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Change point detection by Filtered Derivative
with p-Value : Choice of the extra-parameters

Pierre Raphaël Bertrand∗†,
Doha Hadouni∗†

December 9, 2015

Abstract: This paper deals with off-line change point detection using the FDpV method.
The Filtered Derivative with p-Value method (FDpV) is a two-step procedure for change point
analysis. In the first step, we use the Filtered Derivative (FD) to select a set of potential
change points, using its extra-parameters - namely the threshold for detection, and the sliding
window size. In the second one, we calculate the p-value for each change point in order to only
retain the true positives (true change points) and discard the false positives (false alarms).
We give a way to estimate the optimal extra-parameters of the function FD, in order to have
the fewest possible false positives and non-detected change points (ND). Indeed, the estimated
potential change points may differ slightly from the theoretically correct ones. After setting
the extra-parameters, we need to know whether the absence of detection or the false alarm
has more impact on the Mean Integrated Square Error (MISE), which prompts us to calculate
the MISE in both cases. Finally, we simulate some examples with a Monte-Carlo method to
better understand the positive and negative ways the parametrisation can affect the results.

Keywords: Change points detection; Filtered Derivative with p-Value; Filtered Derivative
extra-parameters; Mean Integrated Square Error (MISE); Impact on MISE.

Introduction
Change point detection is an important problem in various applications: signal processing
[13], global warming [35], magnetospheric dynamics [36], neuro-physiological studies [33, 22,
21], motion of chemical or physical particles [29], finance [11, 37], health [25]. . .Most of the
previous examples concern detection of change on the mean of series derived from the original
one, as the series of energy calculated by the wavelet analysis [25] and the series of Hurst
index [11, 36, 37]. However, in all those cases, we still detect change on the mean of the
derived series, that is change on the mean value of the Hurst series [11, 36, 37] or change of
the mean value of the wavelet transform for the series of energy [25]. To sum up, change point
detection on the mean is a relevant question in many applications.
On the other hand, in statistics, the change point analysis field has been studied for more
than forty years [17, 4, 15] or [23, 20, 32] for an updated overview. Depending on the method
of data acquisition, we distinguish two kinds of change point detection :
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• We observe the whole time series and we want to detect all the change point a posteriori
or offline, see e.g. [8, 14].

• We observe the time series and we want to detect a change point as soon as possible. It
is the online change point detection, see e.g [18, 9].

In this work, we only consider the ’a posteriori’ detection which is called change point analysis
in the statistical literature. We describe our framework with a toy model in section 1.
At the beginning of 21st century, the method used for this kind of problem was the Penalized
Least Square Criterion. This algorithm is based on the minimisation of the contrast function
when the number of change points is known [3]. When the number of change point is unknown,
many authors use the penalized version of the contrast function [27]. From a computational
point of view, the PLS method uses dynamic programming algorithms and requires matrix
operations. Therefore, the time and memory complexity of PLS algorithm is of order O(n2),
where n denotes the size of the dataset. Due to the data deluge, the sizes of datasets become
larger and larger, to the point where the computational complexity of this statistical method
has become a challenge, see e.g [24] for internet traffic, [3, 10, 11, 19] for economics or High
Frequency finance, [25, 2] for heartbeat series and health.
Among the different methods for a posteriori change detection, the use of a Filtered Derivative
function has been introduced by [6, 4]. The advantage of the Filtered Derivative method is
the time and memory complexity, both of order O(n) [8, 31, 34, 30]. On the other hand,
Filtered Derivative method leads to many false discoveries of change points. Recently, a new
method called Filtered Derivative with p-value (FDpV) has been introduced [8]. FDpV is a
two-step procedure: the first step is based on the Filtered Derivative function and detects the
potential change points. In the second step we calculate their p-value to eliminate the false
alarms. In [30], the first step is still based on Filtered Derivative, but the second step consists
on increasing the window size A in order to find the true positives.
Yet, the problem of the false discoveries with the Filtered Derivative function, in the first step,
was not resolved, even if in the second step, the number of false alarms and non-detections
drop substantially. Indeed, most of the false discoveries at the first step will be discarded
during the second step by calculating their p-values. However, these calculations still increase
the computational time. This problem led us to think of a way to minimise the number of
false alarms and also the number of undetected change points in the first step. Furthermore,
we investigate the impact of the false positives and the undetected change points on the Mean
Integrated Square Error (MISE).
The rest of this article is organized as follows. In Section 1, we describe the problem of change
point analysis with a toy model and we give some comparison criterion. In Section 2, we recall
the method of the Penalized Least Square and the Filtered derivative with p-Value in order
to analyse the problem of change points. In section 3, we expand on the Filtered Derivative
with p-Value method by providing a method to choose the extra parameters of Step 1 and
we show which impact is more important on MISE. All the technical proofs are postponed in
appendices.

1 Change point analysis
In this section, we describe the problem of the change point analysis in a toy model that will
be used throughout the sequel of this work. Then, we give some comparison criterion.
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1.1 Toy model

Let X = (X1, X2, . . . , Xn) be a series indexed by the time t = 1, 2, . . . , n. We assume that a
segmentation τ = (τ1, . . . , τK) exists such that :

• Xt is a family of independent identically distributed (iid) random variables for t ∈ (τk, τk+1],

• k = 0, . . . , K, where by convention τ0 = 0 and τK+1 = n.

The most simple model is X ∼ N (µ(·), σ2) a sequence of independent standard Gaussian
variables such that Xt ∈ N (µ(t), 1), where N (µ, σ2) denotes the Gaussian law with mean µ
and variance σ2. The function of time t 7−→ µ(t) is piecewise constant that is to say µ(t) = µk
for all t ∈ (τk, τk+1], see eg. Fig. 3 and Fig. 4. To sum up, we have :

• a configuration of K change points τ = (τ1, . . . , τK) enlarged, by convention, by adding
τ0 = 0 and τK+1 = n,

• associated to the configuration of mean values µ = (µ0, . . . , µK),

• Xt ∈ N (µk, σ), for t ∈ (τk, τk+1] and for all k = 0, . . . , K.

• For notational convenience, we define the configuration of shifts δ = (δ1, . . . , δK) where
δk = µk − µk−1, for k = 1, . . . , K.

• The minimal distance between two consecutive change points is defined by

L0 = inf{|τk+1 − τk|, for k = 0, . . . , K}.

• The minimal absolute value of the shifts is

δ0 = inf{|δk|, k = 1, . . . , K}. (1.1)

Let us also recall the definition of the cumulative distribution function for standard Gaussian
law

Φ(x) =
1√
2π

∫ x

−∞
e
−u2

2 du and Ψ(x) = 1− Φ(x). (1.2)

1.2 The Comparison Criterion

We have to estimate the configuration τ = (τ1, . . . , τK) and the values of the mean µ =
(µ0, µ1, . . . , µK). We denote the corresponding estimates by τ̂ = (τ̂1, . . . , τ̂K̂) and µ̂ =
(µ̂0, µ̂1, . . . , µ̂K̂). Stress that in real life situations the number of change points is also un-
known and is estimated by K̂. In this frame, the comparison criterion concerning the different
methods for change point analysis are :

1. The quality of estimation. For one sample, this quality can be measured by :

• The number of estimated change points. More precisely, the absolute value of the
difference between the number of estimated and the number of true change points
and |K̂ −K|.
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• The accuracy of the estimation of the change point. It is the distance
between the true change points and the estimated change points, as defined by

d2(τ, τ̂) =
K∑
k=1

|τk − τ̂j(k)|2, (1.3)

where τ̂j(k), for each k = 1, . . . , K, denotes the potential change point which is the
closer to the right change point τk.

• The integrated square error (ISE). Actually, we can reformulate the problem
as a problem of estimation of a noisy signal, see eg. [1, 12]. The signal is

s(t) =
K∑
k=0

µk × 1(τk,τk+1](t)

where we have set by convention τ0 = 0 and τK+1 = n. Therefore the estimated
signal is

ŝ(t) =
K̂∑
k=0

µ̂k × 1(τ̂k,τ̂k+1](t)

and the integrated square error (ISE) is defined by

ISE =
n∑
t=1

(ŝ(t)− s(t))2

2. The mean value of estimations: a result obtained for just one simulation can be
hazardous. So, we have to do M simulations, with e.g. M = 1, 000. Then, we calculate
the mean integrated square error (MISE) and the histogram of K̂ with the percentage
of the true changes, or the mean and standard deviation of the misestimation of the
number of change point : (K̂ −K).

3. The time complexity and the memory complexity: it is the mean CPU (Central
Processing Unit) time for estimating ŝ and the amount of memory is used.

2 Some methods for change point analysis
In this section, we expose two methods for change point analysis. The first one is the Penalized
Least Square (PLS, see Subsection 2.1) and the second one is the Filtered Derivative with
p-Value (FDpV, see Subsection 2.2). Before going further, let us give some notations. We
will denote by

µ̂(X, [u, v]) :=
1

(v − u+ 1)
×

v∑
t=u

Xt (2.1)

the empirical mean of the variables Xt calculated on the box t ∈ [u, v]. Stress that we can
also define µ̂(X,Box) for an open box or a semi-open interval.
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2.1 Penalized Least Square method (PLS)

Set SK = {τ = (τ1, . . . , τK) such that card(τ) = K}, where card(τ) denotes the dimension of
the change points configuration τ .

1st case : the number of change points K is known

For each configuration of change τ ∈ SK, we can define

µ̂k = mean(X, [τk + 1, τk+1]) for k = 0, . . . , K (2.2)

where mean(X,Box) denotes the mean of the family Xt for the indices t ∈ Box as defined
by (2.1). Next, we search the configuration of change points τ̂K ∈ SK which minimises the
square error Q(τ) defined by

Q(τ) =
K∑
k=0

τk+1∑
t=τk+1

|Xt − µ̂k|2. (2.3)

That is to say such that
τ̂K = argmin

τK∈SK
Q(τ).

2nd case : the number of change points K is unknown

We remark that minimising the function Q(τ) with an unknown number of changes will lead
to consider the trivial configuration of changes τ ? = (1, 2, . . . , n) as optimal. To avoid this
drawback, we add a penalty term proportional to the length of the change point configuration.
Eventually, we want to minimise

pen(K) = Q(τ̂K) + β ×K for K = 0, . . . , n.

The parameter β adjusts the trade-off between minimising the square error Q(τ̂K) and min-
imising the dimension of the change point configuration card(τ̂K) = K. Indeed, a large value
of β would allow to detect only the most significant change points, while a low value of β
produces a high number of changes, with many false detections. Thus, different choices of
the penalty coefficient β are possible. According to the criterion of information AIC and the
Schwarz criterion, [27] suggests to use a positive βn which converges to 0 when the series
size n converges to infinity. For this model, [38] has proved the consistency of the Schwarz
criterion, with

βn =
2σ2(lnn)

n
.

The same choice is proposed in [27, 28]. In [12], the proposed choice is

βn =
σ2

n
×
[
2 + 5× ln(

n

K
)
]

where σ2 is the variance assumed to be constant and known and n the size of the series.
In Fig. 1 below, we have plotted the contrast function and the penalized contrast function
[27, 28].
We clearly see in the figure 2.1 that the penalized contrast is almost horizontal. Thus, the
minimal value fluctuates largely depending on the choice of the parameter β.
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Figure 1: Blue with red crosses : the contrast function Q(τ̂K); green : the penalized contrasted
pen(K).

2.2 Filtered Derivative with p-Value method (FDpV)

In this subsection, we describe the FDpV method which is based on two procedures. In the
first procedure, we use the function of Filtered Derivative to select a set of potential change
points, whereas in the second one, we calculate the p-value for each change point in order to
keep only the true positive. Precisely, the method is defined as follows:

Step 1 : Filtered Derivative

The first step (FD selection) depends on two parameters: the window size A and the threshold
C1.

1. Computation of the Filtered Derivative function :
The Filtered Derivative function is defined as the difference between the estimators of
the mean computed in two sliding windows respectively to the right and to the left of
the time t, both of size A, with the following formula :

FD(t, A) = µ̂(X, [t+ 1, t+ A])− µ̂(X, [t− A+ 1, t]), (2.4)
for A < t < n− A,

where mean(X,Box) denotes the mean of the family Xt for the indices t ∈ Box as
defined by (2.1). This method consists on filtering data by computing the estimators of
the parameter µ before applying a discrete derivation. So this construction explains the
name of the algorithm, so called Filtered Derivative method [6, 4]. Next, remark that
quantities A× FD(t, A) can be inductively calculated by using

A× FD(t+ 1, A) = A× FD(t, A) +X(t+ 1 + A)− 2X(t+ 1) +X(t− A+ 1) (2.5)

Thus, the computation of the whole function t 7−→ FD(t) for t ∈ [A, n − A] requires
O(n) operations and the storage of n real numbers.

2. Determination of the potential change points
Let us point that the absolute value of the Filtered Derivative |FD| presents hats at
the vicinity of the change points as seen on the figure 2 below.
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Figure 2: A graph of the Filtered Derivative function

Potential change points τ ∗k , for k = 1, . . . , K∗, are selected as local maxima of the
absolute value of the filtered derivative |FD(t, A)| where moreover |FD(τ ∗k , A)| exceed
a given threshold C1. When there is a signal without noise (σ = 0), we get spikes of
width 2A and height |µk+1 − µk| at each change point τk as we can see in the figure 3
below. For this reason, we select as first potential change point τ ∗k the global maximum

Figure 3: Filtered Derivative function without noise (σ = 0).

of the function |FDk(t, A)|, then we define the function FDk+1 by putting to 0 a vicinity
of width 2A of the point τ ∗k and we iterate this algorithm while |FDk(τ

∗
k , A)| > C1, see

[8]. When there is noise (e.g. σ = 1), we get the following landscape, see Fig. 4 below.

Step 2 : p-Value

1. Elimination of false alarm
A potential change point τ ∗k can be an estimator of a true change point or a false alarm.
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Figure 4: Filtered Derivative function with noise (σ = 1). The blue circles correspond to false
alarms.

In the case of a true change point, an error of estimation on the location of the change
exists. Thus, we have to cancel a small vicinity of size εk around each point τ ∗k , see
[7, 8]. Then, for each segment, we calculate an estimation of the mean

µ̂k := µ̂(X, [τk + εk, τk+1 − εk+1]), (2.6)

where µ̂(X,Box) is defined by (2.1), and, as in [7], εk =

⌈
5×

(
σ

δk

)2
⌉
where dxe denotes

the ceiling function of the real number x.

Remark 2.1 From definition (1.1), δ0 is the lower bound of the shifts, thus we can
deduce the following upper bound

εk ≤ ε0 :=

⌈
5×

(
σ

δ0

)2
⌉
. (2.7)

The standard deviation σ can be empirically estimated. Next, we can use this bound in
Formula (2.6) and set

µ̂k := µ̂(X, [τk + ε0, τk+1 − ε0]). (2.8)

After that, we eliminate the false detections in order to keep (as possible) only the true
change points. In [7], we apply the following hypothesis testing, for all 1 ≤ k ≤ K :

(H0,k) : µ̂k = µ̂k+1 versus (H1,k) : µ̂k 6= µ̂k+1

where the terms µ̂k are defined by (2.8). By using this second single hypothesis test, we
calculate the p-values p∗1, . . . , p∗K associated to each potential change point τ ?1 , . . . , τ ?K? .

2. p-value computation
We choose the statistic Student T. Indeed, under the null hypothesis, t?k has a Student
distribution of degree d = Nk +Nk−1− 2 such that Nk =

{
(τ ∗0 − ε0)− (τ ∗k + ε0)

}
, where
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t∗k =
µ̂k − µ̂k−1√
S2
k−1

Nk−1
+

S2
k

Nk

, (2.9)

and the sample standard deviation is :

Sk =

√√√√( 1

Nk

τk+1−ε0∑
t=τk+ε0

X2
t

)
− µ̂2

k, (2.10)

By construction, d > 2A−4ε0, thus for A > 30 the distribution of t∗k is approximatively
Gaussian and we can set

p?k = 2×
{

1− Std(|tk|)
}
' 2×

{
1− Φ(|tk|)

}
(2.11)

where Std denotes the cumulative distribution function of a Student law of degree d
and Φ the cumulative distribution function of the zero mean standard Gaussian law as
given by (1.2). In [8], we only keep the change points corresponding to a p-value smaller
than a fixed threshold p∗2. Consequently, Step 2 is much more selective and allows us to
deduce an estimator of the piecewise constant map t 7−→ µ(t).

3 How to choose the extra-parameters of Step 1 (Filtered
Derivative)?

All the change points methods depend on extra-parameters which must be well chosen. The
filtered derivative method depends on two extra-parameters, namely the window size A and
the threshold C1.

3.1 Criterion for choosing the extra-parameters of FD

In the case of "At Most one Change point " (AMOC), the usual criteria are :

- Error of type I which corresponds to the Probability of False Alarm (PFA).

- Error of type II which corresponds to the Probability of Non Detection (PND).

see eg. [16, 26]. The PND is well suited for AMOC. But for detecting more than one change
point, we have to impose that one detected change point has to be at the vicinity of each real
change point. Following [7], for each real change point τk, we define the local PND as

PNDlocal(τk) = IP (Bk) ,

where
Bk =

{
∀t ∈ [τk − A, τk + A], |FD(t, A)| < C1

}
.

With these notations, we can define the global PND by

PNDglobal = IP
( K⋃
k=1

Bk

)
. (3.1)
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Next, we can define the Number of Non Detection (NND) in the vicinity of the right change
points as

NND(ω) =
K∑
k=1

1Bk
(ω). (3.2)

Furthermore, in case of no change points, the probability of false alarm is defined as :

α(A,C1) = IP
(
τ(C1, A) ≤ n− A

)
,

where τ(C1, A) is the first hitting time of C1, that is

τ(C1, A) := inf{t ≥ A ; |FD(t, A)| ≥ C1}. (3.3)

However, type I error is the probability of at least one false alarm and thus appears as a rough
criterion see [7]. Following [5], the number of false alarm (NFA) is a more relevant criterion.

Definition 3.1 The number of false alarms is defined as follows

NFA = K̂ −K +NND. (3.4)

3.2 Impact of non detection and false alarm on the MISE

i) From (3.4), we get |K̂ − K| = |NFA − NND|. Thus non detection and false alarm
impact in the same way the criterion |K̂ −K|.

ii) Clearly, false alarm does not impact the quantity d2(τ, τ̂) defined by (1.3), whereas non
detection at the right place increases the quantity d2(τ, τ̂).

iii) The impacts of false alarm and non detection on MISE are mainly described by the two
following propositions (3.3 and 3.4). Stress that, the potential change points can be
different from the true change points.

Definition 3.2 (MISE) Let τ1, τ2 be two change times, set

s(t) =
K∑
k=0

µk × 1(τk,τk+1](t)

the true signal, and denote by

ŝ(t) =
K̂∑
k=0

µ̂k × 1(τ̂k,τ̂k+1](t)

the estimated signal.
The mean integrated square error between the times τ1 and τ2 is then defined by

MISE(τ1, τ2) := E

(
τ2∑
t=τ1

|ŝ(t)− s(t)|2
)
.

Proposition 3.3 (False alarm) Let τ1, τ2 be two successive change points and τ̂1 and τ̂2
the potential change points such that τ̂1 = τ1 + ε1, τ̂2 = τ2− ε2. Furthermore, we assume that
‖εi‖∞ ≤Mεi, with i ∈ {1, 2} where Mεi is a finite constant.
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i) Without false alarm : Assume that τ̂1, τ̂2 are the two successive potential change points
obtained after Step 1. Then

MISE(τ1, τ2) = σ2 + r3.5 (3.5)

whith

|r3.5| ≤ Mε1

[
σ2

τ1 − τ0
+

(
τ1 − τ0
τ̂1 − τ0

)2

(µ1 − µ0)
2

]
+ . . .

· · ·+Mε2

[
σ2

τ3 − τ̂2
+

(
τ3 − τ2
τ3 − τ̂2

)2

(µ1 − µ2)
2

]
.

ii) With false alarm : Assume that τ̂1, τ̂2, and τ̂3 are the three successive potential change
points obtained after Step 1 such as τ̂3 is the false alarm, and that τ1 < τ̂1 < τ̂3 < τ̂2 < τ2.
Then

MISE(τ1, τ2) = 2σ2 + r3.6 (3.6)

with :

|r3.6| ≤ Mε1

[
σ2

τ̂1 − τ0
+

(
τ1 − τ0
τ̂1 − τ0

)2

(µ1 − µ0)
2

]
+ . . .

· · ·+Mε2

[
σ2

τ̂2 − τ4
+

(
τ2 − τ4
τ̂2 − τ4

)2

(µ1 − µ3)
2

]
.

Proof. See Appendix A. �

Proposition 3.4 (Non detection) Let τ1, τ2, and τ3 be three successive right change points
Furthermore, we assume that ‖εi‖∞ ≤ Mεi, with i ∈ {1, 2, 3} where Mεi is a finite constant
and the quantity εi are precisely defined below.

i) Without non detection : Assume that τ̂1, τ̂2, τ̂3 are the three successive potential change
points obtained after Step 1 such that τ̂1 = τ1 + ε1, τ̂2 = τ2 − ε2, τ̂3 = τ3 − ε3 and
τ1 < τ̂1 < τ2 < τ̂2 < τ̂3 < τ3.

MISE(τ1, τ3) = σ2 + r3.7 (3.7)

with :

|r3.7| ≤ Mε1

[
σ2

τ̂1 − τ0
+

(
τ1 − τ0
τ̂1 − τ0

)2

(µ1 − µ0)
2

]
+ . . .

· · ·+Mε2

[
σ2

τ̂3 − τ̂2
+

(
τ̂3 − τ2
τ̂3 − τ̂2

)2

(µ1 − µ2)
2

]
+ . . .

· · ·+Mε3

[
σ2

τ4 − τ̂3
+

(
τ4 − τ3
τ4 − τ̂3

)2

(µ1 − µ4)
2

]
.
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ii) With non detection : Assume that τ2 is the undetected change point. For notational
convenience, let us still denote by τ̂1 and τ̂3 the two successive potential change points
obtained after Step 1 such that τ̂1 = τ1 + ε1, τ̂3 = τ3 − ε3 and τ1 < τ̂1 < τ2 < τ̂3 < τ3.
Then

MISE(τ1, τ3) = 2σ2 + r3.8 (3.8)

with :

|r3.8| ≤ Mε1

[
σ2

τ̂1 − τ0
+

(
τ1 − τ0
τ̂1 − τ0

)2

(µ1 − µ0)
2

]
+ . . .

· · ·+Mε3

[
σ2

τ4 − τ̂3
+

(
τ4 − τ3
τ4 − τ̂3

)2

(µ1 − µ3)
2

]
.

Proof. See Appendix B. �

In order to measure which kind of alarm (error) impacts more the MISE, we study the
difference between the MISE in the case of the non detection and the MISE in the case of the
false alarm. To begin with, we restricted ourselves to the particular case where r1,i −→ 0 with
i ∈ {1, 2, 3, 4}, which means that εj = 0 with j ∈ {1, 2, 3} and the potential change points are
the true change points. Moreover, we obtain the same results at the first order in the general
case when we put εi 6= 0.

Corollary 3.5 (False alarm) i) Let τ̂1, τ̂2 be the two successive potential change points
obtained after Step 1. Then

MISE(τ1, τ2) = σ2

ii) Let τ̂1, τ̂2, and τ̂3 be the three successive potential change points obtained after Step 1
such that τ1 = τ̂1 < τ̂3 < τ̂2 = τ2. Then

MISE(τ1, τ2) = 2σ2.

iii) The difference between the MISE in the case with false alarm and the case without false
alarm is as follows :

∆MISEFA := MISEwithFA −MISEwithoutFA (3.9)
= σ2

Corollary 3.6 (Non detection) i) Let τ̂1, τ̂2 and τ̂3 be the three successive potential
change points obtained after Step 1 such that τ̂1 = τ1, τ̂2 = τ2 and τ̂3 = τ3. Then

MISE(τ1, τ3) = 2σ2

ii) Next, assume that τ2 is the undetected change point. For mathematical convenience, let
us still denote by τ̂1 and τ̂3 the two successive potential change points obtained after Step
1 such that τ1 = τ̂1 < τ2 < τ̂3 = τ3. Then

MISE(τ1, τ3) = σ2 +
(τ2 − τ1)(τ3 − τ2)

τ3 − τ1
(δµ)2

with δµ = (µ2 − µ1).



P.R. Bertrand, and D. Hadouni 13

iii) The difference between the MISE in the case with non detection and the case without
non detection is as follows :

∆MISEND := MISEwithND −MISEwithoutND (3.10)

=
(τ2 − τ1)(τ3 − τ2)

τ3 − τ1
(δµ)2 − σ2

Proposition 3.7 Let us assume that Propositions 3.3 and 3.4 are satisfied. Then

• if
(
δµ

σ

)2

> 2, then ∆MISEND > ∆MISEFA, namely the impact of the non detection

is more important than the impact of the false alarm .

• On the other side, if
(
δµ

σ

)2

<
8

τ3 − τ1
, then ∆MISEND < ∆MISEFA, namely the

impact of the false alarm is more important than the impact of the non detection.

Proof. We want to show that :(
δµ

σ

)2

> 2 =⇒ ∆MISEND > ∆MISEFA (3.11)

We have :

∆MISEND −∆MISEFA = σ2

[(
(δµ)

σ

)2
(τ2 − τ1)(τ3 − τ2)

τ3 − τ1
− 2

]

Thus,

∆MISEND −∆MISEFA > 0 =⇒ ∆MISEND > ∆MISEFA

=⇒ δµ

σ
>

√
2

τ3 − τ1
(τ2 − τ1)(τ3 − τ2)

Set L = τ3 − τ1 , λ = τ2 − τ1 where L > 0 and λ ∈ [1, L− 1]

Thus, we have : f(λ) =
√

2L
λ(L−λ)

The minimum of f(λ) is reached for λ = L/2, and the maximum is reached for λ = 1.
We deduce then : √

8

L
≤ f(λ) ≤

√
2L

L− 1
<
√

2

Therefore, δµ
σ
>
√

2 implies ∆MISEND > ∆MISEFA.

On the other hand, when δµ
σ
>
√

8
L
we have ∆MISEND < ∆MISEFA. �
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3.3 Bound on the error of type II for Filtered Derivative

Proposition 3.8 Let τ = (τ1, τ2, . . . , τK) be a configuration of K change points, with means
µ = (µ0, . . . , µK) and shifts δ = (δ1, . . . , δK) as described in Subsection 1.1. Then

PNDglobal ≤ K × β∗(C1, A),

where PNDglobal is defined by (3.1),

β∗(C1, A) := Ψ

(
δ0 − C1

σ

√
A

2

)
× Φ

(
C1 − δ0/3

σ

√
A

2

)2

, (3.12)

δ0 is defined by (1.1), and Φ and Ψ are given by (1.2).

Proof. Actually, the proposition Prop. 3.4 is a corollary of [7, Prop 3.2, p 222]. But the [7,
Prop 3.2, p 222] deals with the unilateral case whereas the Prop. 3.4 concerns the bilateral
case. Firstly, let us point that when δk < 0, we can multiply the function FD by (−1), which
brings us back to the case δk > 0. Therefore, without any restriction, we can assume that
δk > 0. Secondly, we have Bk ⊂ B̃k, where

B̃k =
{
∀t ∈ [τk − A, τk + A], FD(t, A) < C1

}
.

Thus, IP
(
Bk

)
≤ ĨP

(
Bk

)
. On the other hand, following [7, Prop. 3.2, p 222], we have,

IP (Bk) ≤ Ψ

(
|δk| − C1

σ

√
A

2

)
× Φ

(
C1 − |δk|/3

σ

√
A

2

)2

. (3.13)

Next, by remarking that the right side of (3.13) is a decreasing function of |δk| and recalling
that δ0 = infk=1,...,K |δk|, we can deduce that

IP (Bk) ≤ β∗(C1, A) := Ψ

(
δ0 − C1

σ

√
A

2

)
× Φ

(
C1 − δ0/3

σ

√
A

2

)2

. (3.14)

On the other hand, we obviously have

PNDglobal ≤
K∑
k=1

IP (Bk)

which combined with (3.14) provides the bound (3.8). This finishes the proof of Proposi-
tion 3.8. �

3.4 Control of the number of false alarms

In this subsection, we want to control not only the Probability of False Alarm (PFA) but also
the Number of False Alarms (NFA) (see Definition 3.1).
Let us denote by K̃ the number of change point select in step 1 of the FDpV method (FD),
then the number of false alarms is (K̃ −K).
Moreover, in order to control the number of false alarms, we need to choose the extra-
parameters A and C1.
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The choice of parameter A

From the subsection 3.3, we can get the feeling that the larger the window size A is, the
smaller type I and type II errors will be. This reasoning holds true as long as

2× A < L0 := inf{|τk+1 − τk|, k = 1, . . . , K}. (3.15)

Thus, we have to choose a parameter A < L0/2, even if we do not exactly know the quantity
L0.

The choice of parameter C1

In [7] (Bertrand, 2000), we have C1 < δ0 with δ0 = inf{|δk|, k = 1, ..., K} where δk is the size
of the average of µk. With different Monte-Carlo simulations (see the subsection 3.5), we note
that the best values of C1 are between 0.1 and 0.2.

3.5 Monte-Carlo simulation

This Monte-Carlo simulation is done for M = 1000. Let (Xj
1 , X

j
2 , . . . , X

j
n) be a sequence of

simulated Gaussian random variables where n = 5000 or n = 50, 000 and j = 1, . . . ,M , with
a variance σ2 = 1 and a mean µt = f(t) where f is a piecewise constant function with a
specified number of change points at different times τ with different means µ.
On each sample, we apply the FDpV method for different values of the extra-parameters A
and C1. We vary the parameter A between 20 and 220 with a step of 10 while we vary the
parameter C1 between 0.1 and 1 with a step of 0.05.
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Example 1

The figures 5 and 6 show respectively the variation of the mean number of non detected
change points and the variation of the mean number of the false alarms in function of the
extra-parameters A and C1 where n = 5000 ; τ = (1000, 1250, 1500, 2000, 3500, 4000, 4500)
and δµ = (−0.5,−1,−1.5, 0.5, 1, 1.5) with δ0 = 0.5.

Figure 5: The mean of the num-
ber of undetected change points

Figure 6: The mean of the number of false
alarm

In the figures 7(a) and 7(b) below, we draw the contours of the mean number of undetected
change points and those of the mean number of false alarm. These contours help us define
an admissible set of extra-parameters. For example, the hatched domain in figure 7(c) cor-
responds to the intersection of zero or one mean number of non detection and zero or one
mean number of false alarm. In this case, a choice of a window A ≥ 70 and a threshold
C1 ∈ [0.15, 0.22] insures a mean number of non detection and a mean number of false alarm
both smaller than 1.

(a) The contour of the mean number of undetected
change points.

(b) The contour of the mean number of false alarm.
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(c) The overlap contour of 7(a) and 7(b).

Figure 7: The contours of the figures 5 and 6 and their overlap

Example 2

The figures 8 and 9 shows respectively the variation of the mean number of the undetected
change points and the mean number of the false alarms in function of the extra-parameters A
and C1 where n = 50.000, τ = (10000, 12500, 15000, 20000, 25000, 32500, 35000, 40000, 45000)
and δµ = (−2,−1.5,−1,−0.5, 0.5, 1, 1.5, 2) with δ0 = 0.5.

Figure 8: The mean of the num-
ber of undetected change points

Figure 9: The mean of the number of false
alarm
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(a) The contour of the number of undetected
change points.

(b) The contour of the number of false alarm.

(c) The overlap contour of 10(a) and 10(b).

Figure 10: The contours of the figures 8 and 9 and their overlap

In the figures 10(a) and 10(b) above, we draw the contours of the mean number of undetected
change points, those of the mean number of false alarms and their overlap.The numbers on
the figure of the overlapping of contours are given as an indication to show the evolution of
the mean number of false alarms (blue) and the mean number of undetected change point
(red). Let us point that on figure 10(c), the intersection of zero or one non detection and false
alarm is void. However, a choice of extra-parameters A ≥ 70 and a threshold C1 ∈ [0.15, 0.22]
would insure a mean number of non detection smaller than one and a mean number of false
alarm smaller than 8.
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Example 3

In this example, we keep the variables n and τ of the example 2 and we take shifts on the
mean µ of the change point smaller than those in the example 1 and 2, that is to say
δµ = (−2,−1.5,−1,−0.25, 0.25, 1, 1.5, 2) with δ0 = 0.25. The figures 11 and 12 show the
variation of the mean number of the undetected change points and those of the mean number
of the false alarms for different values of the extra-parameters A and C1.

Figure 11: The mean of the num-
ber of undetected change points

Figure 12: The mean of the number of false
alarm

In the figures 13(a) and 13(b) below, we draw the contours of the mean number of undetected
change points and those of the mean number of false alarm. A choice of extra-parameters
A ≥ 70 and a threshold C1 ∈ [0.15, 0.22] would insure a mean number of non detection smaller
than 3 and a mean number of false alarm smaller than 8. But, fixing C1 = 0.15 insures a
mean number of non detection smaller than 1 without impact on the mean number of false
alarm.

(a) The contour of the number of undetected change
points.

(b) The contour of the number of false alarm.
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(c) The overlap of the contours 13(a) and 13(b).

Figure 13: The contours of the figures 11 and 12

We note that, in the three examples, when the threshold C1 is smaller than δ0 (especially
when C1 ∈ [0.15, 0.22]) and the window size A is large enough without exceeding the value
L0

2
, we get less undetected change points and less false alarms.

Conclusion
Our analysis suggest a comprehensive way to optimize the Filtered Derivative function extra-
parameters in the first step of the FDpV method. By giving the precise values to choose for the
window size A and the threshold C1 where we have to choose A > 70 and C1 ∈ [0.15, 0.22],
we obtain fewer false alarms and undetected change points. Thus, in the second step, we
calculate less p-values, gaining computational time and memory.
Another method is used in [30]. The first step is still based on the Filtered Derivative function
with the two extra-parameters: the window size A and the threshold C1. Yet, in the second
step, they increase the window size A such that for each value of A they detect a real change
point. This algorithm may detect all the true change points. But the problem of the false
discoveries is not resolved, and can be enhanced by a good initial choice of the parameters A
and C1 .
On the other hand, by fixing a value for the window size A and the threshold C1 in Step 1
of the FDpV method, we detect the real change points and, at the same time, we minimise
the number of the false discoveries. Furthermore, in Step 2, we eliminate more false positives.
Finally, we studied the impact of the false alarms and the undetected change points on the
Mean Integrated Square Error in order to determine which one has a more significant impact.
To sum up, for the FDpV method, we have specified the values of the window size A and the
threshold C1 in Step 1. In forthcoming studies, we need to find a way to estimate the value
of the threshold p∗2 in Step 2 to discard as many false positives as possible.
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A Proof of Proposition 3.3

Proof.

i) Without false alarm :

ISE(τ1, τ2) = ISE(τ1, τ̂1) + ISE(τ̂1, τ̂2) + ISE(τ̂2, τ2)
- ISE(τ1, τ̂1) = ε1(µ1 − µ̂0)

2

For τ0 = τ̂0 et τ3 = τ̂3, we have :

µ̂0 = σ√
τ̂1−τ0

× U0 + (τ̂1−τ1)µ1+(τ1−τ0)µ0
τ̂1−τ0

µ1 − µ̂0 = µ1 −
σ√

τ̂1 − τ0
× U0 −

(τ̂1 − τ1)µ1 − (τ1 − τ0)µ0

τ̂1 − τ0

=
(τ̂1 − τ0)µ1 − (τ̂1 − τ1)µ1 − (τ1 − τ0)µ0

τ̂1 − τ0
− σ√

τ̂1 − τ0
× U0

=
τ1 − τ0
τ̂1 − τ0

(µ1 − µ0)−
σ√

τ̂1 − τ0
× U0

MISE(τ1, τ̂1) = E
(
ε1(µ1 − µ̂0)

2
)

= E

[
ε1

(
τ1 − τ0
τ̂1 − τ0

(µ1 − µ0)−
σ√

τ̂1 − τ0
× U0

)2
]

≤ ‖ε1‖∞ × E

[(
τ1 − τ0
τ̂1 − τ0

(µ1 − µ0)−
σ√

τ̂1 − τ0
× U0

)2
]

‖ε1‖∞ = sup|ε1k | ≤Mε1

E
[(

τ1−τ0
τ̂1−τ0 (µ1 − µ0)− σ√

τ̂1−τ0
× U0

)2]
= σ2

τ̂1−τ0 +
(
τ1−τ0
τ̂1−τ0

)2
(µ1 − µ0)

2

Thus :

MISE(τ1, τ̂1) ≤ Mε1

[
σ2

τ̂1 − τ0
+

(
τ1 − τ0
τ̂1 − τ0

)2

(µ1 − µ0)
2

]

ISE(τ̂1, τ̂2) = (τ̂2 − τ̂1)(µ1 − µ̂1)
2

We have : µ̂1 = µ1 + σ√
τ̂2−τ̂1

× U1 ⇒ µ1 − µ̂1 = − σ√
τ̂2−τ̂1

× U1

Thus :

MISE(τ̂1, τ̂2) = E
(
(τ̂2 − τ̂1)(µ1 − µ̂1)

2
)

= (τ̂2 − τ̂1)E(µ1 − µ̂1
2)

= (τ̂2 − τ̂1)
σ2

τ̂2 − τ̂1
× E(U2

1 )

= σ2
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ISE(τ̂2 − τ2) = ε2(µ1 − µ̂2)
2

we have : µ̂2 = σ√
τ̂3−τ̂2

× U2 + (τ2−τ̂2)µ1+(τ̂3−τ2)µ2
τ̂3−τ̂2

µ1 − µ̂2 = µ1 −
σ√

τ3 − τ̂2
× U2 −

(τ2 − τ̂2)µ1 − (τ3 − τ2)µ2

τ3 − τ̂2

=
(τ3 − τ2)µ1 − (τ2 − τ̂2)µ1 − (τ3 − τ2)µ2

τ3 − τ̂2
− σ√

τ3 − τ̂2
× U2

=
τ3 − τ2
τ3 − τ̂2

(µ1 − µ2)−
σ√

τ3 − τ̂2
× U2

MISE(τ̂2, τ2) = E
(
ε2(µ1 − µ̂2)

2
)

= E

[
ε2

(
τ3 − τ2
τ3 − τ̂2

(µ1 − µ2)−
σ√

τ3 − τ̂2
× U2

)2
]

≤ ‖ε2‖∞ × E

[(
τ3 − τ2
τ3 − τ̂2

(µ1 − µ2)−
σ√

τ3 − τ̂2
× U2

)2
]

‖ε2‖∞ = sup|ε2k | ≤Mε2

E
[(

τ3−τ2
τ3−τ̂2 (µ1 − µ2)− σ√

τ3−τ̂2
× U2

)2]
= σ2

τ3−τ̂2 +
(
τ3−τ2
τ3−τ̂2

)2
(µ1 − µ2)

2

Thus :

MISE(τ1, τ̂1) ≤ Mε2

[
σ2

τ3 − τ̂2
+

(
τ3 − τ2
τ3 − τ̂2

)2

(µ1 − µ2)
2

]

Thus, we can deduce that :

MISE(τ1, τ2) ≤ σ2 + ε1

[
σ2

τ̂1 − τ0
+

(
τ1 − τ0
τ̂1 − τ0

)2

(µ1 − µ0)
2

]
(A.1)

+ ε2

[
σ2

τ3 − τ̂2
+

(
τ3 − τ2
τ3 − τ̂2

)2

(µ1 − µ2)
2

]

ii) With false alarm : ISE(τ1, τ2) = ISE(τ1, τ̂1) + ISE(τ̂1, τ̂3) + ISE(τ̂3, τ̂2) + ISE(τ̂2, τ2)

ISE(τ1, τ̂1) = ε1(µ1 − µ̂0)
2

we have : µ̂0 = σ√
τ̂1−τ0

× U0 + (τ̂1−τ1)µ1+(τ1−τ0)µ0
τ̂1−τ0

µ1 − µ̂0 = µ1 −
σ√

τ̂1 − τ0
× U0 −

(τ̂1 − τ1)µ1 + (τ1 − τ0)µ0

τ̂1 − τ0
=

τ1 − τ0
τ̂1 − τ0

(µ1 − µ0)−
σ√

τ̂1 − τ0
× U0
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MISE(τ1, τ̂1) = E
(
ε1(µ1 − µ̂0)

2
)

= E

[
ε1

(
τ1 − τ0
τ̂1 − τ0

(µ1 − µ0)−
σ√

τ̂1 − τ0
× U0

)2
]

≤ ‖ε1‖∞ × E

[(
τ1 − τ0
τ̂1 − τ0

(µ1 − µ0)−
σ√

τ̂1 − τ0
× U0

)2
]

‖ε1‖∞ = sup|ε1k | ≤Mε1

E
[(

τ1−τ0
τ̂1−τ0 (µ1 − µ0)− σ√

τ̂1−τ0
× U0

)2]
= σ2

τ̂1−τ0 +
(
τ1−τ0
τ̂1−τ0

)2
(µ1 − µ0)

2

Thus :

MISE(τ1, τ̂1) ≤ Mε1

[
σ2

τ̂1 − τ0
+

(
τ1 − τ0
τ̂1 − τ0

)2

(µ1 − µ0)
2

]

ISE(τ̂1, τ̂3) = (τ̂3 − τ̂1)(µ1 − µ̂1)
2

We have : µ̂1 = µ1 + σ√
τ̂3−τ̂1

× U1 ⇒ µ1 − µ̂1 = − σ√
τ̂3−τ̂1

× U1

Thus :

MISE(τ̂1, τ̂3) = E
(
(τ̂3 − τ̂1)(µ1 − µ̂1)

2
)

= (τ̂3 − τ̂1)E(µ1 − µ̂1)
2

= (τ̂3 − τ̂1)
σ2

τ̂3 − τ̂1
× E(U2

1 )

= σ2

ISE(τ̂3, τ̂2) = (τ̂2 − τ̂3)(µ1 − µ̂2
2)

We have :
µ̂1 = µ2 + σ√

τ̂2−τ̂3
× U2 ⇒ µ1 − µ̂2 = − σ√

τ̂2−τ̂3
× U2

Thus :

MISE(τ̂3, τ̂2) = E
(
(τ̂2 − τ̂3)(µ1 − µ̂1)

2
)

= (τ̂2 − τ̂3)E(µ1 − µ̂2)
2

= (τ̂2 − τ̂3)
σ2

τ̂2 − τ̂3
× E(U2

2 )

= σ2

ISE(τ̂2, τ2) = ε2(µ1 − µ̂3)
2

we have : µ̂3 = σ√
τ̂2−τ4

× U2 + (τ̂2−τ2)µ1+(τ2−τ4)µ3
τ̂2−τ4

µ1 − µ̂3 = µ1 −
σ√

τ̂2 − τ4
× U2 −

(τ̂2 − τ2)µ1 + (τ2 − τ4)µ3

τ̂2 − τ4
=

τ2 − τ4
τ̂2 − τ4

(µ1 − µ3)−
σ√

τ̂2 − τ4
× U2
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MISE(τ̂2, τ2) = E
(
ε2(µ1 − µ̂3)

2
)

= E

[
ε2

(
τ2 − τ4
τ̂2 − τ4

(µ1 − µ3)−
σ√

τ̂2 − τ4
× U2

)2
]

≤ ‖ε2‖∞ × E

[(
τ2 − τ4
τ̂2 − τ4

(µ1 − µ3)−
σ√

τ̂2 − τ4
× U2

)2
]

‖ε2‖∞ = sup|ε2k | ≤Mε2

E
[(

τ2−τ4
τ̂2−τ4 (µ1 − µ3)− σ√

τ̂2−τ4
× U2

)2]
= σ2

τ̂2−τ4 +
(
τ2−τ4
τ̂2−τ4

)2
(µ1 − µ3)

2

Thus :

MISE(τ2, τ̂2) ≤ Mε2

[
σ2

τ̂2 − τ4
+

(
τ2 − τ4
τ̂2 − τ4

)2

(µ1 − µ3)
2

]

Then :

MISE(τ1, τ2) ≤ 2σ2 +Mε1

[
σ2

τ̂1 − τ0
+

(
τ1 − τ0
τ̂1 − τ0

)2

(µ1 − µ0)
2

]
(A.2)

+ Mε2

[
σ2

τ̂2 − τ4
+

(
τ2 − τ4
τ̂2 − τ4

)2

(µ1 − µ3)
2

]

�

B Proof of Proposition 3.4

Proof.

i) Without non detection :
ISE(τ1, τ3) = ISE(τ1, τ̂1) + ISE(τ̂1, τ̂2) + ISE(τ̂2, τ2) + ISE(τ2, τ̂3) + ISE(τ̂3, τ3)
- ISE(τ1, τ̂1) = ε1(µ1 − µ̂0)

2

For τ0 = τ̂0 et τ4 = τ̂4, we have :

µ̂0 = σ√
τ̂1−τ0

× U0 + (τ̂1−τ1)µ1+(τ1−τ0)µ0
τ̂1−τ0

µ1 − µ̂0 = µ1 −
σ√

τ̂1 − τ0
× U0 −

(τ̂1 − τ1)µ1 − (τ1 − τ0)µ0

τ̂1 − τ0

=
(τ̂1 − τ0)µ1 − (τ̂1 − τ1)µ1 − (τ1 − τ0)µ0

τ̂1 − τ0
− σ√

τ̂1 − τ0
× U0

=
τ1 − τ0
τ̂1 − τ0

(µ1 − µ0)−
σ√

τ̂1 − τ0
× U0
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MISE(τ1, τ̂1) = E
(
ε1(µ1 − µ̂0)

2
)

= E

[
ε1

(
τ1 − τ0
τ̂1 − τ0

(µ1 − µ0)−
σ√

τ̂1 − τ0
× U0

)2
]

≤ ‖ε1‖∞ × E

[(
τ1 − τ0
τ̂1 − τ0

(µ1 − µ0)−
σ√

τ̂1 − τ0
× U0

)2
]

‖ε1‖∞ = sup|ε1k | ≤Mε1

E
[(

τ1−τ0
τ̂1−τ0 (µ1 − µ0)− σ√

τ̂1−τ0
× U0

)2]
= σ2

τ̂1−τ0 +
(
τ1−τ0
τ̂1−τ0

)2
(µ1 − µ0)

2

Thus :

MISE(τ1, τ̂1) ≤ Mε1

[
σ2

τ̂1 − τ0
+

(
τ1 − τ0
τ̂1 − τ0

)2

(µ1 − µ0)
2

]

ISE(τ̂1, τ̂2) = (τ̂1, τ̂2)(µ1 − µ̂1)
2

We have :
µ̂1 = µ1 + σ√

τ̂2−τ̂1
× U1 ⇒ µ1 − µ̂1 = − σ√

τ̂2−τ̂1
× U1

Thus :

MISE(τ̂1, τ̂2) = E
(
(τ̂2 − τ̂1)(µ1 − µ̂1)

2
)

= (τ̂2 − τ̂1)E(µ1 − µ̂1)
2

= (τ̂2 − τ̂1)
σ2

τ̂2 − τ̂1
× E(U2

1 )

= σ2

ISE(τ̂2 − τ2) = ε2(µ1 − µ̂2)
2

we have : µ̂2 = σ√
τ̂3−τ̂2

× U2 + (τ2−τ̂2)µ1+(τ̂3−τ2)µ2
τ̂3−τ̂2

µ1 − µ̂2 = µ1 −
σ√

τ3 − τ̂2
× U2 −

(τ2 − τ̂2)µ1 − (τ3 − τ2)µ2

τ3 − τ̂2

=
(τ3 − τ2)µ1 − (τ2 − τ̂2)µ1 − (τ3 − τ2)µ2

τ3 − τ̂2
− σ√

τ3 − τ̂2
× U2

=
τ3 − τ2
τ3 − τ̂2

(µ1 − µ2)−
σ√

τ3 − τ̂2
× U2

MISE(τ̂2, τ2) = E
(
ε2(µ1 − µ̂2)

2
)

= E

[
ε2

(
τ3 − τ2
τ3 − τ̂2

(µ1 − µ2)−
σ√

τ3 − τ̂2
× U2

)2
]

≤ ‖ε2‖∞ × E

[(
τ3 − τ2
τ3 − τ̂2

(µ1 − µ2)−
σ√

τ3 − τ̂2
× U2

)2
]



P.R. Bertrand, and D. Hadouni 29

‖ε2‖∞ = sup|ε2k | ≤Mε2

E
[(

τ3−τ2
τ3−τ̂2 (µ1 − µ2)− σ√

τ3−τ̂2
× U2

)2]
= σ2

τ3−τ̂2 +
(
τ3−τ2
τ3−τ̂2

)2
(µ1 − µ2)

2

Thus :

MISE(τ1, τ̂1) ≤ ε2

[
σ2

τ3 − τ̂2
+

(
τ3 − τ2
τ3 − τ̂2

)2

(µ1 − µ2)
2

]

ISE(τ2, τ̂3) = (τ̂3 − τ2)(µ1 − µ̂2)
2

We have :
µ̂2 = µ1 + σ√

τ̂3−τ2
× U3 ⇒ µ1 − µ̂2 = − σ√

τ̂2−τ̂1
× U3

Thus :

MISE(τ̂1, τ̂2) = E
(
(τ̂2 − τ̂1)(µ1 − µ̂2)

2
)

= (τ̂2 − τ̂1)E(µ1 − µ̂1
2)

= (τ̂2 − τ̂1)
σ2

τ̂2 − τ̂1
× E(U2

3 )

= σ2

ISE(τ̂3, τ3) = ε3(µ1 − µ̂4)
2

we have : µ̂4 = σ√
τ4−τ̂3

× U4 + (τ3−τ̂3)µ1+(τ4−τ3)µ4
τ4−τ̂3

µ1 − µ̂4 = µ1 −
σ√

τ4 − τ̂3
× U4 −

(τ3 − τ̂3)µ1 + (τ4 − τ3)µ4

τ4 − τ3
=

τ4 − τ3
τ4 − τ̂3

(µ1 − µ4)−
σ√

τ4 − τ̂3
× U4

MISE(τ̂3, τ3) = E
(
ε3(µ1 − µ̂4)

2
)

= E

[
ε3

(
τ4 − τ3
τ4 − τ̂3

(µ1 − µ4)−
σ√

τ4 − τ̂3
× U4

)2
]

≤ ‖ε3‖∞ × E

[(
τ4 − τ3
τ4 − τ̂3

(µ1 − µ4)−
σ√

τ4 − τ̂3
× U4

)2
]

‖ε3‖∞ = sup|ε3k | ≤Mε3

E
[(

τ4−τ3
τ4−τ̂3 (µ1 − µ4)− σ√

τ4−τ̂3
× U4

)2]
= σ2

τ4−τ̂3 +
(
τ4−τ3
τ4−τ̂3

)2
(µ1 − µ4)

2

Thus :

MISE(τ̂3, τ3) ≤ Mε3

[
σ2

τ4 − τ̂3
+

(
τ4 − τ3
τ4 − τ̂3

)2

(µ1 − µ4)
2

]
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Thus, we can deduce that :

MISE(τ1, τ3) ≤ 2σ2 +Mε1

[
σ2

τ̂1 − τ0
+

(
τ1 − τ0
τ̂1 − τ0

)2

(µ1 − µ0)
2

]
(B.1)

+ Mε2

[
σ2

τ3 − τ̂2
+

(
τ3 − τ2
τ3 − τ̂2

)2

(µ1 − µ2)
2

]

+ Mε3

[
σ2

τ4 − τ̂3
+

(
τ4 − τ3
τ4 − τ̂3

)2

(µ1 − µ4)
2

]
ii) With non detection : ISE(τ1, τ3) = ISE(τ1, τ̂1)+ISE(τ̂1, τ2)+ISE(τ2, τ̂3)+ISE(τ̂3, τ3)

ISE(τ1, τ̂1) = ε1(µ1 − µ̂0)
2

For τ0 = τ̂0 et τ4 = τ̂4, we have :

µ̂0 = σ√
τ̂1−τ0

× U0 + (τ̂1−τ1)µ1+(τ1−τ0)µ0
τ̂1−τ0

µ1 − µ̂0 = µ1 −
σ√

τ̂1 − τ0
× U0 −

(τ̂1 − τ1)µ1 − (τ1 − τ0)µ0

τ̂1 − τ0

=
(τ̂1 − τ0)µ1 − (τ̂1 − τ1)µ1 − (τ1 − τ0)µ0

τ̂1 − τ0
− σ√

τ̂1 − τ0
× U0

=
τ1 − τ0
τ̂1 − τ0

(µ1 − µ0)−
σ√

τ̂1 − τ0
× U0

MISE(τ1, τ̂1) = E
(
ε1(µ1 − µ̂0)

2
)

= E

[
ε1

(
τ1 − τ0
τ̂1 − τ0

(µ1 − µ0)−
σ√

τ̂1 − τ0
× U0

)2
]

≤ ‖ε1‖∞ × E

[(
τ1 − τ0
τ̂1 − τ0

(µ1 − µ0)−
σ√

τ̂1 − τ0
× U0

)2
]

‖ε1‖∞ = sup|ε1k | ≤Mε1

E
[(

τ1−τ0
τ̂1−τ0 (µ1 − µ0)− σ√

τ̂1−τ0
× U0

)2]
= σ2

τ̂1−τ0 +
(
τ1−τ0
τ̂1−τ0

)2
(µ1 − µ0)

2

Thus :

MISE(τ1, τ̂1) ≤ Mε1

[
σ2

τ̂1 − τ0
+

(
τ1 − τ0
τ̂1 − τ0

)2

(µ1 − µ0)
2

]
ISE(τ̂1, τ̂2) = (τ̂1, τ̂2)(µ1 − µ̂1)

2

We have :
µ̂1 = µ1 + σ√

τ̂2−τ̂1
× U1 ⇒ µ1 − µ̂1 = − σ√

τ̂2−τ̂1
× U1

Thus :

MISE(τ̂1, τ2) = E
(
(τ2 − τ̂1)(µ1 − µ̂1)

2
)

= (τ2 − τ̂1)E(µ1 − µ̂1)
2

= (τ2 − τ̂1)
σ2

τ2 − τ̂1
× E(U2

1 )

= σ2
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ISE(τ2, τ̂3) = (τ̂3 − τ2)(µ1 − µ̂2)
2

We have :
µ̂2 = µ1 + σ√

τ̂3−τ2
× U2 ⇒ µ1 − µ̂2 = − σ√

τ̂2−τ̂1
× U2

Thus :

MISE(τ̂1, τ̂2) = E
(
(τ̂2 − τ̂1)(µ1 − µ̂2)

2
)

= (τ̂2 − τ̂1)E(µ1 − µ̂1
2)

= (τ̂2 − τ̂1)
σ2

τ̂2 − τ̂1
× E(U2

2 )

= σ2

ISE(τ̂3, τ3) = ε3(µ1 − µ̂3)
2

we have : µ̂3 = σ√
τ4−τ̂3

× U3 + (τ3−τ̂3)µ1+(τ4−τ3)µ3
τ4−τ̂3

µ1 − µ̂3 = µ1 −
σ√

τ4 − τ̂3
× U3 −

(τ3 − τ̂3)µ1 + (τ4 − τ3)µ3

τ4 − τ̂3
=

τ4 − τ3
τ4 − τ̂3

(µ1 − µ3)−
σ√

τ4 − τ̂3
× U3

MISE(τ̂3, τ3) = E
(
ε3(µ1 − µ̂3)

2
)

= E

[
ε3

(
τ4 − τ3
τ4 − τ̂3

(µ1 − µ3)−
σ√

τ4 − τ̂3
× U3

)2
]

≤ ‖ε3‖∞ × E

[(
τ4 − τ3
τ4 − τ̂3

(µ1 − µ3)−
σ√

τ4 − τ̂3
× U3

)2
]

‖ε3‖∞ = sup|ε3k | ≤Mε3

E
[(

τ4−τ3
τ4−τ̂3 (µ1 − µ3)− σ√

τ4−τ̂3
× U3

)2]
= σ2

τ4−τ̂3 +
(
τ4−τ3
τ4−τ̂3

)2
(µ1 − µ3)

2

Thus :

MISE(τ1, τ3) ≤ Mε3

[
σ2

τ4 − τ̂3
+

(
τ4 − τ3
τ4 − τ̂3

)2

(µ1 − µ3)
2

]

Thus, we can deduce that :

MISE(τ1, τ3) ≤ 2σ2 +Mε1

[
σ2

τ̂1 − τ0
+

(
τ1 − τ0
τ̂1 − τ0

)2

(µ1 − µ0)
2

]
(B.2)

+ Mε3

[
σ2

τ4 − τ̂3
+

(
τ4 − τ3
τ4 − τ̂3

)2

(µ1 − µ3)
2

]

�
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