated the temporal
CSP [18,7,9,6]. As the video summarization gets more sophisticated, all these ap-
proaches suffer from the need of specific and often intricate propagators/models.
This is a critical issue for video specialists, who are rarely CP experts. Fur-
thermore, one may need to include in her model other features available in
state-of-the-art constraint solvers, such as standard global constraints and pre-
defined search strategies. What is missing is a both expressive and efficient global
constraint for modeling a relevant class of problems on time intervals.

We introduce the ExistAllen constraint, defined on a vector of tasks T and
a set of disjoint intervals I, respectively of size n and m. Given a subset R
of Allen’s relations [1], ExistAllen is satisfied if and only if the two following
properties are satisfied:

1. For any task in T at least one relation in R is satisfied between this task
and at least one interval in I.

2. Tasks in T are ordered according to their indexes in the vector given as
argument, i.e., for any integer i, 1 ≤ i < n, the task Ti should end before or
at the starting time of Ti+1.

In the context of video-summarization, tasks in T are the video segments
that compose the summary. Fixed video sequences in I are extracted from the
source according to some precise features. In this way, it is possible to constrain
the content of the summary with qualitative information.

Considering the invariability of task processing times, we introduce a bound-
consistency propagator for this constraint, suited to any of the 213 subsets of
Allen’s relations. The time complexity of the most natural algorithm for this
propagator is O(n×m). We propose an improved algorithm, running in O(n+m)
time. While ExistAllen may be used in different contexts, e.g., online schedul-
ing, this paper is motivated by video-summarization. Our experiments on the
Boukadida et al.’s application [4] demonstrate that using our generic constraint
and its linear propagator is significantly better than the models built with stan-
dard constraints of the solver, and competitive with the ad hoc global constraint
approach.



Symbol Relation

T (1) p T (2) (T (2) pi T (1)) T (1) precedes T (2)

T (1)

T (2)

T (1) m T (2) (T (2) mi T (1)) T (1) meets T (2)

T (1)

T (2)

T (1) o T (2) (T (2) oi T (1)) T (1) overlaps T (2)

T (1)

T (2)

T (1) s T (2) (T (2) si T (1)) T (1) starts T (2)

T (1)

T (2)

T (1) d T (2) (T (2) di T (1)) T (1) during T (2)

T (1)

T (2)

T (1) f T (2) (T (2) fi T (1)) T (1) finishes T (2)

T (1)

T (2)

T (1) eq T (2) T (1) equal to T (2)

T (1)

T (2)

Table 1. Allen’s temporal algebra relations.

2 Background

In this section we give some background and fix the notations used in this paper.

2.1 Temporal Constraint Networks

Temporal reasoning has been an important research topic for the last thirty
years. One may distinguish qualitative temporal reasoning, based on relations
between intervals and/or time points, from quantitative reasoning where dura-
tion of a given event is represented in a numerical fashion. Allen’s algebra [1]
represents qualitative temporal knowledge by interval constraint networks. An
interval constraint network is a directed graph where nodes represent intervals
and edges are labelled with disjunctions of Allen’s relations. Table 1 details those
relations. Many state-of-the-art papers deal with generic solving techniques and
tractability of temporal networks [6,7,9,18], including temporal problems with
quantified formulas [10,12]. Most of these methods make no strong restriction
on the constraint network to be solved.

A few techniques, more specialized, focus on optimization problems. The two
most related to this paper are the following. Kumar et al. [11] consider temporal



problems with “taboo” regions, minimizing the number of intersections between
tasks and a set of fixed intervals. These problems occur in scheduling applica-
tions, among others. In the context of video summarization, a recent paper [4]
proposes the idea of using global constraints involving a set of ordered intervals.
Each constraint is restricted to one specific relation in the 213 combinations of
Allen’s relations. The propagators are not described.

2.2 Constraint Programming (CP)

CP is a problem solving framework where relations between variables are stated
in the form of constraints, which together form a constraint network. Each vari-
able x has a domain D(x), whose minimum value is x and maximum value is x.
A task T in a set T is an object represented by three integer variables: sT , its
starting time, eT , its ending time, and pT , its processing time. The task should
satisfy the constraint sT +pT = eT . An interval I in a set I is a fixed task, defined
by integer values instead of variables. A propagator is an algorithm associated
with a constraint, stated on a set of variables. This propagator removes from
domains values that cannot be part of a solution to that constraint. The notion
of consistency characterizes propagator effectiveness. In this paper, we consider
bound(Z)-consistency [3]. When domains are exclusively represented by their
bounds (i.e., have no holes), bound(Z)-consistency ensures that for each variable
x, x and x can be part of a solution of the constraint.

3 The ExistAllen constraint

This section introduces the ExistAllen constraint and its propagator. Let T =
{T1, T2, . . . , Tn} be a set of tasks, such that any task Ti+1 must be scheduled
at or after the end of task Ti. Similarly, we define a set of ordered Intervals
I = {I1, I2, . . . , Im}. From a subset R of Allen’s relations, ExistAllen ensures
that any task in T is related to at least one interval in I.

Definition 1 (ExistAllen). ExistAllen(T ,R, I)⇔

∀T ∈ T ,
∨

R∈R

∨
I∈I

T R I

∧ (∀i, 1 ≤ i < n, sTi+1 ≥ eTi)

Example 1. When summarizing the video of a tennis match, it may be required
that each segment (task) selected to be part the summary contains an applause.
Applause intervals can be preprocessed [4]. Such requirement can then be for-
mulated with a ExistAllen constraint, where T are the selected segments, I are
the applause segments and R is set to {fi, di, eq, si}.

A symmetry can be used, where the problem is seen in a mirror: starting
variables become ending variables and the lower bounds filtering of the mirror



relation is applied to the upper bounds (e.g. starts is propagated onto upper
bounds using finishes, see Table 1). Therefore, we put the focus on the algorithms
for the lower bounds of starting/ending task variables in T . We consider here
that processing times are exclusively updated by the constraints sT + pT = eT .

3.1 Basic filtering: one relation, one task, one interval

The basic filtering rule specific to each Allen’s relation can be derived from time-
point logic relations [19], in order to state lower and upper bounds of starting
and ending times of tasks. For instance, consider a task T ∈ T , an interval I ∈ I,
and the relation starts. The relation is satisfied if and only if two conditions are
met:

T s I ⇔ sT =sI ∧ eT <eI

The only filtering on the lower bounds of task T induced by the two conditions of
relation starts is sT ≥ sI. On the same basis, we define in Table 2 the conditions
and filtering rules for the 13 Allen’s algebra relations between a task T and an
interval I.

Relation Conditions Filtering

T p I eT < sI

T pi I eI < sT sT > eI

T m I eT = sI eT ≥ sI

T mi I sT = eI sT ≥ eI

T o I
sT < sI

eT < eI

eT > sI eT > sI

T oi I
sT < eI

sT > sI sT > sI

eT > eI eT > eI

T s I
sT = sI sT ≥ sI

eT < eI

Relation Conditions Filtering

T si I
sT = sI sT ≥ sI

eT > eI eT > eI

T d I
sT > sI sT > sI

eT < eI

T di I
sT < sI

eT > eI eT > eI

T f I
sT > sI sT > sI

eT = eI eT ≥ eI

T fi I
sT < sI

eT = eI eT ≥ eI

T eq I
sT = sI sT ≥ sI

eT = eI eT ≥ eI

Table 2. Allen’s algebra lower bound filtering on each variable of a task T .

3.2 A first propagator

We propose a propagator based on two procedures. Again, we only present the
algorithms adjusting lower bounds of starting times and ending times.



Require: Global Variable : s∗, e∗

1: procedure ExistAllenQuadratic(T , R, I)
2: for i = 1 to n do . Loop over tasks
3: s∗ ← sTi + 1 . Intialize to a value out of the domain
4: e∗ ← eTi + 1
5: for j = 1 to m do . Loop over Intervals
6: AllenAllRelation(Ti, R, Ij)
7: end for
8: sTi ← s∗

9: eTi ← e∗

10: if i < n− 1 then propagate(eTi , ≤, sTi+1) end if
11: end for
12: end procedure

Algorithm 1: Main procedure.

The main procedure, ExistAllenQuadratic (Algorithm 1), takes as ar-
guments the sets T and I and a subset R of Allen’s relations. Algorithm 1
considers all tasks in T and checks the relations according to intervals in I. At
the end of the procedure, the bounds of variables in T are updated according to
the earliest support. If no support has been found, a domain is emptied and the
solver raises a failure exception. The order between the tasks is maintained by
the procedure propagate at line 10, whose propagation is obvious.

Algorithm 1 calls the procedure AllenAllRelation(Algorithm 2, line 6),
which performs the check for one task and one interval, with all the relations
in R. In order to define a procedure instead of a function returning a pair of
bounds, we use two global variables s∗ and e∗, storing permanently the two
lowest adjustments, respectively for the lower bounds of the starting and ending
time of the current task. An adjustment of the bound of one such variable is
made in Algorithm 2 if and only if the current relation gives a support which is
less than the lowest previously computed support.

Require: Global Variable : s∗, e∗

1: procedure AllenAllRelation(T, R, I)
2: for all r ∈ R do
3: if checkCondition(T, r, I) then
4: s∗ ← min(s∗, seekSupportStart(T, r, I))
5: e∗ ← min(e∗, seekSupportEnd(T, r, I))
6: end if
7: end for
8: end procedure

Algorithm 2: Update of s∗ and e∗.



The function checkCondition(T, r, I) (line 3) returns true if and only if a
support can be found. Consider again the example of relation starts. From the
condition induced by Table 2, col. 2, we have:

checkCondition(T , s, I)⇔ sT ≤ sI ∧ sT ≥ sI ∧ eT < eI.

If the conditions are met then a support exists. seekSupportStart(T , s, I) re-
turns the lowest support for the starting time variable, that is, sI. As no filtering
is directly induced for the ending time variable, the minimal support returned,
for the relation s by seekSupportEnd(T , s, I) is max(eT , sI +pT). For each
Allen’s algebra relation, the three functions are similarly derived from Table 2.

Lemma 1. The time complexity of Algorithm 1 is in O(n×m).

Proof. As the number of Allen’s relations is constant (at most 13), and the call
of the three functions (lines 3, 4 and 5 in Algorithm 2) are in O(1), the whole
filtering of lower bounds is performed in O(n×m) time complexity.

Theorem 1. The propagator based on Algorithm 1 and its symmetric calls for
upper bounds of starting/ending variables in T , ensure bounds(Z)-consistency
if processing times are fixed integers.

Proof. After the execution of Algorithm 1, the optimal update has been done for
each lower bound, according to the current upper bounds. The filtering of upper
bounds is symmetric. Therefore, providing that durations of tasks are fixed, the
propagator ensures bound(Z)-consistency when a fixpoint is reached.

A fixpoint is not necessarily reached after running Algorithm 1 twice, once
to filter lower bounds and once to filter upper bounds. Indeed, the pass on
upper bounds can filter values which were previously supports for lower bounds.
Let’s consider ExistAllen(T ,R, I) depicted in Figure 1 wherein: T = {T1 =
〈sT1

=[0, 2], pT1
=[2, 4], eT1

=[4,6]〉 , T2 = 〈sT2
=[5, 6], pT2

=[4, 5], eT2
=[10, 10]〉},

R = {d, di} and I = {I1 = [1, 5], I2 = [6, 8]}.

0 1 2 3 4 5 6 7 8 9 10

T1 for T1 on di = [0, 6[

T1 for T1 on d = [2, 4[
T1 = 〈sT1 =[0, 2], eT1 =[4,6]〉

T2T2 = 〈sT2 =[5, 6], eT2 =[10, 10]〉

I1 = [1, 5], I2 = [6, 8] I1 I2

Fig. 1. Several phases may be required to get a fixpoint when the processing times of
tasks are not fixed.



We now simulate the calls of Algorithm 1 required to reach a fixpoint. No
values are filtered during the run of Algorithm 1 on lower bounds, since di
provides the minimal support for sT1 , d provides the minimal support for eT1

and di provides the minimal supports for T2. On the run of Algorithm 1 on
upper bounds, since no relation provides support for 6 from sT2

, the value is
removed. The ordering constraint (Algorithm 1, line 10) removes 6 from eT1

.
Thus, di is no longer valid to provide a support for T1. Consequently, a second
call to Algorithm 1 on lower bounds has to be done and the minimal value for
sT1 will then be 2, given by relation d.

However, when task processing times are constants, the minimum support of
the ending date of an activity is the minimum support of its starting date plus
the constant. Therefore, the issue mentioned in the previous example cannot oc-
cur. The fixpoint can be reached in two passes. One may note that, in this case,
we could improve the algorithm by ordering Allen’s relations. As our target ap-
plication involves variable processing times, we do not detail this simplification.

3.3 A linear propagator

This section introduces an improved propagator, running in O(n + m) time
complexity.

First, one may observe that the satisfaction of the relation precedes can be
done in constant time. Indeed, if a task T can precede the last interval Im, the
lower bounds are a support. And if not, task T cannot precede any interval. The
same way relation precedes inverse can be symmetrically checked with the first
intervals. Therefore, to simplify the presentation and without loss of generality,
we now consider that relations p and pi can be isolated and treated separately.
For each task, they can be checked in constant time. In this section we exclude
them from R.

Second, as the sets T and I are chronologically ordered, we can exploit
dominance properties that lead to a linear propagator. We now provide those
properties and their proof, as well as the ExistAllenLinear procedure. As in
Section 3.2, we focus on lower bounds of starting/ending variables of tasks in T .

Property 1. An interval I which starts after a support y for the ending time of
a task T cannot provide a support for eT lower than y.

Proof. Consider a task T , R ⊆ {m,mi, o, oi, s, si, d, di, f, fi, eq}, y a support for
eT and I an interval, such that y < sI. From filtering rules in Table 2, col. 3, no
relation in R provides a support lower than y for eT . ut

Property 2. For any of the relations in {mi, oi, s, si, d, f, eq}, an interval I which
starts after a support y for the ending time of a task T cannot provide a support
for sT lower than y.

Proof. Similar to proof of Property 1. ut



Property 3. For any of the relations in {m, o, di, fi}, an interval I which starts
after a support for the ending time of a task T can provide a support for sT . The
lowest support for T is then given by the interval I in I having the lowest sI.

Proof. Let T be a task and r be a relation, r ∈ R = {m, o, di, fi}, x be a support
for sT , y be a support for eT and I be the interval in I with the lowest sI, such
that sI > y. For each r ∈ R, we distinguish two cases.

Case 1 (T is related to I with relation r, T r I). As the support for eT is at
least sI and no rule on starting time is explicitly defined by r (Table 2, col. 3),
then the support for sT is at least sI − pT . Given that all intervals from I are
chronologically ordered, no interval greater than I can provide a lower x.

Case 2 (T is not related to I with relation r: ¬(T r I)). Consider the m relation.
Task T can meet interval I only if sI ∈ [eT , eT ] (Table 2 col. 2). As it exists a
support y with a value e∗ < sI and the relation m is not satisfied, we have
eT < sI. Given that all intervals are chronologically ordered, no interval with a
greater index can meet the task T . A similar reasoning can be applied to the
other relations in R. ut

Thanks to Properties 1, 2 and 3, we can improve the Algorithm 1 by stopping
the iteration over intervals in I for a given task T (Line 6) if e∗ < sI. We now
provide two properties from which, for a given task T, the iteration over intervals
in I does not have to always start at the first interval of I.

Property 4. An interval I which ends before the ending time of a task Ti cannot
provide a support for the next task Ti+1.

Proof. Let Ti be a task and I an interval such that eI < eTi. Then eI < sTi+1.
Ti+1 cannot be in relation with I. ut

Property 5. Given a task T , there exists at most one interval between the interval
Ii with the highest ending time such that eIi < eT and the interval Ij with the
lowest starting time such that sIj > eT .

Proof. Let T be a task, let Ii be the interval with the highest eI such that
eI < eT , we have then eIi+1 > eT , and let Ij be the interval with the lowest
sIj such that sIj > eT , we have then sIj−1 < eT . Given that all intervals are
chronologically ordered, and that sIj−1 < eIi+1, we have that j − 1 ≤ i + 1, that
is j − i ≤ 2. As the difference between indices i and j is at most 2, there is at
most one interval between i and j. ut

Thanks to Properties 4 and 5, we know that the next task cannot be in
relation with any interval whose index is lower than or equal to j − 2. We can
improve the Algorithm 1 by starting the iteration over intervals for a given task
at j − 1.



Require: Global Variable : s∗, e∗

1: procedure ExistAllenLinear(T , R, I)
2: j ← 0
3: for i = 1 to n do . Loop over Tasks
4: s∗ ← sTi + 1 . Intialize to a value out of the domain
5: e∗ ← eTi + 1
6: repeat . Loop over Intervals
7: j ← j + 1
8: AllenAllRelation(Ti, R, Ij)
9: until j < m and e∗ < sIj . Stop iteration, see Properties 1, 2 and 3

10: sTi ← s∗

11: eTi ← e∗

12: if i < n− 1 then propagate(eTi , ≤, sTi+1) end if
13: j ← max(0, j − 2) . Set next interval index, see Properties 4 and 5
14: end for
15: end procedure

Algorithm 3: Linear Algorithm for Main Procedure.

By construction, Algorithms 3 and 1 do exactly the same filtering.

Theorem 2. The time complexity of Algorithm 3 is in O(n + m).

Proof. The number of evaluated intervals is equal to m+2×(n−1): every time a
new task is evaluated, the algorithm goes two intervals back. The new algorithm
is then in O(n + m). ut

3.4 Improvements

In this section, we describe three improvements brought to the ExistAllen con-
straint in order to improve its efficiency in practice.

First, the Algorithm 2 can be adapted to store, for a given task, the index
of the first interval which satisfied the conditions of a relation. Indeed, intervals
located before that interval do not provide a support for the task (and they will
never do in the current search sub-tree). By doing so, useless calls to check-
Condition can be avoided since they will always return false. In practice, an
operation is added after the line 7 in Algorithm 3 to put in j the maximum
between j and the first satisfying interval for the task evaluated. These indices
are automatically updated upon backtrack.

Similarly, the tasks whose variables have been modified since the last call
of the procedure have to be memorized. Thus, the for-loop (line 3-14 in Algo-
rithm 3) can start from the index of the first modified task. Moreover, following
tasks that have not been modified can be skipped safely.

Finally, our generic framework enables to replace some remarkable combina-
tions of the Allen’s algebra relations with meta-relations. By doing so, even if
the complexity of the Algorithm 3 remains the same, the number of operations
made to check conditions and seek supports for the combined relations may be



reduced. For instance, a “contains” meta-relation, as described in Example 1,
which expresses {fi, di, eq, si}, can save up to three calls of the methods in the
for-loop in Algorithm 2, lines 2-7. Note that since {p, pi} are handled in a par-
ticular way by the constraint, it is even more efficient to limit the combinations
to relations in {m,mi, o, oi, s, si, d, di, f, fi, eq}. Adding meta-relations is easy in
our implementation since we use a facade design pattern to define the 13 rela-
tions. Some meta-relations may require to define their inverse, in order to filter
on upper bounds. This is not the case for “contains”, though. Indeed, the mirror
relation of fi is si, the mirror relation of si is fi, while the mirror relation of di
is di and the mirror relation of eq is eq.

4 Evaluation

The main contribution of this work is an “expressivity gain”, which leads to
reducing the investment necessary to build and maintain a model. Nevertheless,
it is important to check if this gain does not come at the price of efficiency.
In this section, we empirically evaluate the impact of the proposed filtering
algorithm. First, we recall the video summarization problem. Second, we show
that the expressive ExistAllen constraint we introduced is very competitive with
the state-of-the-art dedicated approach.

4.1 Problem description

The video summarization problem of [4] consists in extracting audio-visual fea-
tures and computing segments from an input video. The goal is to provide a
summary of the video. More precisely, they consider tennis match records.

Several features (games, applause, speech, dominant color, etc.) are extracted
as a preprocessing step, in order to compute time intervals that describe the
video. Then, the problem is to compute segments of the video that will consti-
tute the summary. The number of segments to compute and their minimal and
maximal duration are given as parameter, as well as the summary duration. In
this case-study, the purpose is to build a tennis match summary with a duration
between four and five minutes, composed of ten segments, whose duration varies
between 10 and 120 seconds.

In order to obtain a good summary (from the end-user point of view), this
process is subject to constraints, such as:

– (1a) a segment should not cut a speech interval,
– (1b) a segment should not cut a game interval,
– (2) each selected segment must contain an applause interval,
– (3) the cardinality of the intersection between the segments and the dominant

color intervals must be at least one third of the summary,

On the assumption that an applause indicates an interesting action, the pres-
ence of applause in the summary must be maximized, i.e., the cardinality of the
intersection between the computed segments and the applause time intervals
must be as large as possible.



Table 3. Match features.

Name Total duration # Speech # Applause # Dominant color # Games

M1 2h08 571 271 1323 156
M2 1h22 332 116 101 66
M3 3h03 726 383 223 194

4.2 Benchmark

We consider the model implementation as well as a 3-instance dataset (see Ta-
ble 3) kindly provided by Boukadida et. al. [4].

The model is encoded using integer variables. A segment is represented by
three variables to indicate its start, duration and end. If constraints (1a) and (1b)
are easily ensured by forbidding values for the segment start and end variables,
most constraints have been encoded using ad hoc propagators. This holds on
constraint (2), whereas it could be handled with a single ExistAllen constraint
wherein T is the set of selected segments, R is equal to {fi, di, eq, si} and I is
the set of applause time intervals. Therefore, to evaluate the practical impact of
the linear-time ExistAllen propagator, four models are considered.

1. decomp: constraint (2) is explicitly represented by the disjunction depicted
in Section 3, Definition 1, using primitive constraints of the solver.

2. allen(n.m): constraint (2) is represented by an ExistAllen constraint, using
the quadratic propagator presented in section 3.2,

3. allen(n+m): constraint (2) is represented by an ExistAllen constraint, using
the linear propagator described in sections 3.3 and 3.4.

4. ad hoc: constraint (2) is represented with the dedicated constraints of [4].
Such model is given for reference only as neither its complexity nor its con-
sistency level are known.

Each of the four models has been implemented in Choco-3.3.0 [16].4 Each of
the instances was executed with a 15 minutes timeout, on a Macbook Pro with
8-core Intel Xeon E5 at 3Ghz running a MacOS 10.10, and Java 1.8.0 25. Each
instance was run on its own core, each with up to 4096MB of memory.

In order to compare the efficiency on the four models, we first consider a static
search heuristic: the variables representing the segment bounds are selected in a
lexicographic order and assigned to their lower bounds. In this way, we ensure
that the same search tree is explored, finding the same solutions in the same
order, and that only the running time is evaluated. The comparative evaluations
of the four models are in reported in Figure 2. Each plot is associated with
an instance and indicates the improvement of the objective function over time.
Recall that the x-axis are in logscale. The three plots are similar.

First of all, a strict reformulation (decomp) is clearly not competitive with
the models with specific constraints: decomp is always the slowest. This has to

4 http://www.choco-solver.org

http://www.choco-solver.org
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do with the huge number of constraints and additional variables it requires to
express the ExistAllen constraint. As an example in the match M1 where there
are 10 tasks, 271 intervals and 4 relations, each triplet 〈T,R, I〉 is expressed by
three new binary constraints, each of them reified by a new boolean variable.
Second, the quadratic propagator improves the filtering of a strict reformulation.
Third, as expected, the performances are even better with the linear propaga-
tor. For information purpose, the results of the ad hoc model (as used in [4])
are reported. allen(n+m), our generic constraint is shown to be the most ef-
fective model, mildly faster than ad hoc. This confirms that our generic linear
propagator, besides being expressive and flexible and offering guarantees on its
complexity and consistency level, is very efficient in practice.

The four models have also been evaluated with the configuration described
in [4], that is, using Activity-based search [13] combined with Propagation-
Guided Large Neighborhood Search [14].5 Due to the intrinsic randomness of
ABS and PGLNS, each resolution was run 30 times. Thus, the average objective
values are reported in Figure 3. Recall that the x-axis are in logscale. The dy-
namic strategy offered by the combination of ABS and PGLNS enables to reduce
the differences between the various models. Although to a slightly lesser extent,
the order between efficiency of the four models is preserved when applying a
more aggressive search strategy heuristic.

5 Conclusion

We introduced ExistAllen, a generic constraint defined on a vector of tasks and
a set of disjoint intervals, which applies on any of the 213 combinations of Allen’s
algebra relations. This constraint is useful to tackle many problems related to
time intervals, such as the video-summarization problem [4], used as a case study.
From a technical viewpoint, we proposed a generic propagator that achieves
bound-consistency in O(n+m) worst-case time, where n is the number of tasks
and m the number of intervals, whereas the most natural implementation re-
quires O(n ×m) worst-case time. Our experiments demonstrate that using our
technique is very competitive with the best ad hoc approach, specific to one
particular combination of relations, while being much more expressive.

Future work includes the extension of this approach to several task sets,
in order to tackle problems beyond the context of video-summarization. In the
Satellite Data Download Management Problem [15], Earth observation satellites
acquire data that need to be downloaded to the ground. The download of data
is subject to temporal constraints, such as fitting in visibility windows. Using
ExistAllen constraint, the visibility windows are the intervals, the amount of
acquired data fixes the duration of the download tasks, and the relation required
is during. The tasks can be ordered with respect to the type of acquired data
and their need to be scheduled.

5 The configuration for ABS and PGLNS are the default one described in [13] and [14].
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