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Summary. The occupancy rate of a target species in a region divided in quadrats (or

sites) is defined as the proportion of quadrats occupied by this species. This is a key

quantity in site occupancy models which typically remains unknown after the data are

collected, because the probability of detecting a target species in a given quadrat is < 1.

Implementing tests on occupancy rates leads to a quite unusual situation, because an

occupancy rate is not a statistical parameter, but a function of a discrete process partially

observed. To deal with that difficulty, we adopt a Bayesian view within which the treatment

of such tests turns out to be natural. We develop our approach for discrete-time site

occupancy data, and we illustrate it by testing if the occupancy rate of a bird species

increases over time (colonization test). A Bayesian model averaging is implemented to

deal with the fact that several plausible models are viewed for the data at hand. We

state a closed-form expression for the posterior probability of each model. The posterior

probability of the null hypothesis (under a given model) is obtained by implementing a data

augmentation algorithm. Finally, from a variety of examples, we show that the Bayesian

methodology allows us to address a wide range of questions about occupancy.
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1. Introduction

Occupancy models are now widely used in Ecology: they are a part of the Applied Statistics

landscape, just like the well-known capture-recapture models. Since the seminal paper of

MacKenzie et al. (2002) statisticians have developed more and more complex models. The

book of MacKenzie et al. (2006) - which remains the book of reference when modeling

occupancy - provides a detailed description of the most important occupancy models. More

recent developments can be found in Royle and Kéry (2007), MacKenzie et al. (2009),

Dupuis et al. (2010), Dorazio and Rodriguez (2012). For an updated review see Bailey et

al. (2013).

A key quantity in site occupancy models is the occupancy rate (MacKenzie et al. 2002).

It is defined as follows. Assume that a region of interest (called R) is composed of J sites

(or quadrats), and let zjt denote the indicator of presence of a species of interest (called

target species); thus, zjt = 1 if the target species is present in quadrat j at time t, and 0

otherwise. The occupancy rate of the target species at time t in region R is defined as the

proportion of quadrats occupied by this species at this time; it is denoted by ωt: thus one

has ωt =
1
J

∑J

j=1 zjt.

The probability of detecting the presence of a species in a quadrat is typically < 1.

Most often, the occupancy rate remains unknown once the data have been collected, con-

sidering that some zjt’s may not have been observed. Consequently, numerous biological

questions involving occupancy rates have to be formulated through statistical tests. Now,

to our knowledge, no statistical procedure has been developed to deal with such tests.

The objective of this paper is thus to address this issue while working within existing site

occupancy models.
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From a biological point of view, the statistical methodology developed in this paper

allows to investigate a wide range of questions related to occupancy. This important point

is illustrated from a variety of examples in Section 6. At this stage of the paper, we

give only one example. When we are interested in the way occupancy rates may change

over time, we may want to test whether the target species tends to colonize the region

of interest, which corresponds to an increase in its occupancy rate over time. The null

hypothesis below

H0 : ω1 < ω2 < . . . < ω
T−1

< ω
T

(1.1)

is associated with the hypothesis of a colonization over the period from t = 1 to t = T . The

test (1.1) will be called the colonization test. Of course, testing a decrease in occupancy

rates could also be of interest (see Section 5). For analyzing discrete-time site occupancy

data, MacKenzie et al. (2006), have developed a general model which assumes that the

time occupancy process is directed by a non homogeneous Markov chain; see also Royle

and Kéry (2007). We implement our methodology within this framework which is the one

corresponding to the data sets analyzed in this paper.

Testing the hypothesis (1.1) by using a frequentist approach is clearly inappropriate.

Indeed, though occupancy models are parametric models, the theory of parametric tests (eg

Lehmann and Romano, 2008) does not apply here, simply because ωt is not a parameter of

the model but a function of the zjt’s. This clearly constitutes a statistical difficulty which

we address by adopting a Bayesian view and by seeing occupancy models as a missing data

model for the computational aspects.

As already mentioned above, the target species may not have been detected in quadrat

j at time t, though it is present in it at this time. In such a situation, zjt remains unknown,

and it is said to be missing. This is why occupancy models enter the class of missing data

models which includes, for example, capture-recapture models, mixture distributions mod-
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els, hidden Markov chains (eg Little and Rubin, 2002). In missing data models, inference

concerns most often the parameters, since they are usually the quantity of interest. Ob-

taining Bayesian estimations of the parameters is usually based on a MCMC algorithm

(called data augmentation algorithm) which takes advantage of the missing data structure

(eg Robert and Casella, 2005). Estimating a function of the process subject to missingness

(the zjt’s in our case) is rarely the objective: estimating occupancy rates constituting, in

a way, a notable exception. Interestingly, the data augmentation algorithm can also be

used for estimating any function of the zjt’s. Dupuis, Bled and Joachim (2011) have taken

advantage of this observation for obtaining the Bayesian estimation of the occupancy rate

in the simple case where the model involved only one occupancy rate (by species). The

key idea developed in this paper is that it is also possible to use this same observation

to deal with tests on occupancy rates. Indeed, in Bayesian Statistics, the answer simply

relies on the posterior probability of H0 (or of H1 since they sum to 1). Now, calculating

P(Hi | data), where i ∈ {0, 1}, comes down to estimating a particular function of the zjt’s

(see Section 4), which means that the data augmentation algorithm can again be used for

obtaining the posterior probability of Hi.

For the data set we analyze in Section 5, different plausible models of biological interest

can be considered. In this context, the answer to the test is tackled via a Bayesian model

averaging. Such a procedure requires the computation of the posterior probability of each

model. In missing data models, computing such probabilities is often intractable, and,

typically, one has to use reversible jump Markov chain Monte Carlo (RJMCMC) methods

for implementing a Bayesian model averaging. Here, we show how to compute exactly

these posterior probabilities, so that, interestingly, the use of RJMCMC methods is not

neccessary for the data at hand.

The statistical methodology we develop in this paper is motivated by biological ques-

4



tions involving occupancy rates; now, handling such quantities requires that J is a part

of the model. When J is very large, the site occupancy models typically assume that J

is theoretically infinite; as a result, in such models, the very notion of occupancy rate is

no longer applicable (see the Sections 4.1 and 4.5 of the book of MacKenzie et al. 2006).

However, our methodology can also be useful in the asymptotic framework to deal with

tests involving the occupancy parameters: this important point is developed in Section 6.

2. Data description and missing data structure

2.1 Data description

We assume that the study region is composed of J spatial units. In the literature, such

units are called sites or quadrats; we will use this latter term. In this paper we assume

that quadrats are of equal size. The data collection protocol is the following. A given year

(typically in spring), an experimenter visits each qudrat K ≥ 2 times each quadrat and

records the number of visit(s) during which the target species has been detected. Then this

sequence is repeated in the following years. We denote by yjt ∈ {0, 1, . . . , K} the number

of visits during which the target species has been detected in quadrat j, at year t. This

period will afterwards be referred to as time t, where t ∈ {1, . . . , T}. The whole data set

is denoted by y, so that one has y = {yt; t = 1, . . . , T} where yt = {yjt; j = 1, . . . , J}

represents the data collected at time t. For simplicity, we assume that all the quadrats are

explored; however, we will indicate how to modify the data augmentation algorithm, when

inference is based on n < J quadrats. As far as birds species are concerned, detections are

typically based on oral recognitions (see Section 6 for details).

2.2 The missing data structure

Recall that, for j = 1, . . . , J , we denote by zjt the indicator of presence of the target

species in quadrat j at time t; thus, zjt = 1 if it is present in quadrat j at this time,

and 0 otherwise. It is useful to clarify the links between zjt and yjt. Considering that the
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probability of detecting the target species in a given quadrat is < 1, the event (yjt = 0)

covers in fact two exclusive situations: either the target species is present in quadrat j at

time t but has not been detected, or it is not present (and cannot have been detected).

Consequently, zjt is unknown when yjt = 0; in such a situation, zjt is said to be missing.

When yjt ≥ 1, the target species has been detected in quadrat j at time t during at

least one visit, and one has zjt = 1. This way of presenting the missing data structure is

essentially the one adopted in Dupuis and Goulard (2011). Compared to the presentation

made in Dupuis, Bled and Joachim (2010), notation is simplified.

Once the data yt are available, it is important to realize that ωt remains unknown in all

cases, except one. Indeed, if the target species has been detected in the J quadrats then

ωt = 1; in all other cases, ωt remains unknown once yt is available. In fact, one has ωt ≥
Dt

J
,

where Dt denotes the number of quadrats in which the presence of the target species has

been detected at time t. In other respects, it is important to realize that Dt > Dt+1 does

not imply that ωt > ωt+1, since it is quite possible that ωt < ωt+1. Similarly, Dt = Dt+1

does not imply that ωt = ωt+1 (except if Dt = Dt+1 = J).

Separating the occupancy process z = (zjt; j = 1, . . . , J ; t = 1, . . . , T ) from the oc-

cupancy data y has multiple benefits. First, this allows us to clarify the missing data

structure of site occupancy data. Second, it allows us to clearly separate the assumptions

relating to the way the target species occupies the region R over time, from those related to

detections (see the next Section). This view refers to the state-space formulation proposed

by Royle and Kéry (2007). Third, the occupancy process z is a key ingredient of the data

augmentation algorithm. An analoguous modelling has been proposed by Dupuis (1995)

in multi-state capture-recapture models.
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3. Modelling, models and priors

3.1 Modelling occupancy and detectability

• For fixed j, the directed graph G below provides the conditionnal independence as-

sumptions made between the {zjt; t = 1, . . . , T}
⋃

{yjt; t = 1, . . . , T}.

. . . yj,t−1 yjt yj,t+1 . . .
G ↑ ↑ ↑

. . . zj,t−1 −→ zjt −→ zj,t+1 . . .

This graph constitutes an attractive tool for providing all the conditional independence

assumptions between the different random variables present in the model. For the proba-

bilistic interpretation of a directed graph, see eg Whittaker (1990). Moreover, the graph

turns out be an essential tool for calculating in a rigorous way the conditionnal distributions

appearing in the missing data simulation phase of the data augmentation algorithm (see

Appendix). The above graph G is similar to the one considered by Dupuis (1995) for ana-

lyzing migration capture-recapture data: the migration process of a given marked animal

corresponding to the time occupancy process of the target species in a given quadrat. We

refer to MacKenzie et al. (2006) and to MacKenzie et al. (2009) for a description of analo-

gies and differences existing between discrete-time site occupancy models and multi-state

capture-recapture models.

The following assumptions are thus made.

Assumption A1. We assume that zj1, . . . , zjt, . . . , zjT constitute a first order Markov

chain (j being fixed).

Assumption A2. We assume that yj1, . . . , yjt, . . . , yjT are independent, conditionally on

the zjt’s (j being fixed).

A2 implies that the probabability of detecting the target species at time t in quadrat j

is not directly impacted (absence of arrow between yjt and yj,t−1) by the fact that it may
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have been detected in it at time t− 1;

• Time t and quadrat j being fixed, we denote by yjtk the indicator which takes the

value 1 if the target species has been detected at time t in quadrat j, during the visit k.

The following assumption is made.

Assumption A3. We assume that the yjtk’s are independent.

• The occupancy process has two components: a spatial component and a time com-

ponent. The above graph G provides assumptions concerning the time occupancy process

zj = (zjt; j = 1, . . . , T ). We need now to clarify which assumptions are made between the

zj’s.

Assumption A4. We assume that z1, . . . , zj , . . . , zJ
are independent.

A4 implies that the zjt’s are independent (time t being fixed). In other terms, time t

being fixed, we assume that the probability that the target species occupies a given quadrat

j is not impacted by what may occur in the other quadrats (presence or absence).

• Let yj be denote the vector (yjt; j = 1, . . . , T ). The following standard assumption is

made.

Assumption A5. We assume that y1, . . . ,yj, . . . ,yJ
are independent conditionally on z.

A5 implies that the probability of detecting the target species in quadrat j does not

depend on its possible detections in the other quadrats (time t being fixed).

Assumptions A1, A2, A3, A4 and A5 are present in MacKenzie et al. (2006) though

put in a different way.

3.2 Models and parameters

Once assumptions A1, A2, A3, A4 and A5 have been retained, different models result

depending on whether parameters are time dependent or not. In the most general model,

the parameters are time-dependent: it is parametrized as follows. We denote by qt the

probability of detecting the target species, during one visit, in quadrat j, at time t (condi-
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tionally on its presence). Assumption A3 implies that yjt|zjt = 1 ∼ Binomial(K, qt). Note

that Pr(yjtk = 1|zjt = 0) = 0. We denote by ψt(r, s) the probability that a quadrat is in

state r ∈ {0, 1} at time t + 1 given that it is in state r ∈ {0, 1} at time t. For example,

ψt(0, 1) represents the probability that the target species colonizes the quadrat j between

time t and time t+ 1. Formally, one has:

qt = Pr(yjtk = 1|zjt = 1) and ψt(r, s) = Pr(zj,t+1 = s|zjt = r) .

Finally, we denote by µ the probability that the target species is present in quadrat j

at time t = 1. This general model is denoted symbolically [qt, ψt(r, s)], omitting µ for

convenience. Three sub-models of biological interest for the data analyzed in Section 6

can be derived from this general model; namely: [q, ψ(r, s)], [qt, ψ(r, s)], [q, ψt(r, s)], with

obvious notation.

3.3 Prior distributions

For simplicity, a uniform prior distribution is placed on each parameter. More generally,

we can adopt beta distributions since all parameters lies in [0, 1] (whatever the model);

the modifications to be made to the data augmentation algorithm (described in Section

4.2) are straightforward. Recall that the beta distribution allows us to take into account

prior information consisting of a prior mean and 95% credible interval (eg Dupuis, Bled

and Joachim, 2011).

4. The statistical procedure and computational issues

Throughout this Section, p(.) denotes a probability mass function, 1I(C) represents an in-

dicator function that takes the value 1 when the condition C is true and zero otherwise.

Moreover π(.) will represent the prior density of any parameter, and π(.|y) its posterior

density.
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4.1 The testing procedure

Let us first recall how one proceeds to implement a parametric statistical test in

Bayesian statistics. Let θ ∈ Θ denote the global parameter of a statistical model. Imagine

that we aim to test

H0 : θ ∈ Θ0 versus H1 : θ ∈ Θ1 (4.1)

where {Θ0,Θ1} is a partition of Θ such that Pr(H0) and Pr(H1) are > 0. In Bayesian

statistics the answer to the test (4.1) is based on Pr(H0 | data) which is interpreted as the

degree of evidence in favor of H0. This practice is justified in decision-theoretic terms.

Indeed, in this framework, implementing a test consists in estimating 1I(θ∈Θ0) under a given

loss function; now, under the quadratic loss (which is the standard loss), the estimate of

1I(θ∈Θ0) is E(1I(θ∈Θ0) | data) which coincides with Pr(H0 | data); see eg the Section 5.4 of the

book of Robert (2007). When analyzing the data, we will adopt this decision-theoretic

framework for which the Bayesian answer to a test thus simply consists in reporting the

posterior probability of H0; of course, one may choose to report Pr(H1 | data) as well, since

Pr(H0 | data)+ Pr(H1 | data)=1. An alternative is to use the Bayes factor (usually denoted

by B01) which is defined as the ratio of the posterior odds Pr(H0 | data)/Pr(H1 | data) to

the prior odds Pr(H0)/Pr(H1). But this quantity (which lies in ]0,∞[) is far more difficult

to interpret than a probability, even if some useful guidelines exist (eg Kass and Raftey,

1995).

The test (1.1) is on a function of the occupancy process z (since ωt is a function of

the zjt’s), not on the parameter θ. It is a quite atypical situation which requires a specific

statistical treatment. We denote by ω the occupancy rates vector (ωt; t = 1, . . . , T ) and

by Ω the space in which ω takes its values. For testing the null hypothesis

H0 : ω ∈ Ω0 versus H1 : ω ∈ Ω1 , (4.2)
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where Ω0 and Ω1 consitute a partition of Ω, we advocate a Bayesian view, arguing that

it leads to a natural statistical answer (see further). Our statistical approach relies on

the following observation: before collecting the data, the process z is unknown, exactly

as θ. Hence, the idea of applying to the test (4.2) the statistical procedure adopted for

the test (4.1). Taking this view leads thus to basing the answer to the test (4.2) on

Pr(ω ∈ Ω0 | data).

The calculation of Pr(ω ∈ Ω0 | data) is based on a set of remarks. Let Z denote the

space in which z takes its values (note that Z is a finite set with 2JT elements). The

partition of Ω in Ω0 and Ω1 results in a partition of Z in Z0 and Z1 such that Φ(Z0) = Ω0

and Φ(Z1) = Ω1, where the function Φ is defined by ω = Φ(z). Consequently, computing

Pr(ω ∈ Ω0 | data) comes down to estimating a simple function of z, namely the indicator

1I(z∈Z0), since Pr(ω ∈ Ω0 | data)=Pr(z ∈ Z0 | data)= E(1I(z∈Z0)| data). This last remark will

be used in the following Section.

4.2 The data augmentation algorithm

The data augmentation algorithm is an MCMC algorithm which was initially devised by

Tanner and Wong (1987); it has been widely used in the Bayesian analysis of missing data

models (eg Robert and Casella, 2004). The data augmentation algorithm is characterized

by the fact that each step of the algorithm includes two phases: a parameter simulation

phase and a missing data simulation phase.

As far as the second phase is concerned and in our context, z is partitioned in zmis =

{zjt|yjt = 0} and zobs = {zjt|yjt ≥ 1}. Simulation occurs only when zjt ∈ zmis. The data

augmentation algorithm proceeds as follows: starting with an initial value z(0) (consistent

with y), for l ≥ 1 we iterate steps of the form:

θ(l) ∼ π(θ|z
(l−1)
mis ,y) z

(l)
mis ∼ p(zmis|z

(l−1)
mis , θ

(l),y). (4.3)

Dupuis (1995) has precisely used this scheme for conducting the Bayesian analysis of
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multiple-state capture-recapture data. This scheme is in fact associated with a component-

by-component simulation of the missing zjt’s. An alternative is to simulate the missing

data by blocks: see for example Dupuis and Schwarz (2006) in a capture-recapture set-up.

When this option is retained, the above scheme simplifies as follows:

θ(l) ∼ π(θ|z
(l−1)
mis ,y) z

(l)
mis ∼ p(zmis|θ

(l),y). (4.4)

Afterwards, we will focus on the scheme (4.3) which is the most used frequently in practice.

For the models considered in Section 3.2, it is possible to use the popular software Win-

BUGS for implementing the scheme (4.3). An alternative is to write one’s own program: it

is the choice made in this paper. This requires us to compute all the necessary conditional

distributions in the MCMC algorithm. Royle and Kéry (2007) also made this choice to

deal with the general model [qt, ψt(r, s)], but in a context different from ours. Indeed,

Royle and Kéry (2007) worked within an asymptotic framework where J is theoretically

infinite. In this framework, the very notion of occupancy rate is obviously not applicable.

As a result, the algorithm of Royle and Kéry (2007) needs to be adapted to deal with

issues of occupancy rates. All that concerns the way we implement the data augmentation

algorithm is in the Appendix. In particular, the situation in which inference is based on

n < J sampled quadrats is considered in this Appendix.

The posterior probability of the null hypothesis (under a given model m) is obtained

by applying the ergodic theorem. For large enough L, one has:

Pr(H0 |m,y) ≈
1

L

L
∑

l=1

1I(ω(l)∈Ω0)

where ω
(l) = (ω

(l)
t ; t = 1, . . . , T ) and where

ω
(l)
t =

1

J

[

Dt +
∑

j∈Jt

1I
(z

(l)
jt

=1)

]

;
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in the above expression, Dt denotes the number of quadrats in which the presence of the

target species has been detected at time t, and Jt denotes the set of indices j for which zjt

is missing (t being fixed).

4.3 The Bayesian model averaging procedure

Assume thatM plausible models have been considered as being liable to have generated

the data at hand y. We denote by p(m) the prior probability of model m, by θm the global

parameter of model m, and by π(θm) the prior density of θm. In this context, we propose

to implement a Bayesian model averaging procedure to deal with the test (4.2). Such a

procedure is standard; it involves a quantity of interest which is typically a parameter

defined across all the M models (see eg Kass and Raftery, 1995). In our case, the quantity

of interest is Pr(H0). The model averaging is based on the following equality:

Pr(H0|y) =
M
∑

m=1

p(m|y) Pr(H0|m,y)

where p(m|y) represents the posterior probability of model m, and Pr(H0|y, m) the pos-

terior probability of H0 under model m. In the previous section, we have explained how

to compute Pr(H0|m,y) via a data augmentation algorithm. What remains is to compute

p(m|y). In missing data models, this task is often untractable, which is why a model av-

eraging procedure is typically undertaken via RJMCMC methods (eg Robert and Casella,

2004). Here we provide a closed-form expression for each p(y|m) from which the p(m|y)’s

are immediately derived.

By applying the Bayes formula, one has:

p(m|y) =
p(y|m)p(m)

∑M

m=1 p(y|m)p(m)

where

p(y|m) =

∫

Θm

L(θm;y)π(θm) d (θm)
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and where L(θm;y) denotes the likelihood of data y under model m. Considering that

L(θm;y) = p(y|θm) =
∑

zmis

p(y, zmis|θm) =
∑

zmis

L(θm;y, zmis)

where L(θm;y, zmis) denotes the likelihood of the completed data (y, zmis) under model

m, and that

∫

Θm

∑

zmis

L(θm;y, zmis)π(θm) d (θm) =
∑

zmis

∫

Θm

L(θm;y, zmis)π(θm) d (θm) ,

one observes that computing exactly p(y|m) requires in fact exact computation of the

integral
∫

Θm
L(θm;y, zmis)π(θm) d (θm). Data y being fixed, this integral depends only on

model m and on zmis; it is denoted by Im(zmis).

The above computational developments are quite general and apply to any missing

data model. In the framework of the four models considered in Section 3, Im(zmis) can be

written down in a closed form, whatever m and zmis. We develop below the calculations

of Im(zmis) for the general model [qt, ψt(r, s)]. First, we need to calculate the likelihood of

the completed data. Considering assumptions A1, A2, A3, A4 and A5, it is easy to check

that

L(θ;y, zmis) = µV1(1− µ)J−V1

[

T
∏

t=1

qUt

t (1− qt)
KVt−Ut

]





T−1
∏

t=1

∏

r,s∈{0,1}

ψ
Wt(r,s)
t (r, s)





where

Ut =

J
∑

j=1

yjt, Vt =

J
∑

j=1

zjt and Wt(r, s) =

J
∑

j=1

1I(zjt=r,zj,t+1=s) (4.5).

Now, it is straightforward to see that Im(zmis) = PµPqPψ with

Pµ = B(1 + V1, 1 + J − V1) Pq =

T
∏

t=1

B(1 + Ut, 1 +KVt − Ut)

and

Pψ =
T−1
∏

t=1

B (1 +Wt(0, 1), 1 +Wt(0, 0)) B((1 +Wt(1, 0), 1 +Wt(1, 1))
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where B(., .) denotes the coefficient of the Beta distribution; in these expressions, the count

Vt and Wt(r, s) are derived from the completed data (zmis,y), and the count Ut from y.

Consequently, computing exactly Im(zmis) does not raise any difficulty, since the value of

B(., .) is provided by most software.

This way of proceeding yields the exact value of p(m|y). It avoids the use of RJMCMC

methods, but it may be time consuming when the number of missing values is large. For

the data set analyzed in this paper, it is not the case. If it is, we advocate the use of

RJMCMC methods. Indeed, if one takes advantage of the parallel existing between time

site occupancy models and multi-state capture-recapure models mentioned in Section 3.1,

Pr(H0|y) should be easily obtained using the RJMCMC algorithm developed by King and

Brooks (2000) in a multi-state capture-recapure set-up (provided that some modifications

are made in it). For large enough J , an alternative to RJMCMC methods is to use

approximations of p(m|y); see eg Kass and Raftery (1995). We do not go further in these

directions.

5. An illustration

5.1 Description of the Nesquive wood data set and the biological hypotheses

The data considered in this paper are a part of a large data set collected from 2003

to 2015 for studying the bird species population present in the wood of Nesquive (located

near Toulouse in France). Only the period from 2011 to 2015 here is concerned. The

protocol is similar to the one described in detail in Dupuis, Bled and Joachim (2010) and

in Dupuis and Goulard (2011); therefore only the main points are given here. It has been

divided into 10 quadrats of equal size (250m x 250m); all the quadrats have been visited.

We consider that, for a given year a ∈ {2011, . . . , 2015}, a given species occupies quadrat

j if at least one individual belonging to this species has nested in quadrat j, during year

a. Information about the presence of nesting species is provided by acoustic recognition
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of singing males according to the following procedure. The researcher spent a prescribed

time (twenty minutes in our study) at each station (in the center of quadrat), listening

to birds. More precisely, data have been collected according to the following point count

protocol: each 20-minute session has been sliced into four subsessions of 5 minutes each,

during which the experimenter records whether the target species has been detected, or

not. Each slice is the equivalent of a visit, therefore K = 4; as in Dupuis, Bled and Joachim

(2010) and in Dupuis and Goulard (2011).

In this paper, we focus on two bird species: the chiffchaff and the Bonelli warbler. For

each of these two target species, Table 1 provides the number Da of quadrats where they

have been detected in year a ∈ {2011, . . . , 2015}.

[Table 1 about here.]

As far as the chiffchaff is concerned, the increase in the Da’s over the period 2012 - 2014

suggests a colonization over this period, and leads us naturally to test the following null

hypothesis

H0 : ω2012 < ω2013 < ω2014 . (5.1)

Of course, the year 2011 could be included in H0, since it is quite possible that ω2011 < ω2012

(even if we do not have D2011 < D2012). In fact, the posterior probability of the correspond-

ing H0 is very small, and it is the above option which is relevant to test. Concerning the

period 2011 - 2012 during which the number of quadrats in which the chiffchaff has been

detected remained stable (D2011 = D2012 = 7), this is the following test:

H0 : ω2011 = ω2012 versus H1 : ω2011 6= ω2012 . (5.2)

which is relevant. Such a test will be called a stability test. Concerning the period 2014 -

2015, we observe that D2014 = D2015 = 10. As already mentioned in Section 2, the fact
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that D2014 = D2015 = J implies that the corresponding occupancy rates are known; one

has ω2014 = ω2015 = 1 (this is why ω2015 has been excluded from the test (5.1)). In other

terms, we can state that, with probability 1, the occupancy rate remained stable over the

period 2014 - 2015.

As far as the Bonelli warbler is concerned, the decrease in the Da’s suggests to test a

decrease in occupancy rates over the period 2011 - 2015, and thus to consider the following

null hypothesis H0 : ω2011 > ω2012 > ω2013 > ω2014 > ω2015 . In fact, it is much more relevant

to split the period 2011 - 2015 into two parts by testing separately the hyptohesis

H0 : ω2011 > ω2012 > ω2013 > ω2014 , (5.3)

and the hypothesis:

H0 : ω2014 > ω2015 . (5.4)

This way of proceeding will allow to highlight that there is a strong evidence in favor of

the null hypothesis (5.3). If we had worked with the null hypothesis H0 : ω
2011

> ω
2012

>

ω
2013

> ω
2014

> ω
2015

we would have totally missed this interesting result concerning the

period 2011 - 2014; the year 2015 (during which the Bonelli warbler has not been detected)

impeding the understanding of this period (see the Section 5.2.2 for details).

5.2 Results.

For both data sets (one by target species), we have implemented the Bayesian averaging

model procedure described in Section 4.3; the four models involved in this procedure are

[q, ψ(r, s)],[qt, ψ(r, s)], [q, ψt(r, s)] and [qt, ψt(r, s)]. We have taken p(m) = 1/4, putting

thus an equal prior weight on each model. When inference takes place within a model

selection procedure, Burnham and Anderson (1998) recommend that at least one model fit

the data adequately. We believe that this common-sense recommandation also applies to an

averaging model procedure, whether it is classical or Bayesian. The fit has been assessed by
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computing a Bayesian p-value (eg King et al., 2010). Recall that, a model being considered,

values of the Bayesian p-value close to 0 or 1 leads to suspect the goodness-of-fit of the

model. For both data sets, the fit of the model [qt, ψ(r, s)] is acceptable: the Bayesian

p-values obtained are 0.19 for the chichaff, and 0.21 for the Bonelli warbler (calculations

having been performed by using the deviance as discrepancy function). The calculation of

p(y|m) has been performed on a PC, by using the software C; the computational time is

very short (it does not exceed 15 seconds). The Bayesian answers to the tests (5.1) and (5.2)

have been based on the data set involving the five years, in the aim of not lose information;

recall indeed that, for fixed j, the yjt’s are not independent (due to Assumption A1). This

remark also applies for the tests (5.3) and (5.4).

5.2.1 The chiffchaff Table 2 below provides, for each model m, the value of the

integrated likelihood (that is p(y|m)), its posterior probability (that is p(m|y)), and

the posterior probabilities of the null hypotheses (5.1) and (5.2) respectively denoted by

Pr(H
[1]
0 |m,y) and Pr(H

[2]
0 |m,y) where y represents the chiffchaff data set.

[Table 2 about here.]

We first observe that the posterior probabilities of the models [q, ψt(r, s)] and [q, ψ(r, s)]

are very small, and that the model [qt, ψ(r, s)] clearly dominates. From Table 2, we deduce

that the averaged posterior probability of the stability test is 0.87, and that the one of the

colonization test is 0.89.

5.2.2 The Bonelli warbler Table 3 below provides, for each model m, the value of the

integrated likelihood, its posterior probability and the posterior probabilities of the null

hypotheses (5.3) and (5.4) respectively denoted by Pr(H
[3]
0 |m,y) and Pr(H

[4]
0 |m,y) where

y represents the Bonelli warbler data set.
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[Table 3 about here.]

We first observe that the models where the detection probabilities depend on time

(namely the models [qt, ψt(r, s)] and [qt, ψ(r, s)]) clearly dominate: the cumulative sum of

their posterior model probabilities reaches 0.95. From Table 3, we deduce that the aver-

aged posterior probability of the hypothesis (5.3) is 0.98 and that the averaged posterior

probability of the hypothesis (5.4) is 0.60. This second result may seem somewhat sur-

prising, insofar as D2014 = 3 (and therefore ω2014 ≥ 0.3) and D2015 = 0. In fact, it explains

mainly by the fact that the Bonelli warbler has not been detected in the Nesquive wood

in 2015, which generates some substantial uncertainty about ω2015 . The small size of J

contributes also to this result, but in a much less extent. Similar observations has been

made in Dupuis et al. (2010) while estimating the occupancy rates of not detected species.

However that may be, in 2015, all the zjt’s are missing and information contained in the

data about ω2015 is thus poor. For assessing the impact of such a situation, we provide

the posterior distribution of ω2015 and we compare it to the one of ω2014 (this is performed

under the dominating model [qt, ψ(r, s)]): see Figures 1 and 2 below.

[Figure 1 about here.]

We observe that the essential of the posterior distribution of ω2014 is concentrated at

ω2014 = 0.3 since Pr(ω2014 = 0.3|y) ≈ 0.80 (more precisely, 0.77). Note that this peak

coincides with D2014/J .

[Figure 2 about here.]

Conversely, we observe that the posterior distribution of ω2015 is much more widespread.

Unlike the year 2014, the peak of the posterior distribution of ω2015 does not coincide with

D2015/J ; we have in fact two peaks (of comparable magnitude) which occurs for ω2015 = 0.2
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and ω2015 = 0.3. Note that the posterior probability that ω2015 ≥ 0.3 is relatively high (0.49

precisely). All these elements contribute to the observed result for Pr(H
[4]
0 |m,y) when

m = [qt, ψ(r, s)]. The examination of the posterior distributions of ω2014 and of ω2015 under

the model [qt, ψt(r, s)] leads to very similar observations (details are omitted).

For information, the averaged posterior probability of the null hypothesis H0 : ω2011 >

ω2012 > ω2013 > ω2014 > ω2015 is 0.56; this result clearly conceals the fact that the hypothesis

of a decrease of occupancy rates during the period 2011 - 2014 has a strong support (namely

0.98).

6. Conclusion

The tests developed in this paper allowed us to investigate important biological questions

concerning the evolution of occupancy rates over time; each test being associated with a

specific behavior of the target species: either a decrease, or an increase or stability in its

occupancy rates. We believe that it would not have been possible outside the Bayesian

paradigm, simply because the test is on the occupancy rates, not on the model parameter.

In this last Section, we highlight some of the potential of our statistical approach (which

consists in basing inference on the posterior probability of the null hypothesis averaged

over a set of plausible models). We develop this point along two lines. In Section 6.1, we

examine to what extent our approach could be useful for the asymptotic framework (already

mentioned in the introduction and in Section 4.2). In Section 6.2, J is finite and we explore

some of the numerous biological questions related to occupancy which can be addressed

by our approach (with straightforward adaptations). In some situations, implementing

our approach, will require either substantial modifications (from a computational point of

view) or will consitute real computational challenges. This particular point is addressed in

Section 6.3.
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6.1 The asymptotic framework

In some surveys, the size of R is very large compared to the size of the site, and, as a

result J is very large: for comments on the size of J see MacKenzie et al., (2006), MacKenzie

et al. (2009), as well as Dupuis and Goulard (2011). In this asymptotic framework, J is no

more a part of the model and the very notion of occurancy rate is not applicable; however,

the question arises as if the colonization test (1.1) could be reformulated in this framework.

Considering the limit of ωt when J −→ ∞ provides an answer (this limit is denoted by

ψt in MacKenzie et al., (2006) and by λt in this paper). Indeed, if one assumes that the

zjt’s are independent and identically distributed, ωt converges in probability to λt = E[zjt]

which thus represents the probability that the target species is present in a quadrat, at

time t. Therefore, in the asymptotic framework, the test (1.1) may be reformulated as

follows:

H0 : λ1 < λ2 < . . . < λ
T−1

< λ
T
. (6.1)

The test now involves the occupancy parameters λt instead of the occupancy rates ωt.

The quantity λt is not a parameter of models but it is clearly a transversal quantity. It

can be indeed expressed as a function of the transition probabilities by using recursive

formulae. Indeed, for all 1 ≤ t ≤ T − 1 one has: λt+1 = ψt(1, 1)λt + ψt(0, 1)(1 − λt)

in models [q, ψt(r, s)] and [qt, ψt(r, s)], and λt+1 = ψ(1, 1)λt + ψ(0, 1)(1 − λt) in models

[q, ψ(r, s)] and [qt, ψ(r, s)]; moreover, one has λ1 = µ. The data augmentation algorithm

(in its asymptotic version; see Appendix) allows us to obtain Pr(H0|m,y), while the model

averaging procedure remains unchanged. It is of interest to point out that implementing

the parametric test (6.1) by adopting a Bayesian view is thus straightforward, whereas its

classical treatment does not seem trivial at all.

In the asymptotic framework, the stability test considered in Section 5 becomes:

H0 : λ1 = λ2 = . . . = λ
T−1

= λ
T
. (6.2)

21



if stability is tested for the period from t = 1 to t = T . The Bayesian treatment of such

a parametric test requires us to modify the prior considered in Section 3.3 to ensure that

Pr(H0) > 0 (hitherto, this condition was always satisfied). Even if the theory to deal with

such a point null hypothesis is well documented (eg Robert, 2007), its effective implemen-

tation involves specific developments which are beyond the scope of this paper. However,

some authors have argued that a point null hypothesis of type θ = θ0 (where θ denotes a

real parameter) does not necessarily well represent the question of interest, whereas a null

hypothesis of type |θ− θ0| ≤ ǫ (where ǫ is small) is often more realistic and more sensitive:

see eg Berger and Delampady (1987), or Dupuis (1997), for motivations. If this point of

view is proving to be relevant for the practitioner, the question of interest associated with

the null hypothesis (6.2) may be reformulated via the following null hypothesis:

H0 : |λt2 − λt1 | ≤ ǫ for all t1 and t2 in {1,. . . ,T} (6.3)

where ǫ ∈]0, 1[ represents typically a small value fixed by the practitioner (for example 0.1

or 0.05 to fix ideas). The null hypothesis (6.3) means that the distance between any two

occupancy parameters does not exceed ǫ. Contrary to (6.2) and interestingly, the statistical

methodology developped in this paper allows us to deal with the quasi-stability test (6.3),

as for the test (6.1). This is essentially because the prior appearing in Section 3.3 does not

need to be modified since Pr(H0) is now > 0.

6.2 Some of the biological questions addressed by our methodology

Example 1. Assume that one considers that the target species is endangered if, at a given

time t, its occupancy rate is smaller than a threehold ω∗. The statistical test below is of

interest:

H0 : ωt < ω∗ v.s. H1 : ωt ≥ ω∗ . (6.4)

Example 2. In multi-state occupancy models, the status of the quadrat does not only
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concern the presence of the target species. Let us illustrate this point from a situation

considered by Mackenzie et al (2009). These authors defined three states for zjt, as follows:

zjt = 1 if the species is present and breeds successfully in quadrat j at time t; zjt = 2 if it

is present but fails to breed; the meaning of zjt = 0 is unchanged. In such a framework, a

simple issue is to test the following null hyptohesis:

H0 : ω1,t > ω2,t for all t ∈ {1, . . . , T} (6.5)

where ωr,t denote the proportion of quadrats having the breeding status r, where r ∈ {1, 2}.

Example 3. Two species called s1 and s2 are now involved, and we would like to test

whether, at a given time t, the occupancy rate of species s1 is greater than the one of

species s2. The associated test is:

H0 : ωs1,t < ωs2,t v.s. H1 : ωs1,t ≥ ωs2,t (6.6)

with obvious notation.

In the two first examples the data augmentation sheme (4.3), as well as our model

averaging procedure, apply. In the third example, this remark also holds, on the condition

that species s1 and s2 occupy the quadrats independently.

6.3 Two computational challenging issues

We assume in this paper that detectability and occupancy parameters do not depend

on quadrats. However, sometimes, time specific covariates are available at the quadrat

level. When they are discrete, implementing the data augmentation algorithm and the

model averaging procedure only requires simple adaptations. When the available covari-

ates are continuous, a logit formulation is typically adopted. In a such situation, the data

augmentation algorihm (4.3) still applies, but Hastings-Metropolis steps have to be in-

cluded in it for updating the logit parameters (Dorazio and Rodriguez, 2012). As far as

the model averaging procedure is concerned, there is no longer a closed-form expression
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for the posterior probability of each model and, typically, a RJMCMC algorithm has to

be implemented. In example 3 of Section 6.2, we have considered a test which involves

two species s1 and s2, and we have assumed that they occupy the quadrats independently.

If this assumption is removed, implementing the data augmentation algorithm as well as

a model averaging procedure, becomes clearly much more difficult and constitutes a true

computational challenge. In this paper, a simple assumption is adopted for the spatial

occupancy process. Recall that, for any fixed t, we assume that z1t, . . . , zjt, . . . , zJt are

independent (see Assumption A4). Introducing some spatial correlations between the zjt’s

will typically be done via an autologistic formulation, and inference will take place within

hidden Markov field models (eg Cressie and Wikle, 2011). Implementing a model averaging

procedure within such a framework is clearly another computational challenge.
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Appendix

First, we assume that J is finite, and we show how to implement the data augmention

algorithm corresponding to the schema (4.3). It is done by distinguish two cases, depending

on whether n < J quadrats have been visited, or whether all the quadrats have been visited

(n = J). We show in particular how to use the graph of the model for calculating the

distribution according to a missing zjt has to be simulated. To compute this distribution

we will use the separation theorem and the local Markov property. We refer to the book

of Whittaker (1990) for details: the separation theorem being stated in Section 3.3, and

the local Markov property in Section 3.4.

Second, we consider the asymptotic framework.

We will limit ourselves to the general model [qt, ψt(r, s)] because the developments

concerning the three sub-models [q, ψ(r, s)], [qt, ψ(r, s)], [q, ψt(r, s)] are very similar.

1. The case J is finite.

1.1. The case n = J .

The data augmentation algorithm is a Gibbs sampling implemented on the vector

(θ, zmis) where the components of zmis are ordered according to the increasing j’s, and

for fixed j, according to the increasing t’s.

• The missing data simulation phase.

A missing zjt is simulated according to:

p(zjt |zmis \{zjt},y, θ). (1)

Due to A4 and A5, one has: p(zjt |zmis \{zjt},y, θ) = p(zjt |z
mis
j \{zjt},yj, θ) where zmisj

represents the components of zj which are missing. Consequently, simulating a missing zjt

requires us to compute the conditional distribution:

p(zjt |Gj \ {zjt}, θ) (2)
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where Gj = {zjt; t = 1, . . . , T}
⋃

{yjt; t = 1, . . . , T}. A repeated use of the Bayes formula,

of the separation theorem, and of the local Markov property will allow us to significantly

simplify (2). The separation theorem and the local Markov property are usually stated in

undirected graphs, but these properties also apply to the directed graph G (which appears

in Section 3.1) because it meets the Wermuth condition: see Section 3.5 of the book of

Whittaker (1990) for this last point.

For convenience, θ is afterwards omitted in the conditionings. Considering the graph

G and by using the local Markov property, one has:

p(zjt |Gj \{zjt}) = p(zjt|zj,t+1, yjt, zj,t−1) where 2 ≤ t ≤ T − 1. (3)

Using the Bayes formula, we deduce that:

p(zjt|zj,t+1, yjt, zj,t−1) ∝ p(yjt|zj,t+1, zjt, zj,t−1)p(zjt|zj,t+1, zj,t−1). (4)

Now one has p(yjt|zj,t+1, zjt, zj,t−1) = p(yjt|zjt) since zjt separates yjt and {zj,t+1, zj,t−1}.

We thus deduce that:

p(zjt|zj,t+1, yjt, zj,t−1) ∝ p(yjt|zjt)p(zjt|zj,t+1, zj,t−1). (5)

Using again the Bayes formula, then the fact that zjt separates zj,t+1 and zj,t−1, we find

that:

p(zjt|zj,t+1, zj,t−1) ∝ p(zjt|zj,t−1)p(zj,t+1|zjt), (6)

so that, finally, one has:

p(zjt|zj,t+1, yjt, zj,t−1) ∝ p(zjt|zj,t−1)p(yjt|zjt)p(zj,t+1|zjt), (7)

from which we deduce a unique and general expression for the conditional distribution

of a missing zjt (see the equation (8) below). It is easy to modify (7) to deal with the
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two particular cases t = 1 and t = T . Note that, interestingly, (7) applies without any

modification to the multi-state occupancy models. Interestingly, this way of conducting

the calculations easily applies to more complex graphs than G. For example, if a second

order Markov chain is assumed for the occupancy process (zjt; t = 1, . . . , T ), it is easy to

check that p(zjt |G \{zjt}) is proportional to:

p(zjt|zj,t−2, zj,t−1)p(yjt|zjt)p(zj,t+1|zjt, zj,t−1)p(zj,t+2|zjt, zj,t+1).

Royle and Kery (2007) used (3) for computing the conditional distribution of zjt: that re-

quires us to compute the probability that zjt = 1|yjt = 0 for each neighborhood {zj,t+1, zj,t−1}

of zjt. The benefit of simplifications (4), (5), (6) and (7) is proving to be quite interesting

in multi-state occupancy issues. Indeed, if a ≥ 3 denotes the number of states, a2 prob-

abilities will have to be calculated for obtaining the conditionnal distribution of zjt from

(3); if a second order Markov chain is assumed for the occupancy process, a4 will have to

be calculated.

Returning to our model, we provide below the distribution of a missing zjt. Three cases

have now to be considered.

- Let 2 ≤ t ≤ T − 1. If zjt ∈ zmis it has to be simulated according to the distribution

zjt|zj,t−1, yjt, zj,t+1, θ where yjt = 0. From (7) we deduce that:

Pr(zjt = 1|zj,t−1 = a, ysj = 0, zj,t+1 = b, θ) =
ψt−1(a, 1)(1− qt)

K

ψt(1, b)

ψt−1(a, 1)(1− qt)Kψt(1, b) + ψt−1(a, 0)ψt(0, b)
(8)

- If zjT ∈ zmis, it is simulated according to the distribution of zjT |zj,T , yjT , θ where yjT = 0.

It is easy to check that:

Pr(zjT = 1|zj,T−1 = a, yjT = 0, θ) =
ψT−1(a, 1)(1− q

T
)
K

ψT−1(a, 1)(1− q
T
)K + ψT−1(a, 0)

(9)

- If the initial state zj1 ∈ zmis, it has to be simulated according to the distribution
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zj1|zj,2, yj1, θ where yj1 = 0. It is easy to check that:

Pr(zj1 = 1|zj,2 = b, yj1 = 0, θ) =
µ(1− q1)

Kψ1(1, b)

µ(1− q1)
K ψ1(1, b) + (1− µ)ψ1(0, b)

. (10)

We need now to clarify the conditionings. At step (l) of the algorithm, the conditioning

which appears for example in (8) is as follows: zj,t−1 = 1 if yj,t−1 ≥ 1 and zj,t−1 = z
(l)
j,t−1

if yj,t−1 = 0; zj,t+1 = 1 if yj,t+1 ≥ 1 and zj,t+1 = z
(l−1)
j,t−1 if yj,t+1 = 0; θ = θ(l). This a

consequence of the (natural) order adopted for ranking the missing zjt’s (see above). A

similar principle is applied to the two other cases: t = 1 and t = T .

• The parameter simulation phase.

Considering the expression of the likelihood of the completed data L(θ;y, zmis) appear-

ing in Section (4.3) it is easy to check that, at step (l) of the algorithm, simulation of θ

proceeds as follows:

q
(l)
t |y, z

(l−1)
mis ∼ Be

(

1 + Ut, 1 +KV
(l−1)
t − Ut

)

,

µ(l)|y, z
(l−1)
mis ∼ Be

(

1 + V
(l−1)
1 , 1 + J − V

(l−1)
1

)

and

ψ
(l)
t (1, 0)|y, z

(l−1)
mis ∼ Be

(

1 +W
(l−1)
t (1, 0), 1 +W

(l−1)
t (1, 1)

)

ψ
(l)
t (0, 1)|y, z

(l−1)
mis ∼ Be

(

1 +W
(l−1)
t (0, 1), 1 +W

(l−1)
t (0, 0)

)

The counts Ut, Vt, Wt(., .) have been defined in Section 4.3. Note that the counts Vt and

Wt(., .) involve as well observed zjt’s and missing zjt’s, contrary to the count Ut which is

deduced from the data y.

1. 2. The case n < J .

In some surveys, inference is based on n < J sampled quadrats, and the above data

augmentation algorithm has to be modified. First, note that zjt is necessarily missing
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when the quadrat j is not a part of the sampled quadrats; consequently, such a zjt has

to be simulated (recall that ωt involves as well sampled and unsampled quadrats). It is

straightforward to check that the formulae (8), (9) and (10) apply without any modification

to sampled and unsampled quadrats, providing that the convention qt = 0 is adopted for

the unsampled quadrats. As far as the parameter simulation phase is concerned, only the

definitions of the counts Ut and Vt which appear in the simulation of qt have to be modified,

as follows: the sums are now over the n sampled quadrats (instead of J).

2. The asymptotic framework (J = ∞).

Inference on the parameters of interest is also based on n sampled quadrats. In the

asymptotic framework, zmis is defined as the missing zjt’s where j represents a sampled

quadrat, while in the previous situation (J is finite and n < J) the vector zmis involved

the sampled quadrats for which yjt = 0 as well as the unsampled quadrats. In fact, in the

asymptotic framework, inference is only based on the sampled quadrats (the unsampled

quadrats playing no part in the inference). That constitutes a key difference with the

finite case n < J and both situations have not to be confused. To implement the data

augmentation algorithm in the asymptotic framework, there is no modification to the

algorithm as it described in 1.1, except that J has to be replaced by n in the definitions

of the counts Ut, Vt and Wt(r, s) appearing in (4.5).
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Figure 1. Posterior distribution of ω2014 for the Bonelli warbler under the dominating
model [qt, ψ(r, s)].
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Figure 2. Posterior distribution of ω2015 for the Bonelli warbler under the dominating
model [qt, ψ(r, s)].
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Table 1

Number of quadrats in which the chiffchaff (respectively the Bonelli warbler) has been
detected from 2011 to 2015

2011 2012 2013 2014 2015

chiffchaff 7 7 9 10 10

Bonelli warbler 10 9 6 3 0
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Table 2

Values of p(y|m), p(m|y), Pr(H
[1]
0 |m,y), Pr(H

[2]
0 |m,y) for the chiffchaff data set y

m p(y|m) p(m|y) Pr(H
[1]
0 |m,y) Pr(H

[2]
0 |m,y)

[q, ψ(r, s)] 5.053887e − 44 0.0008 0.99 0.98
[qt, ψ(r, s)] 5.228145e − 41 0.8269 0.91 0.86
[q, ψt(r, s)] 1.010226e − 43 0.0016 0.99 0.99
[qt, ψt(r, s)] 1.079162e − 41 0.1707 0.85 0.89
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Table 3

Values of p(y|m), p(m|y), Pr(H
[3]
0 |m,y), Pr(H

[4]
0 |m,y) for the Bonelli warbler data set y

m p(y|m) p(m|y) Pr(H
[3]
0 |m,y) Pr(H

[4]
0 |m,y)

[q, ψ(r, s)] 5.093365e − 44 0.02 0.99 0.99
[qt, ψ(r, s)] 1.382167e − 42 0.52 0.98 0.58
[q, ψt(r, s)] 6.989075e − 44 0.03 0.99 0.58
[qt, ψt(r, s)] 1.134595e − 42 0.43 0.97 0.60
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