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Abstract

This paper considers a forward BSDE driven by a random measure, when the underlying
forward process X is special semimartingale, or even more generally, a special weak Dirichlet
process. Given a solution (Y, Z, U), generally Y appears to be of the type u(t,Xt) where u is
a deterministic function. In this paper we identify Z and U in terms of u applying stochastic
calculus with respect to weak Dirichlet processes.
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1 Introduction

This paper considers a forward BSDE driven by a random measure, when the underlying forward
process X is special semimartingale, or even more generally, a special weak Dirichlet process.
Given a solution (Y,Z,U), often Y appears to be of the type u(t,Xt) where u is a deterministic
function. In this paper we identify Z and U in terms of u applying stochastic calculus with respect
to weak Dirichlet processes.

Indeed the employed techniques perform the calculus with respect to (special) weak Dirichlet
processes developed in [2]. In that paper we also extend the stochastic calculus via regularizations
to the case of jump processes. Given some filtration (Ft), we recall that a special weak Dirichlet
process is a process of the type X = M + A, where M is an (Ft)-local martingale and A is an
(Ft)-predictable orthogonal process, see Definition 2.7. When A has bounded variation, then X
is a special (Ft)-semimartingale. The decomposition of a special weak Dirichlet process is unique,
see Proposition 2.12. A significant result of [2] is the chain rule stated in Theorem 2.14, concerning
the expansion of F (t,Xt), where X is a special weak Dirichlet process of finite quadratic variation
and F is of class C0,1. If we know a priori that F (t,Xt) is the sum of a bounded variation process
and a continuous (Ft)-orthogonal process, then the chain rule only requires F to be continuous;
in that case no assumptions are required on the càdlàg process X.

As we have already mentioned, we will focus on forward BSDEs, which constitute a particular
case of BSDEs in its general form. BSDEs have been deeply studied since the seminal paper [24]
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by Pardoux and Peng. In [24], as well as in many subsequent papers, the standard Brownian
motion is the driving process (Brownian context) and the concept of BSDE is based on a non-
linear martingale representation theorem with respect to the corresponding Brownian filtration.
A recent monograph on the subject is [26]. BSDEs driven by processes with jumps have also
been investigated: two classes of such equations appear in the literature. The first one relates
to BSDEs where the Brownian motion is replaced by a general càdlàg martingale M , see, among
others, [4], [14], [6]. An alternative version of BSDEs with a discontinuous driving term is the
one associated to an integer-valued random measure µ, with corresponding compensator ν. In
this case the BSDE is driven by a continuous martingale M and a compensated random measure
µ− ν. In that equation naturally appears a purely discontinuous martingale which is a stochastic
integral with respect to µ − ν, see, e.g., [33], [5], [32]. A recent monograph on BSDEs driven by
Poisson random measures is [13].

In this paper we will focus on BSDEs driven by random measures (we will use the one-
dimensional formalism for simplicity). Besides µ and ν appear three driving random elements:
a continuous martingale M , a non-decreasing adapted continuous process ζ and a predictable
random measure λ on Ω × [0, T ] × R, equipped with the usual product σ-fields. Given a square
integrable random variable ξ, and two measurable functions g̃ : Ω × [0, T ] × R2 → R, f̃ : Ω ×
[0, T ] × R3 → R, the equation takes the following form:

Yt = ξ +

∫

]t, T ]
g̃(s, Ys−, Zs) dζs +

∫

]t, T ]×R

f̃(s, e, Ys−, Us(e))λ(ds de)

−

∫

]t, T ]
Zs dMs −

∫

]t, T ]×R

Us(e) (µ − ν)(ds de). (1.1)

As we have anticipated before, the unknown of (1.1) is a triplet (Y,Z,U) where Y,Z are adapted
and U is a predictable random field. The Brownian context of Pardoux-Peng appears as a partic-
ular case, setting µ = λ = 0, ζs ≡ s. There M is a standard Brownian motion and ξ is measurable
with respect to the Brownian σ-field at terminal time. In that case the unknown can be reduced
to (Y,Z), since U can be arbitrarily chosen. Another significant subcase of (1.1) arises when only
the purely discontinuous driving term appears, i.e. M and ζ vanish; under this simpler structure
the related BSDE can be approached by an iterative method: a significant example is represented
by BSDEs driven by a marked point process, as in [9]. Connections between the martingale and
the random measure driven BSDEs are illustrated by [22].

When the random dependence of f̃ and g̃ is provided by a Markov solution X of a forward
SDE, and ξ is a real function of X at the terminal time T , then the BSDE (1.1) is called forward
BSDE, the one that we have anticipated at the beginning. This generally constitutes a stochastic
representation of a partial integro-differential equation (PIDE). In the Brownian case, when X is
the solution of a classical SDE with diffusion coefficient σ, then the PIDE reduces to a semilinear
parabolic PDE. If v : [0, T ]× R× R is a classical (smooth) solution of the mentioned PDE, then
Ys = v(s,Xs), Zs = σ(s,Xs) ∂xv(s,Xs), generate a solution to the forward BSDE, see e.g. [27],
[25], [28]. In the general case when the forward BSDEs are also driven by random measures,
similar results have been established, for instance by [3], for the jump-diffusion case, and by
[8], for the purely discontinuous case, i.e. when no Brownian noise appears. In the context of
martingale driven forward BSDEs, a first approach to the probabilistic representation has been
carried on in [23].

Conversely, solutions of forward BSDEs generate solutions of PIDEs in the viscosity sense.
More precisely, for each given couple (t, x) ∈ [0, T ]×R, consider an underlying process X given by
the solution Xt,x of an SDE starting at x at time t. Let (Y t,x, Zt,x, U t,x) be a family of solutions of
the forward BSDE. In that case, under reasonable general assumptions, the function v(t, x) := Y t,x

t
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is a viscosity solution of the related PIDE. A demanding task consists in characterizing the couple
(Z,U) := (Zt,x, U t,x), in term of v; this is generally called the identification problem of (Z,U). In
the continuous case, this was for instance the object of [17]: the authors show that if v ∈ C0,1,
then Zs = ∂xv(s,Xs); under more general assumptions, they also associate Z with a generalized
gradient of v. At our knowledge, in the discontinuous case, the problem of the identification of
the martingale integrands couple (Z,U) has not been deeply investigated, except for particular
situations, as for instance the one treated in [9]: this problem was faced in [8].

In the present paper we discuss the mentioned identification problem in a quite general frame-
work by means of the calculus related to weak Dirichlet processes. When Y is a deterministic
function v of a special semimartingale X, related in a specific way to the random measure µ, we
apply the chain rule in Theorem 2.14 in order to identify the couple (Z,U). This is the object
of Proposition 4.12. The result remains valid if X is a special weak Dirichlet process with finite
quadratic variation. In the purely discontinuous framework, i.e. when in the BSDE (1.1) M and ζ
vanish, we make use of the chain rule Theorem 2.16, which, for a general càdlàg process X, allows
to express v(t,Xt) without requiring any differentiability on v. In particular Theorem 2.16 does
not ask X to be a special weak Dirichlet process, provided we have some a priori information on
the structure of v(t,Xt). The identification in that case is stated in Proposition 4.18. We remark
that in most of the literature on BSDEs, the measure ν, λ, ζ of equation (1.1) are non-atomic
in time. A challenging case arises when one or more of those predictable processes have jumps
in time. Well-posedness of BSDEs in that case has been partially discussed in [1] in the purely
discontinuous case, and in a slightly different context by [7], for BSDEs driven by a countable se-
quence of square-integrable martingales. Our approach to the identification problem also applies
to forward BSDEs presenting predictable jumps.

The paper is organized as follows. In Section 2 we fix the notations and we recall some
important results about the calculus related to weak Dirichlet processes with jumps developed in
[2]. In Section 3 we introduce a class of stochastic processes X related in a specific way to a given
integer-valued random measure µ, and we provide some technical results on related stochastic
integration. Section 4 is devoted to solve the identification problem. In Appendix A we recall
some useful results related to the general theory of stochastic processes. Finally, in Appendix B
we report some basic results on the stochastic integration with respect to random measures; in
particular we emphasize the connection between integer-valued random measures and the jumps
of a càdlàg process.

2 Preliminaries

In what follows, we are given a probability space (Ω,F ,P) a positive horizon T and a filtration
(Ft)t≥0, satisfying the usual conditions. Let F = FT . Given a topological space E, in the sequel
B(E) will denote the Borel σ-field associated with E. P (resp. P̃ = P ⊗ B(R)) will denote the
predictable σ-field on Ω × [0, T ] (resp. on Ω̃ = Ω × [0, T ] × R). Analogously, we set O (resp.
Õ = O ⊗ B(R)) as the optional σ-field on Ω × [0, T ] (resp. on Ω̃). Moreover, F̃ will be σ-field
F ⊗ B([0, T ] × R), and we will indicate by FP the completion of F with the P-null sets. We
set F̃P = FP ⊗ B([0, T ] × R). By default, all the stochastic processes will be considered with
parameter t ∈ [0, T ]. The symbols Ducp and Lucp will denote the space of adapted càdlàg and
càglàd processes endowed with the u.c.p. (uniform convergence in probability) topology. By
convention, any càdlàg process defined on [0, T ] is extended to R+ by continuity.

A bounded variation process X on [0, T ] will be said to be with integrable variation if the
expectation of its total variation is finite. A (resp. Aloc) will denote the collection of all adapted
processes with integrable variation (resp. with locally integrable variation), and by A+ (resp A+

loc)
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the collection of all adapted integrable increasing (resp. adapted locally integrable) processes. The
significance of locally is the usual one which refers to localization by stopping times, see e.g. (0.39)
of [20].

We will indicate by C1,2 (resp. C0,1) the space of all functions

u : [0, T ]× R → R, (t, x) 7→ u(t, x)

that are continuous together their derivatives ∂tu, ∂xu, ∂xxu (resp. ∂xu). C1,2 is equipped with
the topology of uniform convergence on each compact of u, ∂xu, ∂xxu, ∂tu. C

0,1 is equipped with
the same topology on each compact of u and ∂xu.

2.1 Càdlàg processes and the associated jump measures

The concept of random measure allows a very tractable description of the jumps of a càdlàg
process, and will be extensively used throughout the paper. For the convenience of the reader we
have summarized in Appendix A and B respectively the concepts on general theory of stochastic
processes and on integer-valued random measures we will need in the following, for more details
consult Chapter I and Chapter II, Section 1, in [21], and Chapter XI, Section 1, in [18].

Given a càdlàg processX = (Xt)t∈[0, T ], its jump measure is the integer-valued randommeasure

µX(ω; dt dx) =
∑

s∈]0, T ]

1{∆Xs(ω)6=0} δ(s,∆Xs(ω))(dt dx). (2.1)

The compensator of µX is called the Lévy system of X, and will be denoted by νX . The jump
measure µX acts in the following way: for any positive Õ-measurable function W we have

∑

s∈]0, T ]

1{∆Xs 6=0}Ws(·,∆Xs) =

∫

]0,T ]×E
Ws(·, x)µ

X (·, ds dx).

In the sequel we will make often use of the following assumption on the processes X:

∑

s∈]0, T ]

|∆Xs|
2 < ∞, a.s. (2.2)

Remark 2.1. Condition (2.2) holds for instance in the case of processes X of finite quadratic
variation.

The two propositions below were the object of Propositions 2.4 and 2.7 in [2].

Proposition 2.2. Let p = 1, 2. Let X be a real-valued càdlàg process on [0, T ] such that

∑

s∈]0, T ]

|∆Xs|
p < ∞, a.s. (2.3)

Then
∫

]0, ·]×R

|x|p 1{|x|≤1} µ
X(ds dx) ∈ A+

loc. (2.4)

Proposition 2.3. Let X be a càdlàg process on [0, T ] satisfying condition (2.2), and let F be a
function of class C0,1. Then

∫

]0, ·]×R

|(F (s,Xs− + x)− F (s,Xs−)|
2
1{|x|≤1} µ

X(ds dx) ∈ Aloc, (2.5)
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∫

]0, ·]×R

|x ∂xF (s,Xs−)|
2
1{|x|≤1}µ

X(ds dx) ∈ Aloc. (2.6)

In particular, the stochastic integrals

∫

]0, ·]×R

(F (s,Xs− + x)− F (s,Xs−))1{|x|≤1} (µ
X − νX)(ds dx),

∫

]0, ·]×R

x1{|x|≤1} (µ
X − νX)(ds dx)

define two purely discontinuous square integrable local martingales.

The following condition on X will play a fundamental role in the sequel:

∫

]0,·]×R

|x|1{|x|>1} µ
X(ds dx) ∈ A+

loc. (2.7)

Remark 2.4. (a) Condition (2.7) holds for instance if X is a special semimartingale, see Corol-
lary 11.26 in [18].

(b) If X is a special semimartingale satisfying
∑

s∈]0, T ] |∆Xs| < ∞ a.s., from point (a) and
Proposition 2.2 with p = 1, we have

∫

]0, ·]×R

|x|µX(ds dx) ∈ A+
loc. (2.8)

We will be interested in functions F : [0, T ]× R → R fulfilling the integrability property

∫

]0,·]×R

|F (s,Xs− + x)− F (s,Xs−)− x ∂xF (s,Xs−)|1{|x|>1} µ
X(ds dx) ∈ A+

loc. (2.9)

Remark 2.5. (i) Condition (2.9) is automatically verified if X is a càdlàg process satisfying
(2.7), and F : [0, T ]× R → R is a function of C0,1 class with ∂xF bounded.

(ii) If X is a càdlàg process satisfying condition (2.7), and F : [0, T ] × R → R is a function of
class C0,1 fulfilling (2.9), then

∫

]0, ·]×R

|F (t,Xt− + x)− F (t,Xt−)|1{|x|>1} µ
X(dt dx) ∈ A+

loc,

see Lemma 5.21 in [2].

Remark 2.6. Let ϕ : Ω× [0, T ]×R → R be a P̃-measurable function and A a P̃-measurable subset
of Ω× [0, T ]× R, such that

|ϕ|1A ∗ µX ∈ A+
loc, (2.10)

|ϕ|2 1Ac ∗ µX ∈ A+
loc. (2.11)

Then the process ϕ belongs to G1
loc(µ

X).
As a matter of fact, (2.10) and Proposition B.18 give that ϕ1A belongs to G1

loc(µ
X). On

the other hand, (2.11), together with Lemma B.21-2), implies that ϕ1Ac belongs to G2
loc(µ

X) ⊂
G1
loc(µ

X).
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2.2 Recalls on calculus related to special weak Dirichlet processes

In the present section we will recall the main results of calculus related to special weak Dirichlet
processes. The proofs of those results can be found in [2], to which the reader may also refer for
a more complete treatise of the subject.

We start by recalling the notion of special weak Dirichlet process and some important results
associated to this concept.

Definition 2.7. Let X be an (Ft)-adapted process. We say that X is (Ft)-orthogonal if [X,N ] = 0
for every N continuous local (Ft)-martingale.

Remark 2.8. A basic example of (Ft)-orthogonal processes are purely discontinuous (Ft)-martingales,
see Theorem 7.34 in [18] and the comments above.

Definition 2.9. Let X be an (Ft)-adapted process.

(i) X is called (Ft)-Dirichlet process if it admits a decomposition X = M + A, where M is a
local martingale and A is a finite quadratic variation process with [A,A] = 0;

(ii) X is called (Ft)-weak Dirichlet process if it admits a decomposition X = M +A, where M
is a local martingale and the process A is (Ft)-orthogonal;

(iii) X is called (Ft)-special weak Dirichlet process if it admits a decomposition of the type (ii)
and, in addition, A is predictable.

When the underlying filtration is clear, we will often omit the filtration, speaking in particular
about Dirichlet processes, weak Dirichlet processes, special weak Dirichlet processes.

Remark 2.10. If S is an (Ft)-semimartingale which is a special weak Dirichlet process, then it is
a special semimartingale, see Proposition 5.9 in [2].

Remark 2.11. We observe that the validity of condition (2.7) extends to the processes of the type
X = S + A, where S is a special semimartingale and A is a continuous process. This is the case
for instance when X is an (Ft)-Dirichlet process.

A special weak Dirichlet process admits the following unique decomposition, which was the
object of Proposition 5.7 in [2].

Proposition 2.12. Let X be an (Ft)-special weak Dirichlet process of the type

X = M c +Md +A, (2.12)

where M c is a continuous local martingale, and Md is a purely discontinuous local martingale.
Supposing that A0 = Md

0 = 0, the decomposition (2.12) is unique.

Remark 2.13. (a) Decomposition (2.12) will be called the canonical decomposition of X.

(b) Identity (2.12) gives the most general form of a special weak Dirichlet process, since every
local martingale M can be decomposed as the sum of a continuous local martingale M c and
a purely discontinuous local martingale Md, see Theorem A.8.

We recall below a stability results for special weak Dirichlet processes, that is crucial in the
present work, which was the object of Theorem 5.26 in [2].
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Theorem 2.14. Let X be an (Ft)-special weak Dirichlet process of finite quadratic variation with
its canonical decomposition X = M c + Md + A. Assume that conditions (2.9) and (2.7) hold.
Then, for every F : [0, T ]× R → R of class C0,1, we have

F (t,Xt) = F (0,X0) +

∫ t

0
∂xF (s,Xs) dM

c
s

+

∫

]0, t]×R

(F (s,Xs− + x)− F (s,Xs−)) (µ
X − νX)(ds dx) +AF (t), (2.13)

where AF : C0,1 → Ducp is a linear map and, for every F ∈ C0,1, AF is a predictable (Ft)-
orthogonal process.

Remark 2.15. We recall that (2.13) shows that (F (t,Xt)) is a weak Dirichlet process and provides
its canonical decomposition.

In some cases, the differentiability requirements on F stated in Theorem 2.14 will be no longer
necessary. This is illustrated in Proposition 2.16 below, which was the object of Proposition 5.29
in [2].

Proposition 2.16. Let X be an (Ft)-adapted càdlàg process. Let F : [0, T ] × R → R be a
continuous function such that the following holds.

(i) F (s,Xs) = Bs + A′
s, where B is a bounded variation process and A′ is a continuous (Ft)-

orthogonal process;

(ii)
∫

]0, ·]×R
|F (s,Xs− + x)− F (s,Xs−)|µ

X(ds dx) ∈ A+
loc.

Then F (t,Xt) is an (Ft)-special weak Dirichlet process with decomposition

F (t,Xt) = F (0,X0) +

∫

]0, t]×R

(F (s,Xs− + x)− F (s,Xs−)) (µ
X − νX)(ds dx) +AF (t), (2.14)

where AF is a predictable (Ft)-orthogonal process.

3 A class of stochastic processes X related in a specific way to

an integer-valued random measure µ

Let µ be an integer-valued random measure on [0, T ]×R, and ν a ”good” version of the compen-
sator of µ, as constructed in Proposition B.11-(c). Set

D = {(ω, t) : µ(ω, {t} × R) > 0},

J = {(ω, t) : ν(ω, {t} × R) > 0},

K = {(ω, t) : ν(ω, {t} × R) = 1}.

Remark 3.1. D is a thin set, J is the predictable support of D, and K is the largest predictable
subset of D, see Proposition B.6 and Theorem B.10. The definition of predictable support of a
random set is recalled in Definition A.25.

We formulate now an assumption on a generic càdlàg process X which will be related in the
sequel to the integer-valued random measure µ.

Hypothesis 3.2. X = Xi + Xp, with Xi (resp. Xp) a càdlàg quasi-left continuous adapted
process (resp. càdlàg predictable process).
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Proposition 3.3. Let X be a càdlàg adapted process fulfilling Hypothesis 3.2. Then the two
properties below hold.

(i) ∆Xp
1{∆Xi 6=0} = 0 and ∆Xi

1{∆Xp 6=0} = 0, up to an evanescent set.

(ii) {∆X 6= 0} is the disjointed union of the random sets {∆Xp 6= 0} and {∆Xi 6= 0}.

Proof. (i) Recalling Propositions A.17 (resp. A.19), there exist a sequence of predictable times
(T p

n)n (resp. totally inaccessible times (T i
n)n) that exhausts the jumps of Xp (resp. Xi). On the

other hand, ∆Xp
T i
n
= 0 a.s. for every n, see Proposition A.17 (resp. ∆Xi

T p
n
= 0 a.s. for every n,

see Definition A.18), so that

∆Xi
1{∆Xp 6=0} = ∆Xi

1∪n[[T
p
n ]]

= 0,

∆Xp
1{∆Xi 6=0} = ∆Xp

1∪n[[T i
n]]

= 0.

(ii) From point (i) we get

{∆X 6= 0} = {(∆Xi +∆Xp) 6= 0}

= {(∆Xi
1{∆Xp=0} +∆Xp

1{∆Xp 6=0}) 6= 0}

= {∆Xi
1{∆Xp=0} 6= 0} ∪ {∆Xp 6= 0}

= {∆Xi 6= 0} ∪ {∆Xp 6= 0}.

Proposition 3.4. Let X be a càdlàg adapted process satisfying Hypothesis 3.2. Then the prop-
erties below hold.

1. {(ω, t) : νX(ω, {t} × R) > 0} = {∆Xp 6= 0};

2. {∆Xp 6= 0} is the largest predictable subset of {∆X 6= 0} (up to an evanescent set).

Proof. 1. {∆X 6= 0} is the support of the random measure µX (see e.g. Proposition B.8). By
Theorem B.10, the predictable support of {∆X 6= 0} is given by {(ω, t) : νX({t} × R) > 0}.

On the other hand, by Proposition 3.3-(ii), {∆X 6= 0} is the disjointed union of {∆Xp 6= 0} and
{∆Xi 6= 0}. Since Xi is a càdlàg quasi-left continuous process, by Proposition A.26 we know that
the predictable support of {∆Xi 6= 0} is evanescent. By Definition A.25 of predictable support,
taking into account the additivity of the predictable projection operator, p

(

1{∆X 6=0}

)

= 1{∆Xp 6=0},
and this concludes the proof.

2. By Proposition 3.3-(ii),
{∆Xp 6= 0} ⊂ {∆X 6= 0}. (3.1)

Since {(ω, t) : νX({t}×R) = 1} is the largest predictable subset of {∆X 6= 0} (see again Theorem
B.10), it follows from point 1. and (3.1) that {∆Xp 6= 0} coincides with {(ω, t) : νX({t}×R) = 1}.

Remark 3.5. We remark that item 2. in Proposition 3.4 has an interest in itself but will not be
used in the sequel.

Proposition 3.6. Let X satisfy Hypothesis 3.2 with decomposition X = Xi +Xp. Let moreover
(Sn)n be a sequence of predictable times exhausting the jumps of Xp. Then

νX({Sn}, dx) = µX({Sn}, dx) for any n, a.s. (3.2)
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Remark 3.7. Since {∆Xp 6= 0} is a predictable thin set (see Definition A.4), the existence of a
sequence of predictable times exhausting the jumps of Xp is a well-known fact, see Proposition
A.17 and Definition A.1 for the definition of an exhausting sequence.

Proof. Let us fix n and let (Em)m be a sequence of measurable subsets of R which is π-class
generating B(R). SinceXi is a càdlàg quasi-left continuous adapted process and Sn is a predictable
time, then ∆Xi

Sn
= 0 a.s., see Definition A.18. This implies that ∆XSn = ∆Xp

Sn
a.s. by

Hypothesis 3.2. Consequently, for every m we have

1Em(∆Xp
Sn
) = 1Em(∆XSn) =

∫

R

1Em(x)µ
X({Sn}, dx) a.s. (3.3)

On the other hand, by Proposition B.11-(b) and (3.3) we have

∫

R

1Em(x) ν
X({Sn}, dx) = E

[
∫

R

1Em(x)µ
X({Sn}, dx)

∣

∣

∣
FSn−

]

= E

[

1Em(∆Xp
Sn
)
∣

∣

∣
FSn−

]

= 1Em(∆Xp
Sn
) a.s.,

where the latter equality follows from Corollary A.24. By (3.3), there exists a P-measurable null
set Nm such that

∫

R

1Em(x) ν
X({Sn}, dx) =

∫

R

1Em(x)µ
X({Sn}, dx) for every ω /∈ Nm.

Define N = ∪mNm, then

∫

R

1Em(x) ν
X({Sn}, dx) =

∫

R

1Em(x)µ
X({Sn}, dx) for every m and ω /∈ N .

Then the claim follows by a monotone class argument, see Theorem 21, Chapter 1, in [12].

We now recall an important notion of measure associated with µ, given in formula (3.10) in
[20].

Definition 3.8. Let (Ω̃n) be a partition of Ω̃ constituted by elements of Õ. MP
µ denotes the

σ-finite measure on (Ω̃, F̃P), such that for every W : Ω̃ → R positive, bounded, F̃P-measurable
function,

MP
µ (W 1Ω̃n

) = E
[

W 1Ω̃n
∗ µT

]

. (3.4)

Remark 3.9. Formally speaking we have MP
µ (dω, ds, de) = dP(ω)µ(ω, ds, de).

In the sequel we will formulate the following assumption for a generic càdlàg process Y with
respect to the random measure µ.

Hypothesis 3.10. Y is a càdlàg adapted process satisfying {∆Y 6= 0} ⊂ D. Moreover, there
exists a P̃-measurable map γ̃ : Ω×]0, T ]× R → R such that

∆Yt(ω)1]0, T ](t) = γ̃(ω, t, ·) dMP
µ -a.e. (3.5)

Example 3.11. Theorem 3.89 in [20] states an Itô formula which transforms a special semimartin-
gale X into a special semimartingale F (Xt) through a C2 function F : R → R. There the process
Y = X is supposed to fulfill Hypothesis 3.10

9



Remark 3.12. Let us suppose that µ is the jump measure of a càdlàg process X. Hypothesis 3.10
holds for Y = X, with γ̃(t, ω, x) = x.

The role of Hypothesis 3.10 is clarified by the following proposition.

Proposition 3.13. Let Y be a càdlàg adapted process satisfying Hypothesis 3.10. Then, there
exists a null set N such that, for every Borel function ϕ : [0, T ]× R → R+ satisfying ϕ(s, 0) = 0
for every s ∈ [0, T ], we have

∑

s≤T

ϕ(s,∆Ys(ω)) =

∫

]0, T ]×R

ϕ(s, γ̃(ω, s, e))µ(ω, ds de), ω /∈ N . (3.6)

Proof. Taking into account that {∆Y 6= 0} ⊂ D and the fact that ϕ(s, 0) = 0, it will be enough
to prove that

∑

s≤T

ϕ(s,∆Ys(ω))1D(ω, s) =

∫

]0, T ]×R

ϕ(s, γ̃(ω, s, e))µ(ω, ds de), ω /∈ N , (3.7)

for every Borel function ϕ : [0, T ]× R → R+.
Let (Im)m be a sequence of subsets of [0, T ]× R, which is a π-system generating B([0, T ]) ⊗

B(R). setting ϕm(s, x) = 1Im(s, x), for every m we will show that

∑

s≤T

ϕm(s,∆Ys)1D(·, s) =

∫

]0, T ]×R

ϕm(s, γ̃(·, s, e))µ(·, ds de), a.s. (3.8)

As a matter of fact, let φ : Ω → R+ bounded, (Ft)-measurable. Identity (3.8) holds if we show
that the expectations of both sides against φ are equal. We write

E

[

φ

∫

]0, T ]×R

ϕm(s, γ̃(·, s, e))µ(·, ds de)

]

=

∫

Ω×]0, T ]×R

dP(ω)µ(ω, ds de)φ(ω)ϕm(s, γ̃(ω, s, e))

=

∫

Ω×]0, T ]×R

dMP
µ (ω, s, e)φ(ω)ϕm(s, γ̃(ω, s, e))

=

∫

Ω×]0, T ]
dMP

µ (ω, s, y)φ(ω)ϕm(s,∆Ys(ω))

=

∫

Ω×]0, T ]×R

dP(ω)µ(ω, ds de)φ(ω)ϕm(s,∆Ys(ω))

=

∫

Ω
dP(ω)φ(ω)

∑

0<s≤T

1D(ω, s)ϕm(s,∆Ys(ω))

∫

R

δβs(ω)(dx)

= E

[

φ
∑

0<s≤T

1D(·, s)ϕm(s,∆Ys)

]

,

where we have used the form of µ given by (B.3). Therefore, there exists a P-null set Nm such
that

∑

0<s≤T

ϕm(s,∆Ys(ω))1D(ω, s) =

∫

]0, T ]×R

ϕm(s, γ̃(·, s, e))µ(ω, ds de), ω /∈ Nm.

Define N = ∪mNm, then for ϕ = ϕm for every m we have

∑

0<s≤T

ϕm(s,∆Ys(ω))1D(ω, s) =

∫

]0, T ]×R

ϕm(s, γ̃(·, s, e))µ(ω, ds de), ω /∈ N .
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By a monotone class argument (see Theorem 21, Chapter 1, in [12]) the identity holds for every
measurable bounded function ϕ : [0, T ] × R → R, and therefore for every positive measurable
function ϕ on [0, T ]× R as well.

We consider an additional assumption on a generic adapted process Z.

Hypothesis 3.14. Z is a càdlàg predictable process satisfying {∆Z 6= 0} ⊂ J .

We have the following result.

Proposition 3.15. Assume that X satisfy Hypotheses 3.2, with decomposition X = Xi + Xp,
where Xi (resp. Xp) fulfills Hypothesis 3.10 (resp. Hypothesis 3.14). Then, there exists a null
set N such that, for every Borel function ϕ : [0, T ] × R → R+ satisfying ϕ(s, 0) = 0 for every
s ∈ [0, T ], we have

∫

]0, T ]×R

ϕ(s, x)µX (ω, ds dx) =

∫

]0, T ]×R

ϕ(s, γ̃(ω, s, e))µ(ω, ds de) + V ϕ(ω) for every ω /∈ N ,

(3.9)
with V ϕ(ω) =

∑

0<s≤T ϕ(s,∆Xp
s (ω)). In particular,

∫

]0, T ]×R

ϕ(s, x)µX(ω, ds dx) ≥

∫

]0, T ]×R

ϕ(s, γ̃(ω, s, e))µ(ω, ds de) for every ω /∈ N . (3.10)

Identity (3.9) still holds true when ϕ : [0, T ]× R → R and the left-hand side is finite.

Proof. Let ϕ : [0, T ] × R → R+. Taking into account Proposition 3.3-(i) and the fact that
ϕ(s, 0) = 0, we have, for almost all ω,

∑

0<s≤T

ϕ(s,∆Xs(ω))

=
∑

0<s≤T

ϕ(s,∆Xi
s(ω) + ∆Xp

s (ω))1{∆Xp=0}(ω, s) +
∑

s≤T

ϕ(s,∆Xi
s(ω) + ∆Xp

s (ω))1{∆Xp 6=0}(ω, s)

=
∑

0<s≤T

ϕ(s,∆Xi
s(ω))1{∆Xp=0}(ω, s) +

∑

s≤T

ϕ(s,∆Xp
s (ω))1{∆Xp 6=0}(ω, s)

=
∑

0<s≤T

ϕ(s,∆Xi
s(ω)) +

∑

s≤T

ϕ(s,∆Xp
s (ω)).

By Proposition 3.13 applied to Y = Xi, there exists a null set N such that, for every ω /∈ N ,
previous expression gives

∫

]0, T ]×R

ϕ(s, x)µX (ω, ds dx) =

∫

]0, T ]×R

ϕ(s, γ̃(ω, s, e))µ(ω, ds de) +
∑

0<s≤T

ϕ(s,∆Xp
s (ω)).

The second part of the statement holds decomposing ϕ = ϕ+ − ϕ−.

Remark 3.16. The result in Proposition 3.15 still holds true if ϕ is a real-valued random function
on Ω× [0, T ]× R.

We will make the following assumption on µ.

Hypothesis 3.17. (i) D = K ∪ (∪n[[T
i
n]]) up to an evanescent set, where (T i

n)n are totally
inaccessible times such that [[T i

n]] ∩ [[T i
m]] = ∅, n 6= m;

11



(ii) for every predictable time S such that [[S]] ⊂ K, ν({S}, de) = µ({S}, de) a.s.

Remark 3.18. Hypothesis 3.17-(i) implies that J = K, up to an evanescent set, see Proposition
B.13.

Remark 3.19. Let ν denote the compensator of µ.

(i) ν admits a disintegration of the type

ν(ω, ds de) = dAs(ω)φ(ω, s, de), (3.11)

where φ is a random measure from (Ω× [0, T ],P) into (R,B(R)) and A is a right-continuous
nondecreasing predictable process, such that A0 = 0, see (B.1).

(ii) Given ν in the form (3.11), then the process A is continuous if and only if D = ∪n[[T
i
n]],

where (T i
n)n are totally inaccessible times, see, e.g., Assumption (A) in [9]. In this case it

follows that J = K = ∅, and consequently Hypothesis 3.17 trivially holds.

For instance A in (3.11) is continuous when µ is a Poisson randommeasure, see, e.g., Chapter
II, Section 4.b in [21].

We are ready to state the main result of the section.

Proposition 3.20. Let µ satisfy Hypothesis 3.17. Assume that X satisfy Hypothesis 3.2, with
decomposition X = Xi+Xp, where Xi (resp. Xp) fulfills Hypothesis 3.10 (resp. Hypothesis 3.14).
Let ϕ : Ω× [0, T ]×R → R+ such that ϕ(ω, s, 0) = 0 for every s ∈ [0, T ], up to indistinguishability,
and assume that there exists a P̃-measurable subset A of Ω× [0, T ]× R satisfying

|ϕ|1A ∗ µX ∈ A+
loc, |ϕ|2 1Ac ∗ µX ∈ A+

loc. (3.12)

Then
∫

]0, t]×R

ϕ(s, x) (µX − νX)(ds dx) =

∫

]0, t]×R

ϕ(s, γ̃(s, e)) (µ − ν)(ds de) a.s. (3.13)

Remark 3.21. Under condition (3.12), Remark 2.6 and inequality (3.10) in Proposition 3.15 imply
that ϕ(s, x) ∈ G1

loc(µ
X) and ϕ(s, γ̃(s, e)) ∈ G1

loc(µ). In particular the two stochastic integrals in
(3.13) are well-defined.

Proof. Clearly the result holds if we show that ϕ verifies (3.13) under one of the two following
assumptions:

(i) |ϕ| ∗ µX ∈ A+
loc,

(ii) |ϕ|2 ∗ µX ∈ A+
loc.

By localization arguments, it is enough to show it when |ϕ| ∗ µX ∈ A+, |ϕ|2 ∗ µX ∈ A+. Below
we will consider the first case, the second case will follow from the first one by approaching ϕ
with ϕ(s, x)1ε<|x|≤1/ε 1s∈[0, T ] in L2(µX), and taking into account the fact that µX , restricted to

ε ≤ |x| ≤ 1/ε, is finite, since µX is σ-finite.
Let us define

Mt :=

∫

]0, t]×R

ϕ(·, s, x) (µX − νX)(ds dx),

Nt :=

∫

]0, t]×R

ϕ(·, s, γ̃(·, s, e)) (µ − ν)(ds de). (3.14)
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Notice that the processes M and N are purely discontinuous local martingales, see e.g. Definition
B.16. We have to prove that M and N are indistinguishable. To this end, by Corollary A.9, it is
enough to prove that ∆M = ∆N , up to an evanescent set. Observe that

∆Ms =

∫

R

ϕ(·, s, x) (µX − νX)({s}, dx) (3.15)

=

∫

R

ϕ(·, s, x) (1 − 1J(·, s)) (µ
X − νX)({s}, dx) +

∫

R

ϕ(·, s, x)1J (·, s) (µ
X − νX)({s}, dx),

and

∆Ns =

∫

R

ϕ(·, s, γ̃(·, s, e)) (µ − ν)({s}, de) (3.16)

=

∫

R

ϕ(·, s, γ̃(·, s, e))1J (·, s) (µ − ν)({s}, de) +

∫

R

ϕ(·, s, γ̃(·, s, e)) (1 − 1J(·, s)) (µ − ν)({s}, de).

By definition of J , for every ω and every s we have

ν(ω, {s}, de) (1 − 1J(ω, s)) = 0. (3.17)

Moreover, since J is a predictable thin set, there exists a sequence of predictable times (Rn)n with
disjoint graphs, such that J = ∪n[[Rn]]. We recall that Hypothesis 3.17-(i) implies that J = K,
see Proposition B.13. By this fact, and taking into account Hypothesis 3.17-(ii), there exists a
null set N , such that, for every n ∈ N, ω /∈ N ,

µ(ω, {Rn(ω)}, de)1J (ω, s) = ν(ω, {Rn(ω)}, de)1J (ω, s).

By additivity, it follows that for every ω /∈ N , for every s ∈ [0, T ],

µ(ω, {s}, de)1J (ω, s) = ν(ω, {s}, de)1J (ω, s). (3.18)

On the other hand, {∆Xp 6= 0} ⊂ J by Hypothesis 3.14. Recalling that {∆Xp 6= 0} = {(ω, s) :
νX({s} × R) > 0} (see Proposition 3.4-1.), we have for almost every ω, for every s ∈ [0, T ], we
have

νX(ω, {s}, dx)1J (ω, s) = νX(ω, {s}, dx)1{∆Xp 6=0}(ω, s), (3.19)

so that
νX(ω, {s}, dx) (1 − 1J(ω, s)) = νX(ω, {s}, dx) (1 − 1{∆Xp 6=0}(ω, s)) = 0. (3.20)

Now notice that there always exists a sequence of predictable times exhausting the jumps of Xp,
see Remark 3.7. By means of Proposition 3.6 we can prove, similarly as we did in order to establish
(3.18), that for every ω /∈ N , N possibly enlarged, for every s ∈ [0, T ],

µX(ω, {s}, dx)1{∆Xp 6=0}(ω, s) = νX(ω, {s}, dx)1{∆Xp 6=0}(ω, s). (3.21)

Finally, we notice that µX(ω, {s}, dx)1J (ω, s) = µX(ω, {s}, dx)1J∩{∆X 6=0}(ω, s). Taking into ac-
count that Xi is a càdlàg quasi-left continuous process, by Definition A.18 we have

J ∩ {∆X 6= 0} = (∪n[[Rn]] ∩ {∆Xi 6= 0}) ∪ (∪n[[Rn]] ∩ {∆Xp 6= 0})

= ∪n[[Rn]] ∩ {∆Xp 6= 0} = {∆Xp 6= 0}.

This implies for every ω /∈ N , and for every s ∈ [0, T ],

µX(ω, {s}, dx)1J (ω, s) = µX(ω, {s}, dx)1J∩{∆X 6=0}(ω, s)
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= µX(ω, {s}, dx)1{∆Xp 6=0}(ω, s). (3.22)

Collecting (3.19), (3.21) and (3.22) we conclude that for every ω /∈ N , for every s ∈ [0, T ], for
every n ∈ N,

µX(ω, {s}, dx)1J (ω, s) = νX(ω, {s}, dx)1J (ω, s). (3.23)

Therefore, for every ω /∈ N , for every s ∈ [0, T ], taking into account (3.17), (3.18), (3.20), (3.23),
expressions (3.15) and (3.16) become

∆Ms =

∫

R

ϕ(s, x) (1 − 1J(s))µ
X({s}, dx), (3.24)

∆Ns =

∫

R

ϕ(s, γ̃(s, e)) (1 − 1J(s))µ({s}, de). (3.25)

Now let us prove that, for every s ∈ [0, T ], ∆Ms(ω) = ∆Ns(ω) for every ω /∈ N , namely up
to an evanescent set. Set

ϕs(ω, t, x) := ϕ(ω, t, x) (1− 1J(ω, t))1{s}(t),

then ∆Ms and ∆Ns can be rewritten as

∆Ms(ω) =

∫

[0, T ]×R

ϕs(ω, t, x)µ
X (ω, dt dx),

∆Ns(ω) =

∫

[0, T ]×R

ϕs(ω, t, γ̃(ω, t, e))µ(ω, dt de),

Then, Proposition 3.15 applied to the process ϕs implies that (possibly enlarging the null set N ),
∫

]0, T ]×R

ϕs(ω, t, x)µ
X (ω, dt dx) =

∫

]0, T ]×R

ϕs(t, γ̃(ω, t, e))µ(ω, dt de) + V ϕ̃(ω) for every ω /∈ N ,

or, equivalently, that
∫

R

ϕ(ω, s, x)µX (ω, {s}, dx) =

∫

R

ϕ(ω, s, γ̃(ω, s, e))µ(ω, {s}, de) + V ϕ̃(ω), for every ω /∈ N ,

where
V ϕs(ω) =

∑

t≤T

ϕs(ω, t,∆Xp
t (ω)) = ϕ(ω, s,∆Xp

s (ω)) 1Jc∩{∆Xp 6=0}(ω, s). (3.26)

Recalling that {∆Xp 6= 0} ⊂ J by Hypothesis 3.14, it straightly follows from (3.26) that V ϕs(ω)
is zero. In particular, up to an evanescent set, we have

∫

R

ϕ(ω, s, x)µX (ω, {s}, dx) =

∫

R

ϕ(s, γ̃(ω, s, e))µ(ω, {s}, de),

in other words ∆M = ∆N up to an evanescent set, and this concludes the proof.

We end the section focusing on the case when X is of jump-diffusion type.

Lemma 3.22. Let µ satisfy Hypothesis 3.17. Let N be a continuous martingale, and B an
increasing predictable càdlàg process, with B0 = 0, such that {∆B 6= 0} ⊂ J . Let X be a process
which is solution of equation

Xt = X0 +

∫ t

0
b(s,Xs−) dBs +

∫ t

0
σ(s,Xs) dNs +

∫

]0, t]×R

γ(s,Xs−, e) (µ − ν)(ds de), (3.27)
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for some given Borel functions b, σ : [0, T ]× R → R, and γ : [0, T ]× R× R → R such that

∫ t

0
|b(s,Xs−)| dBs < ∞ a.s., (3.28)

∫ t

0
|σ(s,Xs)|

2 d[N,N ]s < ∞ a.s., (3.29)

(ω, s, e) 7→ γ(s,Xs−(ω), e) ∈ G1
loc(µ). (3.30)

Then X satisfies Hypothesis 3.2, with decomposition X = Xi +Xp, where

Xi
t =

∫

]0, t]×R

γ(s,Xs−, e) (µ − ν)(ds de), (3.31)

Xp
t = X0 +

∫ t

0
b(s,Xs−) dBs +

∫ t

0
σ(s,Xs) dNs. (3.32)

Moreover, the process Xi fulfills Hypothesis 3.10 with γ̃(ω, s, e) = γ(s,Xs−(ω), e) (1 − 1K(ω, s)),
and the process Xp satisfies Hypothesis 3.14.

Proof. Since N is continuous, it straight follows from (3.32) that

∆Xp
s = b(s,Xs−)∆Bs. (3.33)

We remark that Xi in (3.31) has the same expression as N defined in (3.14) where the integrand
ϕ(ω, s, γ̃(ω, s, e)) is replaced by γ(s,Xs−(ω), e). We recall that Hypothesis 3.17-(i) implies that
J = K, see Proposition B.13. Similarly as for (3.25), we get

∆Xi
s =

∫

R

γ(s,Xs−, e) (1− 1K(s))µ({s}, de), (3.34)

Since by Hypothesis 3.17 D \K = ∪n[[T
i
n]] ((T

i
n)n being a sequence of totally inaccessible times

with disjoint graphs), (3.34) can be rewritten as

∆Xi
s(ω) = γ(s,Xs−(ω), βs(ω)) 1∪n[[T i

n]]
(ω, s). (3.35)

We can easily show that the process X satisfies Hypothesis 3.2, namely Xp and Xi are respec-
tively a càdlàg predictable process and a càdlàg quasi-left continuous adapted process. The fact
that Xp is predictable straight follow from (3.32). Concerning Xi, let S be a predictable time; it
is enough to prove that ∆Xi

S 1{S<∞} = 0 a.s., see Definition A.18. Identity (3.35) gives

∆Xi
S(ω)1{S<∞} = γ(S,XS−(ω), βS(ω)) 1∪n[[T i

n]]
(ω, S(ω))1{S<∞}. (3.36)

Since the graphs of the totally inaccessible times T i
n are disjoint, 1∪n[[T i

n]]
(ω, S(ω))1{S<∞} =

∑

n 1[[T i
n]]
(ω, S(ω))1{S<∞}, and the conclusion follows by the definition of a totally inaccessible

time, taking into account that S is a predictable time, see Remark A.15.
The process Xp in (3.32) satisfies Hypothesis 3.14. Indeed, by (3.33) we have

{∆Xp 6= 0} ⊂ {∆B 6= 0} ⊂ J = K. (3.37)

Finally, we show that the process Xi in (3.31) fulfills Hypothesis 3.10 with γ̃(ω, s, e) =
γ(s,Xs−(ω), e) (1 − 1K(ω, s)). First, the fact that {∆Xi 6= 0} ⊂ D directly follows from (3.34).
To prove ∆Xi

s(ω) = γ̃(ω, s, ·), dMP
µ (ω, s)-a.e. it is enough to show that

E

[

∫

]0, T ]×R

µ(ω, ds de) |γ̃(ω, s, e)−∆Xi
s(ω)|

]

= 0.
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To establish this, by the structure of µ,

E

[

∫

]0, T ]×R

µ(ω, ds de) |γ̃(ω, s, e)−∆Xi
s(ω)|

]

=
∑

s∈]0, T ]

E
[

1D(·, s) |γ̃(·, s, βs(·))−∆Xi
s(·)|

]

which vanishes taking into account (3.35).

4 Application to BSDEs

4.1 About BSDEs driven by an integer-valued random measure

Let µ be an integer-valued random measure defined on Ω×B([0, T ]×R). Let M be a continuous
process with M0 = 0. Let (Ft) be the canonical filtration associated to µ and M , and suppose
that M is an (Ft)-local martingale. Let g̃ : Ω× [0, T ]×R2 → R and f̃ : Ω× [0, T ]×R3 → R be two
measurable functions. The domain of f̃ (resp. g̃) is equipped with the σ-field F ⊗ B([0, T ]×R3)
(resp. F ⊗ B([0, T ] × R2)). Let λ be a predictable random measure on Ω × B([0, T ] × R). Let
ζ be a non-decreasing adapted continuous process, and ξ a square integrable random variable. ν
will denote a ”good” version of the dual predictable projection of µ in the sense of Proposition
B.11. In particular, ν(ω, {t} × R) ≤ 1 identically.

We consider now the general BSDE

Yt = ξ +

∫

]t, T ]
g̃(s, Ys−, Zs) dζs +

∫

]t, T ]×R

f̃(s, e, Ys−, Us(e))λ(ds de)

−

∫

]t, T ]
Zs dMs −

∫

]t, T ]×R

Us(e) (µ − ν)(ds de) (4.1)

which constitutes equation (1.1) of the Introduction.

Remark 4.1. A general BSDE of type (4.1) is considered for instance in [33] (see formula (1.1)),
with the following restrictions on the random measures λ and ν:

λ([0, T ]× R) is a bounded random variable, λ([0, t]× R) is continuous with respect to t,

ν([0, t]× R) is continuous with respect to t. (4.2)

The author proves (see Theorem 3.2. in [33]) that under suitable assumptions on the coefficients
(ξ, f̃ , g̃) there exists a unique triplet of processes (Y,Z,U) ∈ L2(ζλ) × L2(M) × L2(µ), with
E
[

supt∈[0, T ] Y
2
t

]

< ∞, satisfying BSDE (1.1), where

L2(ζλ) : =
{

optional processes (Yt)t∈[0, T ] : E

[

∫ T

0
Y 2
s dζs

]

+ E

[

∫ T

0
Y 2
s λ(ds,R)

]

< ∞
}

,

L2(M) : =
{

predictable processes (Zt)t∈[0, T ] : E

[

∫ T

0
Z2
s d〈M〉s

]

< ∞
}

,

and L2(µ) is the space introduced in (B.20).

In the sequel we will consider stochastic processes related to the random measure µ in the
following way.

Hypothesis 4.2. X is an adapted càdlàg process verifying Hypothesis 3.2 with decomposition
X = Xi+Xp, where Xi (resp. Xp) fulfills Hypothesis 3.10 with some predictable process γ̃ (resp.
fulfills Hypothesis 3.14), with respect to the random measure µ.
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We consider some important examples.

Example 4.3. Let us focus on the BSDE

Yt = g(XT )+

∫

]t, T ]
f(s, Xs, Ys, Zs, Us(·)) ds−

∫

]t, T ]
Zs dWs−

∫

]t, T ]×R

Us(e) (µ−ν)(ds de), (4.3)

which constitutes a particular case of the BSDE (4.1). This is considered for instance in [3]. Here
W is a Brownian motion and µ(ds de) is a Poisson random measure with compensator

ν(ds de) = λ(de) ds, (4.4)

where λ is a Borel σ-finite measure on R \ {0} and
∫

R

(1 ∧ |e|2)λ(de) < +∞. (4.5)

Poisson random measures have been introduced for instance in Chapter II, Section 4.b in [21].
The process X appearing in (4.3) is a Markov process satisfying the SDE

dXs = b(Xs) ds + σ(Xs) dWs +

∫

R

γ(Xs−, e) (µ − ν)(ds de), s ∈ [t, T ], (4.6)

where b : R → R, σ : R → R are globally Lipschitz, and γ : R × R → R is a measurable function
such that, for some real K, and for all e ∈ R,

{

|γ(x, e)| ≤ K (1 ∧ |e|), x ∈ R,

|γ(x1, e) − γ(x2, e)| ≤ K |x1 − x2| (1 ∧ |e|) x1, x2 ∈ R.
(4.7)

For every starting point x ∈ R and initial time t ∈ [0, T ], there is a unique solution to (4.6)
denoted Xt,x (see [3], Section 1). Moreover, modulo suitable assumptions on the coefficients
(g, f), it is proved that the BSDE (4.3) admits a unique solution (Y,Z,U) ∈ S2 ×L2 ×L2(µ), see
Theorem 2.1 in [3], where

S2 : =
{

adapted càdlàg processes (Yt)t∈[0, T ] :
∣

∣

∣

∣

∣

∣
sup

t∈[0, T ]
|Yt|

∣

∣

∣

∣

∣

∣

L2(Ω)
< ∞

}

,

L2 : =
{

predictable processes (Zt)t∈[0, T ] : E

[

∫ T

0
Z2
s ds

]

< ∞
}

,

L2(µ) : = {predictable random fields (Us(·))s∈[0, T ] : E
[

∫

]0, T ]×R

|Us(e)|
2 ν(ds de)

]

< ∞}.

When X = Xt,x the solution (Y,Z) of (4.3) is denoted (Y t,x, Zt,x). In [3] it is proved that

u(t, x) := Y t,x
t , (t, x) ∈ [0, T ]× R, (4.8)

satisfies Y t,x
s = u(s,Xt,x

s ) for every (t, x) ∈ [0, T ]×R, s ∈ [t, T ].

Lemma 4.4. Let µ and X be respectively the Poisson random measure and the stochastic process
satisfying the SDE (4.6) in Example 4.3. Then µ satisfies Hypothesis 3.17 and X fulfills Hypothesis
4.2 with respect to µ, with decomposition X = Xi +Xp,

Xi
t =

∫

[0, t]×R

γ(Xs−, e) (µ − ν)(ds de), (4.9)

Xp
t =

∫ t

0
b(Xs) ds +

∫ t

0
σ(Xs) dWs. (4.10)

In particular Xi satisfies Hypothesis 3.10 with γ̃(ω, s, e) = γ(Xs−(ω), e).
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Proof. Our aim is to apply Lemma 3.22. We start by noticing that ν in (4.4) is in the form (3.11)
with As = s. Therefore Hypothesis 3.17 is verified, see Remark 3.19-(ii). On the other hand, the
process X satisfies the stochastic differential equation (4.6), which is a particular case of (3.27)
when Bs = s, Ns = Ws, and b, σ, γ are homogeneous. b and σ verify (3.28), (3.29) since they have
linear growth. Condition (3.30) can be verified using the characterization of G1

loc(µ) in Theorem

B.19. In that context, setting W (ω, s, e) = γ(s,Xs−(ω), e), we have Ŵ = 0, and we have to verify
that |W |21{|W |≤1} ∗ ν + |W |1{|W |>1} ∗ ν belongs to A+

loc. This follows from (4.5) and (4.7).
Then, by Lemma 3.22, X verifies Hypothesis 3.2, with decomposition X = Xi+Xp, where Xi

and Xp are given respectively by (4.9) and (4.10). Moreover, the process Xi fulfills Hypothesis
3.10 with γ̃(ω, s, e) = γ(Xs−(ω), e), and the process Xp satisfies Hypothesis 3.14.

When ζ and M vanish, BSDE (4.1) turns out to be driven only by a purely discontinuous
martingale, and becomes

Yt = ξ +

∫

]t, T ]
f̃(s, ω, e, Ys−, Us(e))λ(ds de) −

∫

]t, T ]×R

Us(e) (µ − ν)(ds de). (4.11)

Below we consider two significant cases, given respectively in Examples 4.5 and 4.7.

Example 4.5. In [8] the authors study a BSDE driven by an integer-valued random measure µ
associated to a given pure jump Markov process X, of the form

Yt = g(XT ) +

∫

]t, T ]
f(s, Xs, Ys, Us(·)) ds −

∫

]t, T ]×R

Us(e) (µ − ν)(ds de). (4.12)

The underlying process X is generated by a marked point process (Tn, ζn), where (Tn)n are
increasing random times such that Tn ∈]0, ∞[, where either the times (Tn)n are a finite number
or limn→∞ Tn = +∞, and ζn are random variables in R, see e.g. Chapter III, Section 2 b., in
[20]. This means that X is a càdlàg process such that Xt = ζn for t ∈ [Tn, Tn+1[, for every n ∈ N.
In particular, X has a finite number of jumps on each compact. The associated integer-valued
random measure µ is the sum of the Dirac measures concentrated at the marked point process
(Tn, ζn), and can be written as

µ(ds de) =
∑

s∈[0, T ]

1{Xs− 6=Xs} δ(s,Xs)(dt de). (4.13)

Given a measure µ in the form (4.13), it is related to the jump measure µX in the following way:
for every Borel subset A of R,

∫

]0, T ]×R

1A(e−Xs−)µ(ds de) =

∫

]0, T ]×R

1A(x)µ
X(ds dx). (4.14)

This is for instance explained in Example 3.22 in [20]. The pure jump process X then satisfies
the equation

Xt = X0 +
∑

s≤t

∆Xs = X0 +

∫

]0,t]×R

(e−Xs−)µ(ds de). (4.15)

The compensator of µ(ds de) is

ν(ds de) = λ(s,Xs−, de) ds, (4.16)
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where λ the is the transition rate measure of the process satisfying

sup
t∈[0, T ], x∈R

λ(t, x,R) < ∞, (4.17)

see Section 2.1 in [8].
Under suitable assumptions on the coefficients (g, f), Theorem 3.4 in [8] states that the BSDE

(4.12) admits a unique solution (Y,U) ∈ L2×L2(µ), where L2(µ) and L2 are the spaces introduced
in Example 4.3.

Theorem 4.4 in [8] shows moreover that there exists a measurable function u : [0, T ]×R → R

such that

∀ e ∈ E, t 7→ u(t, e) is absolutely continuous on [0, T ], (4.18)

u(s,Xs) ∈ L2 and u(s, e) − u(s,Xs−) ∈ L2(µ), s ∈ [0, T ], (4.19)

and the unique solution of the BSDE (4.12) can be represented as

Ys = u(s,Xs), s ∈ [0, T ], (4.20)

Us(e) = u(s, e)− u(s,Xs−), λ(s,Xs−, de) ds-a.e. s ∈ [0, T ]. (4.21)

Lemma 4.6. Let X and µ be respectively a pure jump Markov process and the corresponding
integer-valued random measure as in Example 4.5. Then µ satisfies Hypothesis 3.17 and X fulfills
Hypothesis 4.2 with decomposition X = Xi, Xp = 0. In particular, Xi satisfies Hypothesis 3.10
with γ̃(ω, s, e) = e−Xs−(ω).

Proof. Since ν in (4.16) is in the form (3.11) with As = s, Hypothesis 3.17 is verified, see Remark
3.19-(ii).

The process Xi = X satisfies (4.15). Recalling the relation (4.14) between µ and µX , the
continuity of the above mentioned process A also implies that X = Xi is quasi-left continuous,
see Corollary B.9. Finally, by definition of µ we have

E

[

∫

]0, T ]×R

µ(ds de) |(e −Xs−)−∆Xs|

]

= 0,

therefore Xi satisfies Hypothesis 3.10 with γ̃(ω, s, e) = e−Xs−(ω).

We start now describing the second example. In the recent paper [1], one studies the existence
and uniqueness for a BSDE driven by a purely discontinuous martingale of the form

Yt = ξ +

∫

]t, T ]
f̃(s, Ys−, Us(·)) dAs −

∫

]t, T ]×R

Us(e) (µ − ν)(ds de). (4.22)

Here µ(ds de) is an integer-valued random measure with compensator ν(ds de) = dAs φs(de),
where φ is a probability kernel and A is a right-continuous nondecreasing predictable process,
such that ν̂s(R) = ∆As ≤ 1 for every s. For any positive constant β, Eβ will denote the Doléans-
Dade exponential of the process βA. We consider the weighted spaces

L2
β(A) : =

{

adapted càdlàg processes (Ys)s∈[0, T ], s.t.E
[

∫ T

0
Eβ
s |Ys−|

2 dAs

]

< ∞
}

,
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G2
β(µ) : =

{

predictable processes (Us(·))s∈[0, T ], s.t.

||U ||2G2

β
(µ) := E

[

∫

]0, T ]×R

Eβ
s |Us(e) − Ûs|

2 ν(ds de) +
∑

s∈]0, T ]

Eβ
s |Ûs|

2(1−∆As)
]

< ∞
}

.

A solution to equation (4.22) with data (β, ξ, f̃ ) is a pair (Y,Z) ∈ L2
β(A) × G2

β(µ) satisfying

equation (4.22). We say that equation (4.22) admits a unique solution in L2
β(A)×G2

β(µ) if, given

two solutions (Y,U), (Y ′, U ′), we have Yt = Y ′
t dP⊗dAt-a.e. and ||U −U ′||2

G2

β
(µ)

= 0 (in particular

||U − U ′||2G2(µ) = 0).

In [1] one requires suitable assumptions on the triplet (f̃ , ξ, β). In particular f̃ is of Lipschitz
type in the third and fourth variable and ξ is a square integrable random variable with some
weight. Moreover, the following technical assumption has to be fulfilled: there exists ε ∈]0, 1[
such that

2 |Ly|
2 |∆At|

2 ≤ 1− ε, P−a.s., ∀ t ∈ [0, T ], (4.23)

where Ly is the Lipschitz constant of f̃ with respect to y. Under these hypotheses, for β large
enough, it can be proved that there exists a unique solution (Y,U) ∈ L2

β(A) × G2
β(µ) to BSDE

(4.22), see Theorem 4.1 in [1].
At this point some comments may be useful. Two random fields U and U ′ in G2

loc(µ) will be
said to be equal if U = U ′ MP

ν -a. e. (i.e., dP(ω) ν(ω, dt de)-a.e.).
Uniqueness in Theorem 4.1 in [1] means the following: if (Y,U), (Y ′, U ′) are solutions of the

BSDE (4.22), then Y = Y ′ and, by Proposition B.28, there is a predictable process (ls) such that
U(·)− U ′(·) = l 1K , ν-a.e.

Given a solution (Y,U0) of BSDE (4.22), the class of all solutions will be given by the pairs
(Y,U), where U = l 1K + U0 for some predictable process (ls). In particular, if K = ∅, then the
second component of the BSDE solution is unique in the smaller space L2(µ).

Example 4.7. Let us now consider a particular case of BSDE (4.22), namely a BSDE driven by
the integer-valued random measure µ associated to a given Markov process X, of the form

Yt = g(XT ) +

∫

]t, T ]
f(s, Xs−, Ys−, Us(·)) dAs −

∫

]t, T ]×R

Us(e) (µ − ν)(ds de), (4.24)

where µ(ds de) is an integer-valued random measure with compensator ν(ds de) = dAs φs(de),
where (φs)s∈[0, T ] is a random probability kernel and A is a right-continuous nondecreasing pre-
dictable process.

We assume that X is a Piecewise Deterministic Markov Process (PDMP) associated to the
random measure µ, with values in the interval ]0, 1[. Such a process has random jumps (Tn)n
and a deterministic motion between jumps according to a drift h :]0, 1[→ R which is Lipschitz
continuous. When the process reaches the boundary, it will instantaneously jump inside the
interval. We will follow the notations in [10], Chapter 2, Section 24 and 26. For every x ∈]0, 1[,
we will express by t∗(x) the first time such that the process X starting at x reaches 0 or 1.
The behavior of X is described by a triplet of local characteristics (h, λ,Q), where h is the drift
introduced before, λ :]0, 1[→ R is a measurable function satisfying

sup
x∈]0,1[

|λ(x)| < ∞, (4.25)

and Q is a probability transition measure on [0, 1] × B(]0, 1[), such that

for some ε > 0, Q(x,Bε) = 1 for x ∈ {0, 1}, where Bε = {x ∈]0, 1[: t∗(x) > ε}. (4.26)
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Set Nt =
∑

n∈N 1t≥Tn . By Proposition 24.6 in [10], under conditions (4.25) and (4.26) we have

E [Nt] < ∞ ∀ t ∈ R+. (4.27)

Notice that the PDMP X verifies the equation

Xt = X0 +

∫ t

0
h(Xs) ds+

∑

s≤t

∆Xs. (4.28)

In particular X admits a finite number of jumps on each compact interval. By 26.9 in [10], the
random measure µ is

µ(ds de) =
∑

n∈N

1{XTn∈]0, 1[}
δ(Tn,XTn )(ds de) =

∑

s∈[0, T ]

1{Xs− 6=Xs}δ(s,Xs)(ds de), (4.29)

which is of the type of (4.13). This implies the validity of (4.14), so that (4.28) can be rewritten
as

Xt = X0 +

∫ t

0
h(Xs) ds +

∫

]0, t]×]0,1[
(e−Xs−)µ(ds de).

In the following, by abuse of notations, µ will denote the trivial extension of previous measure to
the real line. In particular (4.28) can be reexpressed as

Xt = X0 +

∫ t

0
h(Xs) ds +

∫

]0, t]×R

(e−Xs−)µ(ds de). (4.30)

The knowledge of (h, λ, Q) completely specifies the dynamics of X, see section 24 in [10].
According to (26.2) in [10], the compensator of µ has the form

ν(ds de) = (λ(Xs−) ds + dp∗s)Q(Xs−, de), (4.31)

where

p∗t =

∞
∑

n=1

1{t≥Tn} 1{XTn−∈{0,1}} (4.32)

is the process counting the number of jumps of X from the boundary of its domain.
From (4.31) we can choose As and φs(de) such that dAs = λ(Xs−) ds + dp∗s and φs(de) =

Q(Xs−, de). In particular, A is predictable (not deterministic) and discontinuous, with jumps

∆As(ω) = ν̂s(ω,R) = ∆p∗s(ω) = 1{Xs−(ω)∈{0,1}}. (4.33)

Consequently, ν̂t(ω,R) > 0 if and only if ν̂t(ω,R) = 1, so that

J = {(ω, t) : ν̂t(ω,R) > 0} = {(ω, t) : ν̂t(ω,R) = 1} = K, (4.34)

and
K = {(ω, t) : Xt−(ω) ∈ {0, 1}}. (4.35)

Lemma 4.8. Let X be the PDMP process we have considered in Example 4.7. Then
∫

]0, ·]×R

|e−Xs−| ν(ds de) ∈ A+
loc.
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Proof. We start by noticing that

∫

]0, T ]×R

|e−Xs−| ν(ds de) < ∞ a.s.

Indeed
∫

]0, T ]×R

|e−Xs−| ν(ds de) =

∫

]0, T ]×]0,1[
|e−Xs−| (λ(Xs−) ds + dp∗s)Q(Xs−, de)

≤ ||λ||∞ (T + p∗T ).

For every t ∈ [0, T ] the jumps of the process

Yt :=

∫

]0, t]×R

|e−Xs−| ν(ds de)

are given by

∆Yt :=

∫

]0, 1[
|e−Xt−| ν̂t(de) ≤ ν̂t(R) ≤ 1.

Since Yt has bounded jumps, it is a locally bounded process and therefore it belongs to A+
loc, see

for instance the proof of Corollary in pag 373 in [29].

Lemma 4.9. Let µ and X be respectively the random measure and the associated PDMP satisfying
equation (4.30) in Example 4.7. Assume in addition that there exists a function β : {0, 1} →]0, 1[,
such that

Xs = β(Xs−) on {(ω, s) : Xs−(ω) ∈ {0, 1}}, (4.36)

and
Q(x, de) = δβ(x)(de) a.s. (4.37)

Then µ satisfies Hypothesis 3.17 and X fulfills Hypothesis 4.2 with decomposition X = Xi +Xp,
with

Xi
t =

∫

]0, t]×R

(e−Xs−) (µ − ν)(ds de), (4.38)

Xp
t = X0 +

∫ t

0
h(Xs) ds +

∫

]0, t]

(
∫

R

(e−Xs−)Q(Xs−, de)

)

(λ(Xs−) ds + dp∗s). (4.39)

In particular Xi satisfies Hypothesis 3.10 with γ̃(ω, s, e) = (e−Xs−(ω))1{Xs−(ω)∈]0,1[}(ω, s).

Proof. Let us prove that Hypothesis 3.17-(i) holds. We recall that the measure µ was characterized
by (4.29). We define µc := µ 1Jc , and νc := ν 1Jc . νc is the compensator of µc, see paragraph b)
in [19]. Taking into account (4.31), (4.33) and (4.34), we have

νc(ds de) = λ(Xs−)Q(Xs−, de) ds. (4.40)

By Remark 3.19-(ii) we see that D ∩Jc = ∪n[[T
i
n]], (T

i
n)n totally inaccessible times. On the other

hand, since by (4.34) J = K, we have D = K ∪ (D ∩ Jc), therefore Hypothesis 3.17-(i) holds.
Let now consider Hypothesis 3.17-(ii). Taking into account (4.35), we have to prove that for

every predictable time S such that [[S]] ⊂ {(ω, t) : Xt−(ω) ∈ {0, 1}},

ν({S}, de) = µ({S}, de) a.s. (4.41)
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Let S be a predictable time satsifying [[S]] ⊂ {(ω, t) : Xt−(ω) ∈ {0, 1}}. By (4.29), µ({S}, de) =
δXS

(de), while from (4.31) we get ν({S}, de) = Q(XS−, de) . Therefore identity (4.41) can be
rewritten as

Q(XS−, de) = δXS
(de) a.s. (4.42)

Previous identity holds true under assumptions (4.36) and (4.37), and so Hypothesis 3.17-(ii) is
established.

In order to prove the validity of Hypothesis 4.2, we will make use of Lemma 3.22. We recall
that the process X satisfies the stochastic differential equation (4.30), which gives, taking into
account Lemma 4.8,

Xt = X0 +

∫ t

0
h(Xs) ds+

∫

]0, t]

(
∫

R

(e−Xs)Q(Xs, de)

)

λ(Xs) ds

+

∫

]0, t]
(β(Xs−)−Xs−) dp

∗
s +

∫

]0, t]×R

(e−Xs−) (µ − ν)(ds de). (4.43)

We can show that previous equation is a particular case of (3.27). Indeed, we recall that, by
(4.32) and (4.35), the support of the measure dp∗ is included in K. We set Bs = s + p∗(s)
and b(s, x) =

(

h(x) +
∫

R
(e− x)λ(x)Q(x, de)

)

1Kc(s) + (β(x) − x)1K(s). The reader can easily
show that the sum of the first, second, and third integral in the right hand-side of (4.43) equals
∫ t
0 b(s,Xs−) dBs, provided we show that

∫ T
0 |b(s,Xs−)| dBs is finite a.s. In fact we have

∫ t

0
|b(s,Xs−)| dBs

≤

∫ t

0
|h(Xs)| ds +

∫

]0, t]

∣

∣

∣

∫

R

(e−Xs−)λ(Xs−)Q(Xs−, de)1Kc(s) + (β(Xs−)−Xs−)1K(s)
∣

∣

∣
dBs

=

∫ t

0
|h(Xs)| ds +

∫

]0, t]

∣

∣

∣

∫

R

(e−Xs−)Q(Xs−, de) (λ(Xs−)1Kc(s) + 1K(s))
∣

∣

∣
(ds + dp∗(s))

≤

∫ t

0
|h(Xs)| ds +

∫

]0, t]

∫

R

|e−Xs−| ν(ds, de). (4.44)

Recalling Lemma 4.8, and taking into account that h is locally bounded, we get that
∫ ·
0 |b(s,Xs−)| dBs

belongs to A+
loc. Then, setting Ns = 0 and γ(s, x, e) = e − x, we see finally that X is a solution

to equation (3.27).
Then, by Lemma 3.22, X satisfies Hypothesis 3.2, with decomposition X = Xi+Xp, where Xi

and Xp are given respectively by (4.38) and (4.39). Moreover, the process Xi fulfills Hypothesis
3.10 with γ̃(ω, s, e) = (e − Xs−(ω)) (1 − 1K(ω, s)) = (1 − 1K(ω, s))1{Xs−(ω)∈]0,1[}(ω, s), and the
process Xp satisfies Hypothesis 3.14.

4.2 Identification of the BSDE’s solution

We consider the following assumption on a couple (X,Y ) of adapted processes.

Hypothesis 4.10. X is a special weak Dirichlet process of finite quadratic variation, satisfying
conditon (2.7). Yt = v(t, Xt) for some (deterministic) function v : [0, T ] × R → R of class C0,1

such that F = v and X verify condition (2.9).

Let us remark the following facts.
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Proposition 4.11. Assume that X is a process satisfying Hypothesis 3.2, with decomposition
X = Xi +Xp, where Xi (resp. Xp) fulfills Hypothesis 3.10 (resp. Hypothesis 3.14), with respect
to µ, with corresponding γ̃. Let in addition v : [0, T ]× R → R is a function of class C0,1.

(a) If
∑

s≤T |∆Xs|
2 < ∞ a.s., then

|v(s,Xs− + γ̃(s, e)) − v(s,Xs−)|
2
1{|γ̃(s,e)|≤1} ∗ µ ∈ Aloc. (4.45)

(b) If X and F = v satisfy conditions (2.7) and (2.9), then

|v(s,Xs− + γ̃(s, e))− v(s,Xs−)|1{|γ̃(s,e)|>1} ∗ µ ∈ A+
loc. (4.46)

(c) If X and F = v satisfy conditions (2.7) and (2.9), and moreover
∑

s≤T |∆Xs|
2 < ∞ a.s.,

then
v(s,Xs− + γ̃(s, e)) − v(s,Xs−) ∈ G1

loc(µ).

Proof. Item (a) follows by Proposition 2.3 and inequality (3.10) in Proposition 3.15, with ϕ(ω, s, x) =
|v(s,Xs−(ω) + x)− v(s,Xs−(ω))|

2
1{|x|≤1}, allowing ϕ also depending on ω.

Item (b) is a consequence of (2.7) and (2.9) together with Remark 2.5-(ii) and inequality (3.10)
in Proposition 3.15, with ϕ(ω, s, x) = |v(s,Xs−(ω) + x) − v(s,Xs−(ω))|1{|x|>1}, allowing ϕ also
depending on ω.

Finally, item (c) is a direct consequence of items (a), (b), and Remark 2.6, with ϕ(ω, s, e) =
v(s,Xs−(ω) + γ̃(ω, s, e)) − v(s,Xs−(ω)) and A = {(ω, s, e) : |γ̃(ω, s, e)| > 1}.

Proposition 4.12. Let µ satisfy Hypothesis 3.17. Let X be a process verifying Hypothesis 4.2
with decomposition X = Xi + Xp, where γ̃ is the predictable process which relates µ and Xi in
agreement with Hypothesis 3.10. Let (Y,Z,U) be a solution to the BSDE (4.1) such that the pair
(X,Y ) satisfies Hypothesis 4.10 with corresponding function v. Let Xc denote the continuous local
martingale M c of X given in the canonical decomposition (2.12).

Then, the pair (Z,U) fulfills

Zt = ∂xv(t,Xt)
d〈Xc,M〉t
d〈M〉t

dP d〈M〉t -a.e., (4.47)

∫

]0, t]×R

Hs(e) (µ − ν)(ds de) = 0, ∀ t ∈]0, T ], a.s., (4.48)

with
Hs(e) := Us(e) − (v(s,Xs− + γ̃(s, e))− v(s,Xs−)). (4.49)

If, in addition, H ∈ G2
loc(µ),

∫

]0, T ]×R

|Hs(e)− Ĥs 1K(s)|2 ν(ds de) = 0 a.s. (4.50)

Remark 4.13. Since the pair (X,Y ) in Proposition 4.12 satisfies Hypothesis 4.10, then X and v in
the statement satisfy (2.7) and (2.9). By Proposition 4.11-(c) it follows that v(s,Xs− + γ̃(s, e))−
v(s,Xs−) ∈ G1

loc(µ). Since U ∈ G2
loc(µ) ⊂ G1

loc(µ), this yields H ∈ G1
loc(µ).
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Proof. By assumption, X is a special weak Dirichlet process satisfying condition (2.7), and F = v
is a function of class C0,1 satisfying the integrability condition (2.9). So we are in the condition
to apply Theorem 2.14 to v(t, Xt). We get

v(t, Xt) = v(0,X0) +

∫

]0, t]×R

(v(s,Xs− + x)− v(s,Xs−)) (µ
X − νX)(ds dx)

+

∫

]0, t]
∂xv(s,Xs) dX

c
s +Av(t), (4.51)

where Av : C0, 1 → Ducp is a map such that, for every v ∈ C0, 1, Av is a predictable orthogonal
process. We set

ϕ(s, x) := v(s,Xs− + x)− v(s,Xs−).

Since X is of finite quadratic variation and verifies (2.7), and X and F = v satisfy (2.9), by
Proposition 2.3 and Remark 2.5-(ii), we see that the process ϕ verifies condition (3.12) with
A = {|x| > 1}. Moreover ϕ(s, 0) = 0. Since µ verifies Hypothesis 3.17 and X verifies Hypothesis
4.2, we can apply Proposition 3.20 to ϕ(s, x). Identity (4.51) becomes

v(t, Xt) = v(0,X0) +

∫

]0, t]×R

(v(s,Xs− + γ̃(s, e))− v(s,Xs−)) (µ − ν)(ds de)

+

∫

]0, t]
∂xv(s,Xs) dX

c
s +Av(t). (4.52)

At this point we recall that the process Yt = v(t,Xt) fulfills the BSDE (4.1), which can be
rewritten as

Yt = Y0 +

∫

]0, t]
Zs dMs +

∫

]0, t]×R

Us(e) (µ − ν)(ds de)

−

∫

]0, t]
g̃(s, Ys−, Zs) dζs −

∫

]0, t]×R

f̃(s, e, Ys−, Us(e))λ(ds de). (4.53)

By Proposition 2.12 the uniqueness of decomposition (4.52) yields identity (4.48) and
∫

]0, t]
Zs dMs =

∫

]0, t]
∂xv(s,Xs) dX

c
s . (4.54)

In particular, from (4.54) we get

0 = 〈

∫

]0, t]
ZsdMs −

∫

]0, t]
∂xv(s,Xs) dX

c
s , Mt〉

=

∫

]0, t]
Zsd〈M〉s −

∫

]0, t]
∂xv(s,Xs)

d〈Xc, M〉s
d〈M〉s

d〈M〉s

=

∫

]0, t]

(

Zs − ∂xv(s,Xs)
d〈Xc, M〉s
d〈M〉s

)

d〈M〉s,

that gives identification (4.47).
If in addition we assume that H ∈ G2

loc(µ), the predictable bracket at time t of the purely
discontinuous martingale in identity (4.48) is well-defined, and equals

∫

]0, t]×R

|Hs(e)− Ĥs 1J(s)|
2 ν(ds de) +

∑

s∈]0, t]

|Ĥs|
2(1− ν̂s(R))1J\K(s), (4.55)

see Theorem B.22, identity (B.25), and Remark B.23. The conclusion follows from the fact that
under Hypothesis 3.17 we have J = K, see Remark 3.18.
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We apply now previous result to the case of Example 4.3. We start with a preliminary result.

Lemma 4.14. Let µ and X be respectively the Poisson random measure and the stochastic process
satisfying the SDE (4.6) in Example 4.3. Let u : [0, T ]× R → R be a function of C0,1 class such
that x 7→ ∂xu(s, x) has linear growth, uniformly in s. Then condition (2.9) holds for X and
F = u.

Proof. We have
∫

]0,·]×R

|u(s,Xs− + x)− u(s,Xs−)− x ∂xu(s,Xs−)|1{|x|>1} µ
X(ds dx)

=
∑

0<s≤·

|u(s,Xs)− u(s,Xs−)− ∂xu(s,Xs−)∆Xs|1{|∆Xs|>1}

≤
∑

0<s≤·

|∆Xs|1{|∆Xs|>1}

(
∫ 1

0
|∂xu(s,Xs− + a∆Xs)| da+

∫ 1

0
|∂xu(s,Xs−)| da

)

≤ 2C
∑

0<s≤·

|Xs−||∆Xs|1{|∆Xs|>1} +
∑

s≤t

|∆Xs|
2 C 1{|∆Xs|>1}

= 2C

∫

]0,·]×R

|Xs−| |x|1{|x|>1} µ
X(ds dx) +

∑

s≤·

|∆Xs|
2
1{|∆Xs|>1}. (4.56)

Since X is of finite quadratic variation, the second term in the right-hand side of (4.56) is in A+
loc

if and only if
∑

s∈]0, ·]

|∆Xs|
2 ∈ A+

loc, (4.57)

see Proposition 2.2. Since by (4.6) ∆Xs =
∫

R
γ(Xs−, e)µ(ds de), we have

∑

s∈]0, ·]

|∆Xs|
2 =

∑

s∈]0, ·]

∣

∣

∣

∣

∫

R

γ(Xs−, e)µ(ds de)

∣

∣

∣

∣

2

=

∫

]0,·]×R

|γ(Xs−, e)|
2 µ(ds de),

and (4.57) reads
∫

]0,·]×R

|γ(Xs−, e)|
2 µ(ds de) ∈ A+

loc. (4.58)

Condition (4.58) holds because |γ(x, e)| ≤ K (1 ∧ |e|) for every x ∈ R,
∫

R
(1 ∧ |e|2)λ(de) < ∞

(see, respectively, (4.7) and (4.5)), and taking into account the fact that the integrand in (4.58)
is locally bounded.

Finally, the first term in the right-hand side of (4.56) belongs to A+
loc since Xs− is locally

bounded (see e.g. the lines above Theorem 15, Chapter IV, in [29]) and X satisfies (2.7). The
conclusion follows.

We are ready to give the identification result in the framework of Example 4.3.

Corollary 4.15. Let (Y,Z,U) ∈ S2×L2×L2(µ) be the unique solution to the BSDE (4.3). If the
function u defined in (4.8) is of class C0,1 such that x 7→ ∂xu(t, x) has linear growth, uniformly
in t, then the process (Z,U) satisfies

Zt = ∂xu(t,Xt) dP dt-a.e., (4.59)

∫

]0, t]×R

Hs(e) (µ − ν)(ds de) = 0, ∀t ∈]0, T ], a.s. (4.60)
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where
Hs(e) := Us(e)− (u(s,Xs− + γ(s,Xs−, e)) − u(s,Xs−)). (4.61)

If in addition H ∈ G2
loc(µ),

Us(e) = u(s,Xs− + γ(s,Xs−, e)) − u(s,Xs−) dPλ(de) ds-a.e. (4.62)

Proof. We aim to apply Proposition 4.12. By Lemma 4.4, µ satisfies Hypothesis 3.17 and X
fulfills Hypothesis 4.2 with decomposition X = Xi +Xp, where Xi satisfies Hypothesis 3.10 with
γ̃(s, e) = γ(s,Xs−, e). Moreover, since X is a special semimartingale, it is of finite quadratic
variation and (2.7) holds because of Corollary 11.26 in [18]. By Lemma 4.14, condition (2.9)
holds for X and F = u, which implies that Hypothesis 4.10 is verified.

We can then apply Proposition 4.12: since Xc = M = W , (4.47) gives (4.59), while (4.48)-
(4.49) with γ̃(s, e) = γ(s,Xs−, e) yield (4.60)-(4.61). If in addition H ∈ G2(µ), since Ĥ = 0 (ν is
absolutely continuous with respect to the Lebesgue measure), (4.50) yields

∫

]0, T ]×R

|Hs(e)|
2 λ(de) ds = 0, (4.63)

and (4.62) follows.

Remark 4.16. When the BSDE (4.3) is driven only by a standard Brownian motion, an identifi-
cation result for Z analogous to (4.59) has been established by [17], even supposing only that f
is Lipschitz with respect to Z.

Let us now consider a BSDE driven only by a purely discontinuous martingale, of the form
(4.11). We formulate the following assumption for a couple of adapted processes (X,Y ).

Hypothesis 4.17. (i) Y = B + A′, with B a bounded variation process and A′ a continuous
orthogonal process;

(ii) Yt = v(t, Xt) for some continuous deterministic function v : [0, T ] × R → R, satisfying the
integrability condition

∫

]0, ·]×R

|v(t,Xt− + x)− v(t,Xt−)|µ
X(dt dx) ∈ A+

loc. (4.64)

We have the following result.

Proposition 4.18. Let µ satisfy Hypothesis 3.17. Let X verify Hypothesis 4.2 with decomposition
X = Xi + Xp, where γ̃ is the predictable process which relates µ and Xi in agreement with
Hypothesis 3.10. Let (Y,U) be a solution to the BSDE (4.11), such that (X,Y ) satisfies Hypothesis
4.17 with corresponding function v.

Then, the process U satisfies

∫

]0, t]×R

Hs(e) (µ − ν)(ds de) = 0 ∀t ∈]0, T ], a.s., (4.65)

with
Hs(e) := Us(e) − (v(s,Xs− + γ̃(s, e))− v(s,Xs−)). (4.66)

If in addition H ∈ G2
loc(µ),

∫

]0, T ]×R

|Hs(e)− Ĥs 1K(s)|2 ν(ds de) = 0 a.s. (4.67)

27



Remark 4.19. The assumption of continuity for v(t, x) in Hypothesis 4.17-(ii) is somehow restric-
tive since it can be relaxed with respect to x. However our purpose is to illustrate the methodology
and the assumption of continuity simplifies the proof.

Proof. By assumption, the couple (X,Y ) satisfies Hypothesis 4.17 with corresponding function v.
We are then in the condition to apply Proposition 2.16 to v(t, Xt). We get

v(t, Xt) = v(0,X0) +

∫

]0, t]×R

(v(s,Xs− + x)− v(s,Xs−)) (µ
X − νX)(ds dx) +Av(t), (4.68)

where Av is a predictable (Ft)-orthogonal process. Set

ϕ(s, x) := v(s,Xs− + x)− v(s,Xs−).

By condition (ii) in Hypothesis 4.17, the process ϕ verifies condition (3.12) with A = Ω×[0, T ]×R.
Moreover ϕ(s, 0) = 0. Since µ verifies Hypothesis 3.17, and X verifies Hypothesis 4.2 we can apply
Proposition 3.20 to ϕ(s, x). Identity (4.68) becomes

v(t, Xt) = v(0,X0) +

∫

]0, t]×R

(v(s,Xs− + γ̃(s, e)) − v(s,Xs−)) (µ − ν)(ds de) +Av(t). (4.69)

At this point we recall that the process Yt = v(t,Xt) fulfills the BSDE (4.11), which can be
rewritten as

Yt = Y0 +

∫

]0, t]×R

Us(e) (µ − ν)(ds de)−

∫

]0, t]×R

f̃(s, e, Ys−, Us(e))λ(ds de). (4.70)

By Proposition 2.12 the uniqueness of decomposition (4.69) yields identity (4.48). If in addition we
assume that H ∈ G2

loc(µ), the predictable bracket at time t of the purely discontinuous martingale
in identity (4.48) is well-defined, and equals

∫

]0, t]×R

|Hs(e)− Ĥs 1J(s)|
2 ν(ds de) +

∑

s∈]0, t]

|Ĥs|
2(1− ν̂s(R))1J\K(s), (4.71)

see Theorem B.22, identity (B.25), and Remark B.23. The conclusion follows from the fact that
under Hypothesis 3.17 we have J = K, see Remark 3.18.

Previous result can be applied to the framework of Example 4.5. We start with a preliminary
observation.

Lemma 4.20. Let X, µ be respectively the pure jump Markov process and the corresponding
integer-valued random measure in Example 4.5. Let u : [0, T ]× R → R be a continuous function
satisfying (4.18), (4.19) and (4.20). If we set Yt = u(t,Xt), then (X,Y ) satisfies Hypothesis 4.17
with corresponding function u.

Proof. From (4.15) and the fact that u is continuous, it follows that

u(t,Xt) = u(0, X0) +
∑

s≤t

(u(s, Xs− +∆Xs)− u(s, Xs−)). (4.72)

Obviously Yt = u(t,Xt) has a finite number of jumps on each compact. We have
∑

s≤t |u(s, Xs−+
∆Xs) − u(s, Xs−)| < ∞ a.s. for every t ∈ R+. Therefore, condition (i) in Hypothesis 4.17 holds
with B = u(0, X0) +

∑

s≤·(u(s, Xs− +∆Xs)− u(s, Xs−)), A
′ = 0.
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To verify the validity of condition (ii) of Hypothesis 4.17 with corresponding function v = u,
we have to show that (4.64) holds with v = u. Denoting ||λ||∞ = supt∈[0, T ], x∈R |λ(t, x,R)|, by
(4.14) we have

E

[

∫

]0, T ]×R

|u(s,Xs− + x)− u(s, Xs−)|µ
X(ds dx)

]

= E

[

∫

]0, T ]×R

|u(s, e) − u(s, Xs−)|µ(ds de)

]

= E

[

∫

]0, T ]×R

|u(s, e) − u(s, Xs−)|λ(s,Xs−, de) ds

]

≤ T ||λ||1/2∞ ||u(s, e) − u(s, Xs−)||
1/2
L2(µ)

and the conclusion follows since u(s, e)− u(s,Xs−) ∈ L2(µ) by (4.19).

We have the following identification result in the framework of Example 4.5.

Corollary 4.21. Let (Y,U) ∈ L2 × L2(µ) be the unique solution to the BSDE (4.12) and X, u
respectively the process and the function appearing in Example 4.5. Assume moreover that u is
continuous. Then the process U satisfies

Ut(e) = u(t, e) − u(t,Xt−) dPλ(t,Xt−, de) dt-a.e. (4.73)

Proof. We aim to apply Proposition 4.18. By Lemma 4.6, µ satisfies Hypothesis 3.17 and X fulfills
Hypothesis 4.2 with decomposition X = Xi, Xp = 0, where Xi satisfies Hypothesis 3.10 with
γ̃(s, e) = e−Xs−. Moreover, by Lemma 4.20, (X,Y ) satisfies Hypothesis 4.17 with corresponding
function v = u. We can then apply Proposition 4.18. We have

Hs(e) := Us(e) − (u(s,Xs− + γ̃(s, e)) − u(s,Xs−))

= Us(e)− (u(s, e) − u(s,Xs−)), (4.74)

which belongs to L2(µ), and therefore to G2(µ). Since moreover Ĥ = 0 (ν is absolutely continuous
with respect to the Lebesgue measure), (4.67) yields

∫

]0, T ]×R

|Hs(e)|
2 λ(s,Xs−, de) ds = 0, a.s. (4.75)

and (4.73) follows.

Finally, we apply previous results to Example 4.7.

Lemma 4.22. Let (Y,U) ∈ L2 × G2(µ) be a solution to the BSDE (4.24) and X, u respectively
the process and the function appearing in Example 4.7. Assume that Yt = u(t,Xt) for some
continuous function u : [0, T ]×R → R. Then (X,Y ) satisfies Hypothesis 4.17 with corresponding
function v = u.

Proof. Since the process X has a finite number of jumps on each compact, the same holds for
Yt = u(t,Xt). We set

Bt :=
∑

0<s≤t

∆Ys, A′
t := Yt −Bt. (4.76)
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Obviously B has bounded variation, and the process A′ is continuous by definition. Since Y
satisfies by assumption BSDE (4.24), for every local continuous martingale N we have

[Y,N ]t =

∫

]0, t]
f(s, Xs−, Ys−, Us(·)) d[A,N ]s −

[

∫

]0, ·]×R

Us(e) (µ − ν)(ds de), N

]

t

. (4.77)

Since A is a predictable increasing process, therefore has bounded variation, [A,N ] = 0 by Propo-
sition 3.13 in [2]. The second term in (4.77) is zero because

∫

]0, ·]×R
Us(e) (µ−ν)(ds de) is a purely

discontinuous martingale. Therefore (4.77) vanishes. Recalling that B has bounded variation, it
also follows that [B,N ] = 0, so that A′ is a continuous (Ft)-orthogonal process, and condition (i)
in Hypothesis 4.17 holds.

It remains to show that u(t,Xt) satisfies condition (4.64) with v = u. Since u is continuous,
we have
∫

]0, ·]×R

|u(s, Xs− + x)− u(s, Xs−)|µ
X(ds dx) =

∑

0<s≤·

|u(s, Xs)− u(s, Xs−)| =
∑

s≤·

|∆Ys|. (4.78)

The process Y takes values in the image of [0, T ] × [0, 1] with respect to u, which is a compact
set. Therefore the jumps of Y are bounded, and (4.78) belongs to A+

loc, see for instance the proof
of Corollary in pag 373 in [29].

Corollary 4.23. Let (Y,U) ∈ L2 × G2(µ) be a solution to the BSDE (4.24), and X the piece-
wise deterministic Markov process with local characteristics (h, λ,Q) appearing in Example 4.7.
Assume that Yt = u(t,Xt) for some continuous function u. Assume in addition that there exists
a function β : {0, 1} → R, such that

Xs = β(Xs−) on {(ω, s) : Xs−(ω) ∈ {0, 1}}, (4.79)

and
Q(x, de)1{x∈{0,1}}(s) = δβ(x)(de). (4.80)

Then the process U satisfies
∫

]0, t]×R

Hs(e) (µ − ν)(ds de) = 0 ∀t ∈]0, T ], a.s., (4.81)

where

Hs(e) := (Us(e)− (u(s, e) − u(s,Xs−))1{Xs−∈(0,1)}(s) + Us(e)1{Xs−∈{0,1}}(s).

If in addition Hs(e) ∈ G2
loc(µ),

Us(e) = u(s, e) − u(s,Xs−) dPλ(Xs−)Q(Xs−, de) ds-a.e. (4.82)

Remark 4.24. If H ∈ G2
loc(µ), the value of Us(·) can be chosen on K = {(ω, s) : Xs−(ω) ∈ {0, 1}}

as an arbitrary P-measurable process, see Proposition B.28.

Proof. We will apply Proposition 4.18. By Lemma 4.9, µ satisfies Hypothesis 3.17 and X ful-
fills Hypothesis 4.2 with decomposition X = Xi + Xp, where Xi satisfies Hypothesis 3.10 with
γ̃(ω, s, e) = (e − Xs−(ω))1{Xs−(ω)∈]0,1[}(ω, s). Moreover, by Lemma 4.22, Hypothesis 4.17 holds
for (X,Y ). We are then in condition to apply Proposition 4.18. Identity (4.65) yields

∫

]0, t]×R

Hs(e) (µ − ν)(ds de) = 0 ∀t ∈ [0, T ], a.s., (4.83)
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where

Hs(e) := Us(e)− (u(s,Xs− + γ̃(s, e)) − u(s,Xs−))

= Us(e)− (u(s,Xs− + (e−Xs−)1{Xs−∈]0,1[}(s))− u(s,Xs−))

= (Us(e)− (u(s, e) − u(s,Xs−))1{Xs−∈]0,1[}(s) + Us(e)1{Xs−∈{0,1}}(s),

= (Us(e)− (u(s, e) − u(s,Xs−))1Kc(s) + Us(e)1K(s), (4.84)

where in the latter equality we use the fact that K = {(ω, s) : Xs−(ω) ∈ {0, 1}}.
It remains to prove (4.82). We recall that νc := ν 1Jc verifies νc(ds de) = λ(Xs)Q(Xs, de) ds

by (4.40). We set νd := ν 1J ; since J = K, we have

νd(ds de) = ν(ds de)1K(s) = Q(Xs−, de) dp
∗
s = δβ(Xs−)(de) dp

∗
s . (4.85)

If Hs(e) belongs to G2
loc(µ), recalling identity (B.32) in Remark B.23, identity (4.67) and (4.84)

yield

0 =

∫

]0, T ]×R

|Hs(e)|
2 νc(ds de) +

∫

]0, T ]×R

|Hs(e)− Ĥs 1K(s)|2 νd(ds de) (4.86)

=

∫

]0, T ]×R

|Us(e) − (u(s, e) − u(s,Xs−))|
2 νc(ds de) +

∫

]0, T ]×R

|Us(e) − Ûs 1K(s)|2 νd(ds de).

Taking into account condition (4.85), (4.33) and (4.35), we have

Ûs 1K(s) =

∫

R

Us(e) ν
d({s} de) =

∫

R

Us(e)) δβ(Xs−)(de)1K(s) = Us(β(Xs−))1K(s).

Consequently

∫

]0, T ]×R

|Us(e) − Ûs 1K(s)|2 νd(ds de) =

∫

]0, T ]×R

|Us(e)− Ûs 1K(s)|2 δβ(Xs−)(de) dp
∗
s = 0.

Therefore (4.86) gives simply

0 =

∫

]0, T ]×R

|Us(e) − (u(s, e) ) − u(s,Xs−)|
2 λ(Xs)Q(Xs, de) ds,

and (4.82) follows.

Remark 4.25. In all the considered examples, the underlying process X was a Markov process
which is a semimartingale. However, in the literature there are plenty of examples that are not
semimartingales, even in the continuous case.

Let X be a solution of an SDE with distributional drift, see e.g. [16, 30, 15], of the type

dXt = β(Xt) dt+ dWt, (4.87)

for a class of Schwartz distributions β. In particular in the one-dimensional case β is allowed to
be the derivative of any continuous function. In this case X is not a semimartingale but only a
Dirichlet process, so that, for v ∈ C0,1, v(t,Xt) is a weak Dirichlet process. FBSDEs related to a
forward process X solving (4.87) have been studied for instance in [31], when the terminal type
is random.
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Appendix

In what follows we refer to the notations introduced at the beginning of Section 2. (Ft)t∈[0, T ]

will be a fixed filtration fulfilling the usual conditions, and it will be often omitted. A random
set will be a subset of Ω × [0, T ] ∪ {∞}, and [[τ, τ ′]] will denote the stochastic interval {(ω, t) :
t ∈ [0, T ] ∪ {∞}, τ(ω) ≤ t ≤ τ ′(ω)} associated to two stopping times τ, τ ′. For a stopping time
τ taking values in [0, T ] ∪ {∞}, Fτ− will denote the σ-field generated by F0 and the events
A ∩ {t < τ}, where t ∈ [0, T ] and A ∈ Ft, see (0.30) of [20]. In the sequel, a random set will
be called predictable (resp. optional) if its restriction to Ω × [0, T ] is P-measurable (resp. O-
measurable). Analogously, a stochastic process which is P-measurable (resp. O-measurable) will
be called predictable (resp. optional).

A General theory of Stochastic Processes

Definition A.1 (Definition 1.30, Chapter I, in [21]). A random set A is called to be thin if it is
of the form A = ∪n[[Tn]], where (Tn) is a sequence of stopping times; if moreover the sequence
(Tn) satisfies [[Tn]] ∩ [[Tm]] = ∅ for all n 6= m, it is called an exhausting sequence for A.

Remark A.2. Any optional random set whose sections are at most countable is thin in the sense
of Definition A.1, see the comments below Definition 1.30, Chapter I, in [21].

Definition A.3 (Definition 1.15, [18]). Let (Ω,F ,P) be a probability space, let G be a sub-σ-field
of F . A random variable ξ is called to be σ-integrable with respect to G if there exists Ωn ∈ G,
Ωn ↑ Ω a.s. such that each ξ 1Ωn is integrable.

Definition A.4 (Definition 7.39 in [18]). An optional process X = (Xt) is said to be thin if
{∆X 6= 0} is a thin set. A typical example of thin optional process is the jump ∆X of an adapted
càdlàg process X.

Definition A.5 (Definition 7.33, in [18]). Let M and N be two local martingales. If [M,N ] = 0,
we say that M and N are mutually orthogonal.

The notion of purely discontinuous martingales appears for instance Definition 7.21, in [18].
Below we recall a useful characterization of such processes given in Theorem 7.34, in [18], the
comments above and obvious localization arguments.

Theorem A.6. Let M be a local martingale with M0 = 0. Then M is purely discontinuous if
and only if it is orthogonal to every continuous local martingale.

Definition A.7 (Definition 1.10, Chapter I, in [21]). A random set A is called evanescent if
the set {ω : ∃ t ∈ [0, T ] ∪ {∞} with (ω, t) ∈ A} is P-null; two E-valued processes are called
indistinguishable if the random set {X 6= Y } = {(ω, t) : Xt(ω) 6= Yt(ω)} is evanescent, i.e., if
almost all the paths of X and Y are the same.

Theorem A.8 (Theorem 4.18, Chapter I, in [21]). Any local martingale M admits a unique (up
to indistinguishability) decomposition

M = M c +Md

where Md
0 = 0, M c is a continuous local martingale and Md is a purely discontinuous local

martingale.

In the sequel H2,d (resp. H2,d
loc) will stand for the set of square integrable (resp. locally square

integrable) purely discontinuous martingales.
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Corollary A.9 (Corollary 4.19, Chapter I, in [21]). Let M and N be two purely discontinuous
local martingales having the same jumps ∆M = ∆N (up to an evanescent set). Then M and N
are indistinguishable.

Proposition A.10 (Proposition 2.4-(a) and Proposition 2.6, Chapter I, in [21]). If X is a pre-
dictable process, then ∆X is predictable. If moreover τ is a stopping time, then Xτ 1{τ<∞} is
Fτ−-measurable.

A.1 Predictable and totally inaccessible stopping times, predictable projection

Definition A.11 (Definition 2.7, Chapter I, in [21]). A predictable time is a mapping τ : Ω →
[0, T ] ∪ {∞}, such that the stochastic interval [[0, τ [[ is predictable.

Remark A.12. If τ is a predictable (finite) time, then [[τ ]] ∈ P, see e.g. the comments after
Definition 2.7, Chapter I, in [21].

Proposition A.13 (Proposition 2.18-(b), Chapter I, in [21]). If X and Y are two predictable
processes satisfying Xτ = Yτ a.s. on {τ < ∞} for all predictable times τ , then X and Y are
indistinguishable.

Definition A.14 (Definition 2.20, Chapter I, in [21]). A stopping time τ is called totally inac-
cessible if P(τ = S < ∞) = 0 for all predictable time S.

Remark A.15. It straight follows from Definition A.14 that

1[[T i]](ω, T
p(ω))1{T i<∞, T p<∞} = 0 a.s. (A.1)

for any totally inaccessible time T i and predictable time T p.
Indeed, taking the expectation of the left-hand side of (A.1) we get

E
[

1[[T i]](·, T
p(·))1{T i<∞, T p<∞}

]

= P(ω ∈ Ω : T i(ω) = T p(ω) < ∞) = 0.

Lemma A.16 (Lemma 2.23, Chapter I, in [21]). If A is a predictable thin set, then A admits
an exhausting sequence of predictable times, namely there is a sequence (Tn) of predictable times
whose graphs are pairwise disjoint, such that A = ∪n[[Tn]].

Proposition A.17 (Proposition 2.24, Chapter I, in [21]). If X is a càdlàg predictable process,
there is a sequence of predictable times that exhausts the jumps of X. Furthermore, ∆Xτ = 0 a.s.
on {τ < ∞} for all totally inaccessible time τ .

Definition A.18 (Definition 2.25, Chapter I, in [21]). A càdlàg process X is quasi-left continuous
if ∆Xτ = 0 a.s. on the set {τ < ∞} for every predictable time τ .

Proposition A.19 (Proposition 2.26, Chapter I, in [21]). Let X be a càdlàg adapted process. X
is quasi-left continuous if and only if there is a sequence of totally inaccessible times that exhausts
the jumps of X.

Theorem A.20 (Theorem 4.21, Chapter IV, [18]). For any adapted càdlàg process X = (Xt)
there exists a sequence (Tn)n of strictly positive stopping times satisfying the following conditions:

(i) {∆X 6= 0} ⊂ ∪n[[Tn]];

(ii) each Tn is predictable or totally inaccessible;

(iii) [[Tn]] ∩ [[Tm]] = ∅ for every m 6= n.
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Theorem A.21 (Theorem 5.2, [18]). Let X be a measurable process such that for every predictable
time τ , Xτ is σ-integrable with respect to Fτ−. Then there exists a unique predictable process,
called predictable projection, denoted by pX, such that for every predictable time τ we have

E
[

Xτ 1{τ<∞}|Fτ−

]

= pXτ 1{τ<∞} a.s.

Lemma A.22 (Lemma 1.37 in [20]). Let A be an increasing predictable process with A0 = 0. Then
there exists a sequence of increasing stopping times (Tn), such that, Tn(ω) ↑ +∞, and ATn∧T ≤ n
for each n.

Lemma A.23. Let A be a predictable process such that supt≤u |At| < ∞ a.s. ∀u > 0. Then, for
every predictable time τ taking values in ]0, T ] ∪ {+∞}, we have that Aτ 1{τ<∞} is σ-integrable
with respect to Fτ−.

Proof. We set A∗
t = sups≤tAs. A∗ is a predictable and increasing process. Moreover A0 = 0.

By Lemma A.22 there exists a sequence of stopping times (Tn), such that Tn ↑ τ = inf{t : A∗
t =

∞} = ∞, with A∗
Tn

≤ n for each n. Let Ωn = {Tn ≥ τ} ∩ {τ < ∞}. Clearly ∪nΩn = {τ < ∞}.
Moreover

n ≥ A∗
τ 1Ωn ∈ L1.

By Theorem 56, Chapitre IV, in [11], Ωn ∈ Fτ−, so the result follows.

Corollary A.24. Let A be a predictable process such that supt≤u |At| < ∞ a.s. ∀u ∈ [0, T ]. Then
its predictable projection exists and pA = A.

Proof. Let τ be a predictable time. By (1.5) in [20], Aτ1{τ<∞} is Fτ−-measurable. This, together
with Lemma A.23, gives

E
[

Aτ 1{τ<∞}|Fτ−

]

= Aτ 1{τ<∞} a.s.

From Theorem A.21 we conclude that pA = A.

Definition A.25 (Definition 2.32, Chapter I, in [21]). A random set A is called measurable if its
restriction to Ω × [0, T ] is measurable. The predictable support of a measurable random set A is
the predictable set A′ = {p(1A) > 0}, which is defined up to an evanescent set.

Proposition A.26 (Proposition 2.35, Chapter I, in [21]). Let X be a càdlàg adapted process.
X is quasi-left continuous if and only if the predictable support of the random set {∆X 6= 0} is
evanescent.

Remark A.27. For any totally inaccessible time T i we have

p
(

1[[T i]] 1{T i<∞}

)

= 0.

Indeed, by Theorem A.21, for every predictable time τ , we have

p
(

1[[T i]](τ)1{T i<∞}

)

1{τ<∞} = E
[

1[[T i]](τ)1{T i, τ<∞}|Fτ−

]

which vanishes since 1[[T i]](τ)1{T i, τ<∞} = 0 a.s., see Remark A.15.

As we will see in the next section, the notion of predictable projection for a measurable process
plays a fundamental role in the stochastic integration theory with respect to random measures.
We have the following important result.

Theorem A.28 (Theorem 4.56, point c), Chapter I, in [21]). Let H be an optional process with

H0 = 0. We have pH = 0 and
[
∑

s≤· |Hs|
2
]1/2

∈ A+
loc if and only if there exists a local martingale

M such that ∆M and H are indistinguishable.
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B Random measures

In the present section some basic results on stochastic integration with respect to (nonnegative)
random measures are recalled. By default, excepted if the contrary is explicitely mentioned, all
the considered measures will be non-negative. These results are presented without proof, for a
complete discussion on this topic see, e.g., Chapter II, Section 1, in [21], or Chapter XI, Section
1, in [18].

In what follows (E, E) will be the measurable space constituted by E = R and its Borel σ-
algebra E . We remark however that the mentioned references consider the case when (E, E) is
any Blackwell space.

B.1 General random measures

Definition B.1 (Definition 1.3, Chapter II, in [21]). A random measure on [0, T ]×E is a family
µ = (µ(ω, dt de) : ω ∈ Ω) of measures on ([0, T ] ×E, B([0, T ]) ⊗ E) satisfying the following.

1. For every A ∈ B([0, T ]) ⊗ E, the map ω 7→ µ(ω,A) is a (measurable) random variable.

2. µ(ω, {0} ×E) = 0 identically.

Let µ be a random measure and W ∈ Õ. Since (t, e) 7→ Wt(ω, e) is B([0, T ]) ⊗ E-measurable
for each ω ∈ Ω, we can define the integral process W ∗ µ by

W ∗ µt(ω) =

∫

]0, t]×E
Ws(ω, e)µ(ω, ds de).

Remark B.2. We remark that for fixed ω, previous integral is a Lebesgue type integral. When W
is positive (resp. negative), previous integral always exists but could be +∞ (resp. −∞).

In the sequel, given a random measure µ as before, we will often omit the reference to ω. In
other words, we will write µ(dt de) instead of µ(ω, dt de).

Definition B.3 (Definition 1.6, Chapter II, in [21]). (a) A random measure µ is called optional
if the process W ∗ µ is O-measurable for every W ∈ Õ. A random measure λ is called pre-
dictable if the process W ∗ λ is P-measurable for every W ∈ P̃.

(b) An optional random measure µ is called integrable if 1 ∗ µ ∈ A+.

(c) An optional random measure µ is called P̃-σ-finite if there exists a P̃-measurable partition
(An) of Ω̃ such that each 1An ∗ µ ∈ A+.

Theorem B.4 (Theorem 1.8, Chapter II, in [21]). Let µ be an optional P̃-σ-finite random mea-
sure. There exists a random measure, called the compensator of µ and denoted by ν, which is
unique up to a P-null set, and which is characterized as being a predictable random measure
satisfying

E[W ∗ νT ] = E[W ∗ µT ],

for every nonnegative W ∈ P̃. Moreover, there exists a predictable process A ∈ A+ and a kernel
φ(ω, t, de) from (Ω× [0, T ],P) into (E, E) such that

ν(ω, dt de) = dAt(ω)φ(ω, t, de). (B.1)

Of course, the disintegration (B.1) is not unique.
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B.2 Integer-valued random measures

Definition B.5 (Definition 1.13, Chapter II, in [21]). An integer-valued random measure is a
random measure that satisfies the following properties.

(i) µ(ω, {t} × E) ≤ 1 identically;

(ii) for each A ∈ [0, T ]× E, µ(·, A) takes values in N.

(iii) µ is optional and P̃-σ-finite.

Proposition B.6 (Proposition 1.14, Chapter II, in [21]). Let µ be an integer-valued random
measure. We set

D = {(ω, s)|µ(ω, {s} × E) = 1}. (B.2)

The random set D is thin (D is called the support of µ) and there exists an E-valued optional
process β such that

µ(ω, dt de) =
∑

s≥0

1D(ω, s) δ(s,βs(ω))(dt de). (B.3)

Remark B.7. Let µ be an integer-valued random measure, with associated support D and process
β in the sense of (B.3). Then, for any W ∈ Õ, we have

W ∗ µt =
∑

s∈]0, t]

Ws(βs)1D(s). (B.4)

Proposition B.8 (Proposition 1.16, Chapter II, in [21]). Let X = (Xt) be an adapted càdlàg
E-valued process. Then

µX(ω, dt dx) =
∑

s∈]0, T ]

1{∆Xs(ω)6=0} δ(s,∆Xs(ω))(dt dx) (B.5)

defines an integer-valued random measure on [0, T ]×E, and in the representation (B.3) we have
D = {∆X 6= 0} and β = ∆X.

Corollary B.9 (Corollary 1.19, Section II, in [21]). Let X be an adapted càdlàg process and µX

be the measure associated to its jumps by (B.5), and νX its compensator. Then X is quasi-left
continuous if and only if there exists a version of νX that satisfies identically νX(ω, {s}, de) = 0.

Theorem B.10 (Theorem 11.14 in [18]). Let µ be the integer-valued random measure with support
D, and let ν be its compensator. Set

a = (at), at = ν({t} × E), t ≥ 0, (B.6)

J = {a > 0}, (B.7)

K = {a = 1}. (B.8)

Then a is a predictable thin process, 0 ≤ a ≤ 1, J is the predictable support of D, and K is the
largest predictable set contained in D (up to an evanescent set).

Proposition B.11 (Proposition 1.17, Chapter II, in [21]). Let µ be an integer-valued random
measure, ν its compensator, and J = {(ω, t) : ν(ω, {t} × E) > 0}.

a) J is a predictable thin set.
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b) For all predictable times τ and nonegative W ∈ P̃ (or, equivalently, for every W ∈ P̃ such
that

∫

E W (τ, e)µ({τ}, de)1{τ<∞} exists)

∫

E
Wτ (e) ν({τ}, de) = E

[
∫

E
Wτ (e)µ({τ}, de)

∣

∣

∣
Fτ−

]

on {τ < ∞}. (B.9)

c) There is a version of ν such that ν(ω, {t}×E) ≤ 1 identically, and the thin set J is exhausted
by a sequence of predictable times.

Remark B.12. Because of the validity of property (B.9), the compensator ν is also called the dual
predictable projection of µ.

Proposition B.13. Let µ be an integer valued random measure with support D. Let J and K
be the associated sets defined in (B.7) and (B.8). If D = K ∪ (∪n[[Sn]]), where (Sn)n are totally
inaccessible times, then J = K up to an evanescent set.

Proof. We start by noticing some basic facts. From the definition of predictable support of a
random set in Definition A.25, we have

1J = p(1D). (B.10)

Moreover, since K is predictable, by Corollary A.24 we get

p(1K) = 1K ; (B.11)

on the other hand, by Remark A.27 the predictable projection of 1[[Sn]] is zero since Sn is a totally
inaccessible finite time. Consequently we obtain

p(1∪n[[Sn]]) =
∑

n

p(1[[Sn]]) = 0. (B.12)

Finally, identities (B.10), (B.11) and (B.12) imply

1J = p(1D) = 1K ,

therefore J = K.

B.3 Stochastic integrals with respect to an integer-valued random measure.

From here on µ will be an integer-valued random measure on [0, T ]×E, and ν a ”good” version
of the compensator of µ as constructed in Proposition B.11-(c).

We set ν̂t(de) = ν({t}, de) for all t ∈ [0, T ] and, for any W ∈ Õ, we define

Ŵt =

∫

E
Wt(x) ν̂t(de), t ≥ 0, (B.13)

W̃t =

∫

E
Wt(x)µ({t}, de) −

∫

E
Wt(x) ν̂t(de) = Wt(βt)1D(t)− Ŵt, t ≥ 0, (B.14)

with the convention
W̃t = +∞ if Ŵt is not defined. (B.15)

β and D in (B.14) are respectively the optional process and the support associated to µ, see
Proposition B.6. For every q ∈ [1, ∞[, we also introduce the following linear spaces

Gq(µ) =
{

W ∈ P̃ :
[

∑

s≤·

|W̃s|
2
]q/2

∈ A+
}

, (B.16)
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Gq
loc(µ) =

{

W ∈ P̃ :
[

∑

s≤·

|W̃s|
2
]q/2

∈ A+
loc

}

. (B.17)

We have Gq(µ) ⊂ Gq′(µ) for every q′ ≤ q.

Remark B.14. The sets in (B.17) corresponding to q = 1, 2 coincide respectively with the spaces
G(µ) and G2(µ) introduced in [18], pages 301 and 304. In particular, under convention (B.15),
any element W ∈ G1

loc(µ) satisfies |Ŵt| < ∞ for every t ∈ [0, T ].

Remark B.15. If W ∈ G1
loc(µ), then exists a local martingale M such that ∆M and W̃ are

indistinguishable.
This is a consequence of the fact that the predictable projection of W̃ is zero, see observations

below Definition 1.27, Chapter II, in [21], and of Theorem A.28 with H = W̃ .

Definition B.16 (Definition 1.27, point b), Chapter II, in [21]). If W ∈ G1
loc(µ), we call stochastic

integral of W with respect to µ−ν and W ∗(µ−ν) denotes any purely discontinuous local martingale
M such that ∆M and W̃are indistinguishable.

Remark B.17. By Corollary A.9, if W ∈ G1
loc(µ), all the stochastic integrals W ∗ (µ− ν) are equal

up to indistinguishability.

Proposition B.18 (Proposition 1.28, Chapter II, in [21]). Let W ∈ P̃, such that |W | ∗ µ ∈ A+
loc

(or equivalently, by Theorem B.4, |W | ∗ ν ∈ A+
loc). Then W ∈ G1

loc(µ) and

W ∗ (µ− ν) = W ∗ µ−W ∗ ν.

For any W ∈ P̃, let now define the following two increasing (possibly infinite) predictable
processes

C(W )t = |W − Ŵ |2 ∗ νt +
∑

s≤t

(1− ν̂s(E)) |Ŵs|
2, (B.18)

C̄(W )t = |W − Ŵ | ∗ νt +
∑

s≤t

(1− ν̂s(E)) |Ŵs|.

The sets G1
loc(µ) and G2

loc(µ) can be characterized in the following way.

Theorem B.19 (Theorem 1.33, point c), Chapter II, in [21]). Let W ∈ P̃. Then W belongs to
G1
loc(µ) if and only if C(W ′) + C̄(W ′′) belongs to A+

loc, where

{

W ′ = (W − Ŵ )1{|W−Ŵ |≤1} + Ŵ 1{|Ŵ |≤1},

W ′′ = (W − Ŵ )1{|W−Ŵ |>1} + Ŵ 1{|Ŵ |>1}.

Proposition B.20 (Proposition 3.71 in [20]). Let W ∈ P̃. Then W ∈ G2(µ) if and only if
C(W ) ∈ A+.

By Proposition B.20, the space G2(µ) can be rewritten as

G2(µ) = {W ∈ P̃ : ||W ||G2(µ) < ∞},

where

||W ||2G2(µ) := E [C(W )] = E

[

∫

]0,T ]×E
|Ws(e) − Ŵs|

2 ν(ds de) +
∑

s≤T

|Ŵs|
2(1− ν̂s(E))

]

. (B.19)
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Let us introduce the space

L2(µ) := {W ∈ P̃ : ||W ||L2(µ) < ∞} (B.20)

with

||W ||L2(µ) := E

[

∫

]0,T ]×R

|Ws(e)|
2 ν(ds de)

]

.

We have the following result.

Lemma B.21. 1. If W ∈ L2(µ), then W ∈ G2(µ) and

||W ||2G2(µ) ≤ ||W ||2L2(µ). (B.21)

2. If |W |2 ∗ µ ∈ A+
loc then W ∈ G2

loc(µ).

Proof. Let W ∈ P̃. For every t ≥ 0, since ν̂t(R) ≤ 1, we have

∑

s∈]0, t]

|Ŵs|
2(1− ν̂s(E)) ≤

∑

s≤t

|Ŵs|
2 ≤

∑

s≤t

ν̂s(E)

∫

E
|Ws(e)|

2 ν̂s(de) ≤ |W |2 ∗ νt. (B.22)

Assume now that moreover W ∈ L2(µ). Then (B.22), together with the triangle inequality,
implies that

E

[

∑

s∈]0,T ]

|Ŵs|
2(1− ν̂s(E))

]

< ∞, E

[

∫

]0,T ]×E
|Ws(e)− Ŵs|

2 ν(ds de)
]

< ∞,

i.e., W ∈ G2(µ). Moreover, taking into account that

|Ŵ |2 ∗ νt =
∑

s≤t

|Ŵs|
2 ν̂s(E), ∀t ≥ 0, (B.23)

the process C(W ) defined in (B.18) can be decomposed as

C(W )t = |W |2 ∗ νt − 2
∑

s≤t

|Ŵs|
2 +

∑

s≤t

|Ŵs|
2 ν̂s(E) +

∑

s≤t

|Ŵs|
2 (1− ν̂s(E))

= |W |2 ∗ νt −
∑

s≤t

|Ŵs|
2. (B.24)

In particular, we have

||W ||2G2(µ) = E

[

∫

]0,T ]×R

|Ws(e)|
2 ν(ds de)−

∑

s∈]0,T ]

|Ŵs|
2
]

≤ ||W ||2L2(µ).

This establishes point 1. Point 2. follows by usual localization arguments.

Theorem B.22 (Theorem 11.21, point 3), in [18]). Let W ∈ P̃. The following properties are
equivalent.

(i) W belongs to G2
loc(µ).

(ii) C(W ) belongs to A+
loc.

(iii) W belongs to G1
loc(µ) and W ∗ (µ − ν) belongs to H2,d

loc.
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In this case, we have
〈W ∗ (µ− ν), W ∗ (µ − ν)〉t = C(W )t. (B.25)

If in addition |W |2 ∗ νt ∈ A+
loc, then

〈W ∗ (µ− ν), W ∗ (µ− ν)〉t = |W |2 ∗ νt −
∑

s≤t

|Ŵs|
2. (B.26)

Remark B.23. Let W ∈ P̃, and µ an integer-valued random measure with support D. We recall
that the random sets J and K have been introduced in Theorem B.10. By definition of Ŵ , J and
K. We have

Ŵ = Ŵ 1J , (B.27)

ν̂(E)1K = 1K , (B.28)

1− ν̂(E) > 0 on J \K. (B.29)

Taking into account (B.27), (B.28) and (B.29), we see that the quantity C(W ) in (B.18) can be
rewritten as

C(W ) = |W − Ŵ 1J |
2 ∗ ν +

∑

s≤·

(1− ν̂s(E)) |Ŵs|
2
1J\K(s). (B.30)

In the particular case of K = J , previous identity reduces to

C(W ) = |W − Ŵ 1K |2 ∗ ν. (B.31)

Denoting νd = ν 1K and νc = ν 1Kc, then

C(W ) =

∫

]0, ·]×R

|Ws(e)|
2 νc(ds de) +

∫

]0, ·]×R

|Ws(e)− Ŵs 1K(s)|2 νd(ds, de). (B.32)

Remark B.24. It directly follows from (B.31) and from the definition of the G2(µ) seminorm (see
(B.19)) that if K = J , then

||W ||2G2(µ) = ||W − Ŵ 1K ||2L2(µ) = ||W − Ŵ ||2L2(µ).

Proposition B.25. Let (ls) be a predictable process. Then C(l 1K) = 0.

Proof. By definition

̂(ls 1K(s)) =

∫

E
ls 1K(s) ν̂s(de) = ls 1K(s) ν̂s(E) = ls 1K(s), (B.33)

where the latter equality follows from (B.28). Then (B.30) in Remark B.23 gives

C(l 1K) = |l 1K − l 1K |2 ∗ ν +
∑

s≤·

(1− ν̂s(E))1K(s) |ls|
2
1J\K(s) = 0.

Proposition B.26. Let W ∈ P̃. Then for any predictable process (ls),

C(W ) = C(W + l 1K).
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Proof. We designate W 0 = W + l 1K . Taking into account (B.33), we have

Ŵ 0
s = ̂(Ws + ls 1K(s)) = Ŵs + ls 1K(s).

Then, recalling (B.30), we get

C(W 0) = |W 0 − Ŵ 0
1J |

2 ∗ ν +
∑

s≤·

(1− ν̂s(E)) |Ŵ 0
s |

2
1J\K(s)

= |W + l 1K − Ŵ 1J − l 1K|2 ∗ ν +
∑

s≤·

(1− ν̂s(E)) |Ŵs + ls 1K(s)|2 1J\K(s)

= |W − Ŵ 1J |
2 ∗ ν +

∑

s≤·

(1− ν̂s(E)) |Ŵs|
2
1J\K(s) = C(W ).

Corollary B.27. Let (ls)s∈[0, T ] be a predictable process. If W ∈ G2(µ), then

W + l 1K ∈ G2(µ), (B.34)

and
||W + l 1K ||G2(µ) = ||W ||G2(µ). (B.35)

Proof. (B.34) (resp. (B.35)) is a consequence of Proposition B.26 and Proposition B.20 (resp.
formula (B.19)).

Proposition B.28. If W ∈ G2(µ) and ||W ||G2(µ) = 0, then

||W − Ŵ 1K ||L2(µ) = 0. (B.36)

In particular, there is a predictable process (ls) such that

Ws(e) = ls 1K(s), ν(ds de)-a.e.

Proof. Since ||W ||G2(µ) = 0, we have C(W )T = 0 a.s., see (B.19). Recalling (B.30), this implies

{

|W − Ŵ 1J |
2 ∗ ν = 0,

∑

s≤·(1− ν̂s(E)) |Ŵs|
2
1J\K(s) = 0.

Since 1− ν̂(E) > 0 on J \K (see Remark B.23), previous identities imply

{

|W − Ŵ 1J |
2 ∗ ν = 0,

Ŵ 1J\K = 0,

which gives (B.36).

Remark B.29. If K = ∅, then

||W ||2G2(µ) = 0 if and only if ||W ||2L2(µ) = 0.

Indeed, by Proposition B.28, K = ∅ and ||W ||2G2(µ) = 0 imply that ||W ||2L2(µ) = 0. The opposite

implication follows from the fact that ||W ||2G2(µ) ≤ ||W ||2L2(µ), see Lemma B.21.

41



We end this section with an important result of the stochastic integration theory.

Proposition B.30. Let W ∈ G1
loc(µ), and define Mt =

∫

]0,t]×R
Ws(e) (µ−ν)(ds de). Let moreover

(Zt) be a predictable process such that

√

∑

s≤·

Z2
s |∆Ms|2 ∈ A+

loc. (B.37)

Then
∫ ·
0 Zs dMs is a local martingale and equals

∫

]0,·]×R

ZsWs(e) (µ − ν)(ds de). (B.38)

Remark B.31. Since M is a local martingale,
√

[M,M ]t ∈ A+
loc, see e.g. Theorem 2.34 and

Proposition 2.38 in [20]. Taking into account that M is a purely jump local martingale, by

Proposition 5.3 in [2] this is equivalent to
√

∑

s≤· |∆Ms|2 ∈ A+
loc. Then condition (B.37) is

verified if for instance when Z is locally bounded.

Proof. The conclusion follows by the definition of the stochastic integral (B.38), see Definition
B.16, provided we check the following three conditions.

(i)
∫ ·
0 Zs dMs is a local martingale.

(ii)
∫ ·
0 Zs dMs is a purely discontinuous local martingale; in agreement with Theorem A.6, we
will show [

∫ ·
0 Zs dMs, N ] = 0 for every N continuous local martingale vanishing at zero.

(iii) ∆
(∫ ·

0 Zs dMs

)

t
=

∫

R
ZtWt(e) (µ({t}, de) − ν({t}, de)), t ∈ [0, T ].

We prove now the validity of (i), (ii) and (iii).

Condition (B.37) is equivalent to
√

∫ t
0 Z

2
s d[M,M ]s ∈ A+

loc. According to Definition 2.46 in

[20],
∫ t
0 Zs dMs is the unique local martingale satisfying

∆

(
∫ ·

0
Zs dMs

)

t

= Zt∆Mt, t ∈ [0, T ]. (B.39)

This implies in particular item (i).
By Theorem 29, Chapter II, in [29], it follows that

[
∫ ·

0
Zs dMs, N

]

=

∫ ·

0
Zs d[M,N ]s,

and item (ii) follows because M is orthogonal to N , see Theorem A.6.
Finally, by Definition B.16, taking into account (B.39), ∆

(∫ ·
0 Zs dMs

)

t
equals

Zt∆Mt =

∫

R

ZtWt(e) (µ({t}, de) − ν({t}, de))

for every t ∈ [0, T ], and this shows item (iii).
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equations driven by càdlàg martingales. Theory Probab. Appl., 52:304–314, 2008.

[7] Cohen, S. & Elliott, R. . Existence, uniqueness and comparisons for BSDEs in general
spaces. The Annals of Probability, 40:2264–2297, 2012.

[8] Confortola, F. & Fuhrman, M. Backward stochastic differential equations associated
to Markov jump processes and applications. Stochastic Processes and their Applications,
124:289–316, 2014.

[9] Confortola, F. & Fuhrman, M. & Jacod, J. Backward stochastic differential equations
driven by a marked point process: an elementary approach, with an application to optimal
control. Preprint, arXiv:1407.0876, 2014.

[10] Davis, M. H. A. Markov models and optimization., volume 49 of Monographs on Statistics
and Applied Probability. Chapman & Hall., 1993.

[11] Dellacherie, C. & Meyer, P.-A. Probabilités et potentiel. Hermann, Paris, 1975.
Chapitres I à IV, Édition entièrement refondue, Publications de l’Institut de Mathématique
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