Polyphenol-cell wall interactions: mechanisms and consequences

Catherine M.G.C. Renard, Aude A. Watrelot & Carine Le Bourvellec

UMR408 Sécurité et Qualité des Produits d'Origine Végétale, INRA, Université d'Avignon et des Pays du Vaucluse

> Biologically Active Compounds in Food, 15-16 oct 2015, Łódź (Poland)

UNIVERSITE

Why attempt to understand these interactions?

尽 Polyphenols

- FOOD Ubiquitous in plant foods; roles in taste and colour
- HEALTH Effects on degenerative diseases

► Extraction of polyphenols

- Understand the mechanisms for retention
- べ Health effects: two mechanisms
 - Antioxidants: prevention of oxidation in the stomach
 - Specific actions interaction with receptors
 - Must be bioavailable phenols or metabolites
 - Relevance of colonic fermentation metabolites

Introduction

- Occurrence of polyphenol and polysaccharide adducts
- Proanthocyanidins
- Cell wall preparation

Non-covalent interactions

- Binding isotherms
- Isothermal titration calorimetry
- Modification of cider composition

▶ Formation of procyanidin cell wall adducts

- Preparation by oxidation
- Effect on extractability of pectins
- Formation during heat treatment

Polyphenols in the cell walls

Structural in the cell walls

- Ferulic acid xylans and pectins
- Biosynthesis of lignin
- « Polyphenol polysaccharide complexes »
 - Detected after extraction of cell walls
 - Very poorly defined structures

Some intracellular polyphenols (tannins) bind spontaneously to macromolecules

- Well known for proteins
- What about cell-wall polysaccharides?
- What happens during tissue disruption?

Proanthocyanidins

Proanthocyanidins = « condensed tannins »

- Flavanol oligo and polymers
- Intracellular
- Characterized by:
 - Constitutive unit
 - Interflavanol binding
 - Degree of polymerization
- Abundant in apple and pear: procyanidins
 - Epicatechin (catechin)
 - B-type, primarily 4-8 binding
 - DP usually 3-8, up to a 100
 - Concentrations up to 5 g/ kg

Preparing cell walls without procyanidins

- ► Tests were carried out on apple to modulate CWM composition
- ► The « best » procedure was Phenol – Buffer
- ▶ It included
 - Extensive washing at 4°C in apple-like buffer
 - an acetone-water step for procyanidins extraction

Introduction

- Occurrence of polyphenol and polysaccharide adducts
- Proanthocyanidins
- Cell wall preparation

Non-covalent interactions

- Binding isotherms
- Isothermal titration calorimetry
- Modification of cider composition

▶ Formation of procyanidin cell wall adducts

- Preparation by oxidation
- Effect on extractability of pectins
- Formation during heat treatment

Quantifying interactions by binding isotherms

尽 Model suspensions

Devoid of phenolics

- ▷ What can be compared:
 - Physico-chemical conditions (pH, T°, ionic strength, solvent ...)
 - Proanthocyanidins structure and size
 - Cell walls: origin and pretreatment, drying...

Bound procyanidins

Procyanidins adsorb spontaneously to cell walls

0.8

0.6

0.4

0.2

0.0

00

2.0

4.0

6.0

8.0

1.0 Bound procyanidins (g/g cell wall)

尽 Binding isotherms

$$PPf = \frac{N_{\max} \cdot K_L \cdot [PP_L]}{1 + K_L \cdot [PP_L]}$$

尽 Binding

-H-bonds and hydrophobic interactions Free procyanidins (g/I)

- -Totally reversible using appropriate solvent (not water!)
- -Binding increases with DP of procyanidins
- -Amounts adsorbed vary with initial concentrations, cell wall mode of production and physico-chemical conditions
- -High affinity for pectins, no impact of protein

🔺 Adp 70

• Adp 10

Adp 3

× Pdp 35

10.0 12.0

Comparison of various polysaccharides

Diffusion of polyphenols from apple pieces

- K Apples were treated 70°C 30 min then leaching in distilled water
 - Water intake and free diffusion of solubles
- Procyanidins are partially retained in the solid particles
 - The cell walls retain their ability to bind procyanidins
 - Procyanidins do not diffuse totally from fruit pieces

Modifying cell wall affinity for procyanidins

► Extraction of pectins

- Chemical extraction or heat-treatment
- Decreased affinity

► Modifying surface properties by drying

- Mild drying (solvent-exchange) vs harsh drying

- Decrease affinity and increase max absorption

Quantification by ITC on commercial pectins, pectins extracted from cell walls or pectin fractions

0,10

Molar Ratio

0,15

0,20

Structure / affinity and mechanisms

	Pectins		HGs		RGs				
	Apple	Citrus	0%	30%	70%	RG	AR A	HR- H	nd: not determined -: no titration +: Ka of 10 ² M ⁻¹ ++: Ka<2×10 ³ M ⁻¹ +++: Ka>2×10 ³ M ⁻¹
EPI	-	-	nd	nd	nd	nd	nd	nd	
DP2	-	-	nd	nd	nd	nd	nd	nd	
DP9	++	++	-	-	-	+++	++	++	
DP30	++	++	-	+++	+	+++	+	+++	_

- ► Affinity 7 with DM (pectin) and DP (procyanidin)
- ► Impact of neutral sugar side-chains
- Predominance of hydrophobic interactions

Polyphenols and cider

- Organoleptic characters
 - Colour, bitterness and astringency
- ► Evolution of phenolic composition during processing
 - Polyphenol extra ction from the fruit:
 - Modification of structures (oxidation)
- Experiments with isolated procyanidins indicate an effect of temperature
 - Extraction at different temperatures
 - Apples with different average degrees of polymerisation
 - Different levels of oxidation :
 - No oxidation for impact of non-covalent interaction

Extraction of procyanidins does vary with pressing temperature

Introduction

- Occurrence of polyphenol and polysaccharide adducts
- Proanthocyanidins
- Cell wall preparation

Non-covalent interactions

- Binding isotherms
- Isothermal titration calorimetry
- Modification of cider composition

▶ Formation of procyanidin cell wall adducts

- Preparation by oxidation
- Effect on extractability of pectins
- Formation during heat treatment

Increased, non reversible binding

Yields

 Weight gain:
Native < Oxydized < Oxydised with CW

•Composition (mg/g)

Amounts bound increase with DP and oxidation

- Higher DP for bound procyanidins (washings?)

What about thermal treatments?

Internal temperature

Duration

- Loss of membranes enables contact between polyphenols, cell walls, enzymes, oxygen
- Enzyme inactivation, including PPO, PME...
 - Do they have time to act?
- Cell wall degradation and procyanidin acidolysis
- 尽 Autooxydation of polyphenols
 - But [O2] decrease
 - Influence of pH, catalysts

Acidolyis of procyanidins

尽 Generation of a reactive carbocation

- Reaction with other polyphenols, with thiols, with proteins
- Polysaccharides?

Structural modification of procyanidins in pear

▶ Formation of (coloured) adducts

- Upon prolonged heat treatment
- Can be mimicked in model suspension
- Retained after solvent extraction and enzyme degradation

► Molecules identified in solution

- Formation of cyanidin and epicatechin-cyanidin
- Acidolysis + oxidation

J Sci Food Agric 85 (2005) 310; J Food Comp Anal 24 (2011) 537; J Agric Food Chem 60 (2012) 9484,

Conclusions and perspectives

▷ Procyanidins bind spontaneously to cell walls

- This is a very common artefact:
 - Procyanidins in all Rosaceae...
- Requires specific extraction techniques
- Oxidation makes the interactions non reversible
- Acidolysis may also lead to irreversible binding

► Consequences

- In food processing and for procyanidins health impact

尽 Perspectives

- Non covalent interaction: impact of cell wall fine structure
- Covalent interaction: degradation of cell wall-polyphenol adducts?
- Fate of non-covalent and covalent adducts in the gut?

Thank you for your attention!

- べ Unité de Recherches Cidricoles - Rennes
 - A. Baron,
 - S. Guyot,
 - JM Le Queré,
 - C. Le Bourvellec
- **VMR SQPOV Avignon**
 - C. Le Bourvellec
 - A. Watrelot
 - M. Kebe
 - JF Maingonnat
- ► ESA Ronan Symoneaux
- **CERMAV** Anne Imberty
- ∇ U. Bordeaux S. Quideaux

- 🔨 Pôle Agronomique Ouest « Cidre et Polyphénols » 2000-2004
- ▶ FP6 FLAVO and ISAFRUIT

Thank you for your attention Looking forward to welcoming you soon at:

2nd Euro-Mediterranean Symposium on Fruit and Vegetable Processing

An integrated view on sustainability and how it can interact with quality, safety and the consumers Avignon, 4-6 April 2016

For more info: https://colloque.inra.fr/fruitvegprocessing2016

