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Introduction

Change point detection is an important problem in various applications: signal processing [START_REF] Boutoille | Systèmes de fusion pour la segmentation hors-ligne de signaux gpd multiporteuses[END_REF], global warming [START_REF] Wang | Testing for increasing weather risk[END_REF], magnetospheric dynamics [START_REF] Wanliss | Space storm as phase transition[END_REF], neuro-physiological studies [START_REF] Schneider | Messages of oscillatory correlograms : A spike train model[END_REF][START_REF]Unitary events in multiple single neuron spiking activity: I. detection and significance[END_REF][START_REF] Grun | Unitary events in multiple single neuron spiking activity. II. non-stationary data[END_REF], motion of chemical or physical particles [START_REF] Lim | Modeling single-file diffusion by step fractional brownian motion and generalized fractional langevin equation[END_REF], finance [START_REF] Bianchi | Efficient markets and behacioral finance : a comprehensive multifractal model[END_REF][START_REF] Xiao | Parameter identification for drift fractional brownian motions with application to the chinese stock markets[END_REF], health [START_REF] Khalfa | Heart rate regulation processed through wavelet analysis and change detection., Some case studies[END_REF]. . . Most of the previous examples concern detection of change on the mean of series derived from the original one, as the series of energy calculated by the wavelet analysis [START_REF] Khalfa | Heart rate regulation processed through wavelet analysis and change detection., Some case studies[END_REF] and the series of Hurst index [START_REF] Bianchi | Efficient markets and behacioral finance : a comprehensive multifractal model[END_REF][START_REF] Wanliss | Space storm as phase transition[END_REF][START_REF] Xiao | Parameter identification for drift fractional brownian motions with application to the chinese stock markets[END_REF]. However, in all those cases, we still detect change on the mean of the derived series, that is change on the mean value of the Hurst series [START_REF] Bianchi | Efficient markets and behacioral finance : a comprehensive multifractal model[END_REF][START_REF] Wanliss | Space storm as phase transition[END_REF][START_REF] Xiao | Parameter identification for drift fractional brownian motions with application to the chinese stock markets[END_REF] or change of the mean value of the wavelet transform for the series of energy [START_REF] Khalfa | Heart rate regulation processed through wavelet analysis and change detection., Some case studies[END_REF]. To sum up, change point detection on the mean is a relevant question in many applications. On the other hand, in statistics, the change point analysis field has been studied for more than forty years [START_REF] Csörgö | Strong approximations in probability and statistics[END_REF][START_REF] Basseville | Detection of abrupt changes: theory and application[END_REF][START_REF] Brodsky | Nonparametric methods in change-point problems[END_REF] or [START_REF] Hušková | Change point analysis based on the empirical characteristic functions[END_REF][START_REF] Gombay | Monitoring parameter change in ar(p) time series models[END_REF][START_REF] Rigaill | Learning sparse penalties for changepoint detection using max margin interval regression[END_REF] for an updated overview. Depending on the method of data acquisition, we distinguish two kinds of change point detection :

• We observe the whole time series and we want to detect all the change point a posteriori or offline, see e.g. [START_REF] Bertrand | Off-line detection of multiple change points by the filtered derivative with p-value method[END_REF][START_REF] Boutoille | A hybrid fusion system applied to off-line detection and change-points estimation[END_REF].

• We observe the time series and we want to detect a change point as soon as possible. It is the online change point detection, see e.g [START_REF] Fearnhead | On-line inference for multiple change point problems[END_REF][START_REF] Bertrand | Detecting small shift on the mean by finite moving average[END_REF].

In this work, we only consider the 'a posteriori' detection which is called change point analysis in the statistical literature. We describe our framework with a toy model in section 1.

At the beginning of 21st century, the method used for this kind of problem was the Penalized Least Square Criterion. This algorithm is based on the minimisation of the contrast function when the number of change points is known [START_REF] Bai | Estimating and testing linear models with multiple structural changes[END_REF]. When the number of change point is unknown, many authors use the penalized version of the contrast function [START_REF] Lavielle | Least-squares estimation of an unknown number of shifts in a time series[END_REF]. From a computational point of view, the PLS method uses dynamic programming algorithms and requires matrix operations. Therefore, the time and memory complexity of PLS algorithm is of order O(n 2 ), where n denotes the size of the dataset. Due to the data deluge, the sizes of datasets become larger and larger, to the point where the computational complexity of this statistical method has become a challenge, see e.g [START_REF] Ji | Multi-scale internet traffic analysis using piecewise self-similar processes[END_REF] for internet traffic, [START_REF] Bai | Estimating and testing linear models with multiple structural changes[END_REF][START_REF] Bertrand | Modelling NASDAQ series by sparse multifractional brownian motion[END_REF][START_REF] Bianchi | Efficient markets and behacioral finance : a comprehensive multifractal model[END_REF][START_REF] Frezza | Modeling the time-changing dependence in stock markets[END_REF] for economics or High Frequency finance, [START_REF] Khalfa | Heart rate regulation processed through wavelet analysis and change detection., Some case studies[END_REF][START_REF] Azzaoui | Classifying heart-rate by change detection and wavelet methods for emergency physicians[END_REF] for heartbeat series and health. Among the different methods for a posteriori change detection, the use of a Filtered Derivative function has been introduced by [START_REF] Benveniste | Detection of abrupt changes in signals and dynamical systems: some statistical aspects, Analysis and optimization of systems[END_REF][START_REF] Basseville | Detection of abrupt changes: theory and application[END_REF]. The advantage of the Filtered Derivative method is the time and memory complexity, both of order O(n) [START_REF] Bertrand | Off-line detection of multiple change points by the filtered derivative with p-value method[END_REF][START_REF] Messer | The shark function -asymptotoc behavior of the filetered derivative for point process in case of change points[END_REF][START_REF] Soh | High-dimensional change-point estimation: Combining filtering with convex optimization[END_REF][START_REF] Messer | A multiple filter test for the detection of rate changes in renewal processes with varying variance[END_REF]. On the other hand, Filtered Derivative method leads to many false discoveries of change points. Recently, a new method called Filtered Derivative with p-value (FDpV) has been introduced [START_REF] Bertrand | Off-line detection of multiple change points by the filtered derivative with p-value method[END_REF]. FDpV is a two-step procedure: the first step is based on the Filtered Derivative function and detects the potential change points. In the second step we calculate their p-value to eliminate the false alarms. In [START_REF] Messer | A multiple filter test for the detection of rate changes in renewal processes with varying variance[END_REF], the first step is still based on Filtered Derivative, but the second step consists on increasing the window size A in order to find the true positives.

Yet, the problem of the false discoveries with the Filtered Derivative function, in the first step, was not resolved, even if in the second step, the number of false alarms and non-detections drop substantially. Indeed, most of the false discoveries at the first step will be discarded during the second step by calculating their p-values. However, these calculations still increase the computational time. This problem led us to think of a way to minimise the number of false alarms and also the number of undetected change points in the first step. Furthermore, we investigate the impact of the false positives and the undetected change points on the Mean Integrated Square Error (MISE). The rest of this article is organized as follows. In Section 1, we describe the problem of change point analysis with a toy model and we give some comparison criterion. In Section 2, we recall the method of the Penalized Least Square and the Filtered derivative with p-Value in order to analyse the problem of change points. In section 3, we expand on the Filtered Derivative with p-Value method by providing a method to choose the extra parameters of Step 1 and we show which impact is more important on MISE. All the technical proofs are postponed in appendices.

Change point analysis

In this section, we describe the problem of the change point analysis in a toy model that will be used throughout the sequel of this work. Then, we give some comparison criterion.

Toy model

Let X = (X 1 , X 2 , . . . , X n ) be a series indexed by the time t = 1, 2, . . . , n. We assume that a segmentation τ = (τ 1 , . . . , τ K ) exists such that :

• X t is a family of independent identically distributed (iid) random variables for t ∈ (τ k , τ k+1 ],

• k = 0, . . . , K, where by convention τ 0 = 0 and τ K+1 = n.

The most simple model is X ∼ N (µ(•), σ 2 ) a sequence of independent standard Gaussian variables such that X t ∈ N (µ(t), 1), where N (µ, σ 2 ) denotes the Gaussian law with mean µ and variance σ 2 . The function of time t -→ µ(t) is piecewise constant that is to say µ(t) = µ k for all t ∈ (τ k , τ k+1 ], see eg. Fig. 3 and Fig. 4. To sum up, we have :

• a configuration of K change points τ = (τ 1 , . . . , τ K ) enlarged, by convention, by adding τ 0 = 0 and τ K+1 = n,

• associated to the configuration of mean values µ = (µ 0 , . . . , µ K ),

• X t ∈ N (µ k , σ), for t ∈ (τ k , τ k+1
] and for all k = 0, . . . , K.

• For notational convenience, we define the configuration of shifts δ = (δ 1 , . . . , δ K ) where

δ k = µ k -µ k-1 , for k = 1, . . . , K.
• The minimal distance between two consecutive change points is defined by

L 0 = inf{|τ k+1 -τ k |, f or k = 0, . . . , K}.
• The minimal absolute value of the shifts is

δ 0 = inf{|δ k |, k = 1, . . . , K}. (1.1)
Let us also recall the definition of the cumulative distribution function for standard Gaussian law

Φ(x) = 1 √ 2π x -∞ e -u 2 2 du and Ψ(x) = 1 -Φ(x). (1.2)

The Comparison Criterion

We have to estimate the configuration τ = (τ 1 , . . . , τ K ) and the values of the mean µ = (µ 0 , µ 1 , . . . , µ K ). We denote the corresponding estimates by τ = (τ 1 , . . . , τ K ) and μ = (μ 0 , μ1 , . . . , μ K ). Stress that in real life situations the number of change points is also unknown and is estimated by K. In this frame, the comparison criterion concerning the different methods for change point analysis are :

1. The quality of estimation. For one sample, this quality can be measured by :

• The number of estimated change points. More precisely, the absolute value of the difference between the number of estimated and the number of true change points and | K -K|.

• The accuracy of the estimation of the change point. It is the distance between the true change points and the estimated change points, as defined by

d 2 (τ, τ ) = K k=1 |τ k -τ j(k) | 2 , (1.3) 
where τ j(k) , for each k = 1, . . . , K, denotes the potential change point which is the closer to the right change point τ k .

• The integrated square error (ISE). Actually, we can reformulate the problem as a problem of estimation of a noisy signal, see eg. [START_REF] Arlot | Segmentation of the mean of heteroscedastic data via crossvalidation[END_REF][START_REF] Birgé | Minimal penalties for gaussian model selection[END_REF]. The signal is

s(t) = K k=0 µ k × 1 (τ k ,τ k+1 ] (t)
where we have set by convention τ 0 = 0 and τ K+1 = n. Therefore the estimated signal is

s(t) = K k=0 µ k × 1 ( τ k , τ k+1 ] (t)
and the integrated square error (ISE) is defined by

ISE = n t=1 ( s(t) -s(t)) 2
2. The mean value of estimations: a result obtained for just one simulation can be hazardous. So, we have to do M simulations, with e.g. M = 1, 000. Then, we calculate the mean integrated square error (MISE) and the histogram of K with the percentage of the true changes, or the mean and standard deviation of the misestimation of the number of change point : ( K -K).

3. The time complexity and the memory complexity: it is the mean CPU (Central Processing Unit) time for estimating s and the amount of memory is used.

2 Some methods for change point analysis 

Penalized Least Square method (PLS)

Set S K = {τ = (τ 1 , . . . , τ K ) such that card(τ ) = K}, where card(τ ) denotes the dimension of the change points configuration τ .

1 st case : the number of change points K is known

For each configuration of change τ ∈ S K , we can define

µ k = mean(X, [τ k + 1, τ k+1 ]) f or k = 0, . . . , K (2.2) 
where mean(X, Box) denotes the mean of the family X t for the indices t ∈ Box as defined by (2.1). Next, we search the configuration of change points τ K ∈ S K which minimises the square error Q(τ ) defined by

Q(τ ) = K k=0 τ k+1 t=τ k +1 |X t -µ k | 2 . (2.3)
That is to say such that τ K = argmin

τ K ∈S K Q(τ ).
2 nd case : the number of change points K is unknown

We remark that minimising the function Q(τ ) with an unknown number of changes will lead to consider the trivial configuration of changes τ = (1, 2, . . . , n) as optimal. To avoid this drawback, we add a penalty term proportional to the length of the change point configuration. Eventually, we want to minimise

pen(K) = Q( τ K ) + β × K for K = 0, . . . , n.
The parameter β adjusts the trade-off between minimising the square error Q( τ K ) and minimising the dimension of the change point configuration card( τ K ) = K. Indeed, a large value of β would allow to detect only the most significant change points, while a low value of β produces a high number of changes, with many false detections. Thus, different choices of the penalty coefficient β are possible. According to the criterion of information AIC and the Schwarz criterion, [START_REF] Lavielle | Least-squares estimation of an unknown number of shifts in a time series[END_REF] suggests to use a positive β n which converges to 0 when the series size n converges to infinity. For this model, [START_REF] Yao | Estimating the number of change-points via schwarzs criterion. statistics and probability letters[END_REF] has proved the consistency of the Schwarz criterion, with

β n = 2σ 2 (ln n) n .
The same choice is proposed in [START_REF] Lavielle | Least-squares estimation of an unknown number of shifts in a time series[END_REF][START_REF] Lavielle | Detection of multiple change points in multivariate time series[END_REF]. In [START_REF] Birgé | Minimal penalties for gaussian model selection[END_REF], the proposed choice is

β n = σ 2 n × 2 + 5 × ln( n K )
where σ 2 is the variance assumed to be constant and known and n the size of the series. In Fig. 1 below, we have plotted the contrast function and the penalized contrast function [START_REF] Lavielle | Least-squares estimation of an unknown number of shifts in a time series[END_REF][START_REF] Lavielle | Detection of multiple change points in multivariate time series[END_REF]. We clearly see in the figure 2.1 that the penalized contrast is almost horizontal. Thus, the minimal value fluctuates largely depending on the choice of the parameter β. 

Filtered Derivative with p-Value method (FDpV)

In this subsection, we describe the FDpV method which is based on two procedures. In the first procedure, we use the function of Filtered Derivative to select a set of potential change points, whereas in the second one, we calculate the p-value for each change point in order to keep only the true positive. Precisely, the method is defined as follows:

Step 1 : Filtered Derivative

The first step (FD selection) depends on two parameters: the window size A and the threshold C 1 .

Computation of the Filtered Derivative function :

The Filtered Derivative function is defined as the difference between the estimators of the mean computed in two sliding windows respectively to the right and to the left of the time t, both of size A, with the following formula :

F D(t, A) = µ(X, [t + 1, t + A]) -µ(X, [t -A + 1, t]), (2.4) f or A < t < n -A,
where mean(X, Box) denotes the mean of the family X t for the indices t ∈ Box as defined by (2.1). This method consists on filtering data by computing the estimators of the parameter µ before applying a discrete derivation. So this construction explains the name of the algorithm, so called Filtered Derivative method [START_REF] Benveniste | Detection of abrupt changes in signals and dynamical systems: some statistical aspects, Analysis and optimization of systems[END_REF][START_REF] Basseville | Detection of abrupt changes: theory and application[END_REF]. Next, remark that quantities A × F D(t, A) can be inductively calculated by using

A × F D(t + 1, A) = A × F D(t, A) + X(t + 1 + A) -2X(t + 1) + X(t -A + 1) (2.5)
Thus, the computation of the whole function t -→ F D(t) for t ∈ [A, n -A] requires O(n) operations and the storage of n real numbers.

Determination of the potential change points

Let us point that the absolute value of the Filtered Derivative |F D| presents hats at the vicinity of the change points as seen on the figure 2 below. In the case of a true change point, an error of estimation on the location of the change exists. Thus, we have to cancel a small vicinity of size ε k around each point τ * k , see [START_REF] Bertrand | A local method for estimating change points: the "hat-function[END_REF][START_REF] Bertrand | Off-line detection of multiple change points by the filtered derivative with p-value method[END_REF]. Then, for each segment, we calculate an estimation of the mean

µ k := µ(X, [τ k + ε k , τ k+1 -ε k+1 ]), (2.6) 
where µ(X, Box) is defined by (2.1), and, as in [START_REF] Bertrand | A local method for estimating change points: the "hat-function[END_REF],

ε k = 5 × σ δ k 2
where x denotes the ceiling function of the real number x.

Remark 2.1 From definition (1.1), δ 0 is the lower bound of the shifts, thus we can deduce the following upper bound

ε k ≤ ε 0 := 5 × σ δ 0 2 . (2.7)
The standard deviation σ can be empirically estimated. Next, we can use this bound in Formula (2.6) and set

µ k := µ(X, [τ k + ε 0 , τ k+1 -ε 0 ]). (2.8)
After that, we eliminate the false detections in order to keep (as possible) only the true change points. In [START_REF] Bertrand | A local method for estimating change points: the "hat-function[END_REF], we apply the following hypothesis testing, for all 1 ≤ k ≤ K :

(H 0,k ) : µ k = µ k+1 versus (H 1,k ) : µ k = µ k+1
where the terms µ k are defined by (2.8). By using this second single hypothesis test, we calculate the p-values p * 1 , . . . , p * K associated to each potential change point τ 1 , . . . , τ K .

p-value computation

We choose the statistic Student T. Indeed, under the null hypothesis, t k has a Student distribution of degree

d = N k + N k-1 -2 such that N k = (τ * 0 -ε 0 ) -(τ * k + ε 0 ) , where t * k = µ k -µ k-1 S 2 k-1 N k-1 + S 2 k N k , (2.9) 
and the sample standard deviation is :

S k = 1 N k τ k+1 -ε 0 t=τ k +ε 0 X 2 t -µ 2 k , (2.10) 
By construction, d > 2A -4ε 0 , thus for A > 30 the distribution of t * k is approximatively Gaussian and we can set

p k = 2 × 1 -St d (|t k |) 2 × 1 -Φ(|t k |) (2.11)
where St d denotes the cumulative distribution function of a Student law of degree d and Φ the cumulative distribution function of the zero mean standard Gaussian law as given by (1.2). In [START_REF] Bertrand | Off-line detection of multiple change points by the filtered derivative with p-value method[END_REF], we only keep the change points corresponding to a p-value smaller than a fixed threshold p * 2 . Consequently, Step 2 is much more selective and allows us to deduce an estimator of the piecewise constant map t -→ µ(t).

3 How to choose the extra-parameters of Step 1 (Filtered Derivative)?

All the change points methods depend on extra-parameters which must be well chosen. The filtered derivative method depends on two extra-parameters, namely the window size A and the threshold C 1 .

Criterion for choosing the extra-parameters of FD

In the case of "At Most one Change point " (AMOC), the usual criteria are :

-Error of type I which corresponds to the Probability of False Alarm (PFA).

-Error of type II which corresponds to the Probability of Non Detection (PND).

see eg. [START_REF] Csörgo | Limit theorem in change-point analysis[END_REF][START_REF] Kolmogorov | Probabilist-statistical methods of detecting spontaneously occuring effects[END_REF]. The PND is well suited for AMOC. But for detecting more than one change point, we have to impose that one detected change point has to be at the vicinity of each real change point. Following [START_REF] Bertrand | A local method for estimating change points: the "hat-function[END_REF], for each real change point τ k , we define the local PND as

P N D local (τ k ) = I P (B k ) ,
where

B k = ∀t ∈ [τ k -A, τ k + A], |F D(t, A)| < C 1 .
With these notations, we can define the global PND by

P N D global = I P K k=1 B k . (3.1)
Next, we can define the Number of Non Detection (N N D) in the vicinity of the right change points as

N N D(ω) = K k=1 1 B k (ω). (3.2)
Furthermore, in case of no change points, the probability of false alarm is defined as :

α(A, C 1 ) = I P τ (C 1 , A) ≤ n -A , where τ (C 1 , A) is the first hitting time of C 1 , that is τ (C 1 , A) := inf{t ≥ A ; |F D(t, A)| ≥ C 1 }. (3.3)
However, type I error is the probability of at least one false alarm and thus appears as a rough criterion see [START_REF] Bertrand | A local method for estimating change points: the "hat-function[END_REF]. Following [START_REF] Benjanimi | Controlling the false discovery rate: a practical and powerful approach to multiple testing[END_REF], the number of false alarm (NFA) is a more relevant criterion.

Definition 3.1 The number of false alarms is defined as follows iii) The impacts of false alarm and non detection on MISE are mainly described by the two following propositions (3.3 and 3.4). Stress that, the potential change points can be different from the true change points.

N F A = K -K + N N D. ( 3 
Definition 3.2 (MISE) Let τ 1 , τ 2 be two change times, set

s(t) = K k=0 µ k × 1 (τ k ,τ k+1 ] (t)
the true signal, and denote by

s(t) = K k=0 µ k × 1 ( τ k , τ k+1 ] (t)
the estimated signal.

The mean integrated square error between the times τ 1 and τ 2 is then defined by

M ISE(τ 1 , τ 2 ) := E τ 2 t=τ 1 | s(t) -s(t)| 2 .
Proposition 3.3 (False alarm) Let τ 1 , τ 2 be two successive change points and τ 1 and τ 2 the potential change points such that τ1 = τ 1 + ε 1 , τ2 = τ 2 -ε 2 . Furthermore, we assume that

ε i ∞ ≤ M ε i , with i ∈ {1, 2} where 
M ε i is a finite constant.
i) Without false alarm : Assume that τ1 , τ2 are the two successive potential change points obtained after Step 1. Then

M ISE(τ 1 , τ 2 ) = σ 2 + r 3.5 (3.5) whith |r 3.5 | ≤ M ε 1 σ 2 τ 1 -τ 0 + τ 1 -τ 0 τ1 -τ 0 2 (µ 1 -µ 0 ) 2 + . . . • • • + M ε 2 σ 2 τ 3 -τ2 + τ 3 -τ 2 τ 3 -τ2 2 (µ 1 -µ 2 ) 2 .
ii) With false alarm : Assume that τ1 , τ2 , and τ3 are the three successive potential change points obtained after Step 1 such as τ3 is the false alarm, and that

τ 1 < τ1 < τ3 < τ2 < τ 2 . Then M ISE(τ 1 , τ 2 ) = 2σ 2 + r 3.6 (3.6) 
with :

|r 3.6 | ≤ M ε 1 σ 2 τ1 -τ 0 + τ 1 -τ 0 τ1 -τ 0 2 (µ 1 -µ 0 ) 2 + . . . • • • + M ε 2 σ 2 τ2 -τ 4 + τ 2 -τ 4 τ2 -τ 4 2 (µ 1 -µ 3 ) 2 .
Proof. See Appendix A.

Proposition 3.4 (Non detection) Let τ 1 , τ 2 , and τ 3 be three successive right change points Furthermore, we assume that ε i ∞ ≤ M ε i , with i ∈ {1, 2, 3} where M ε i is a finite constant and the quantity ε i are precisely defined below.

i) Without non detection : Assume that τ1 , τ2 , τ3 are the three successive potential change points obtained after Step 1 such that τ1 =

τ 1 + ε 1 , τ2 = τ 2 -ε 2 , τ3 = τ 3 -ε 3 and τ 1 < τ1 < τ 2 < τ2 < τ3 < τ 3 . M ISE(τ 1 , τ 3 ) = σ 2 + r 3.7 (3.7)
with :

|r 3.7 | ≤ M ε 1 σ 2 τ1 -τ 0 + τ 1 -τ 0 τ1 -τ 0 2 (µ 1 -µ 0 ) 2 + . . . • • • + M ε 2 σ 2 τ3 -τ2 + τ3 -τ 2 τ3 -τ2 2 (µ 1 -µ 2 ) 2 + . . . • • • + M ε 3 σ 2 τ 4 -τ3 + τ 4 -τ 3 τ 4 -τ3 2 (µ 1 -µ 4 ) 2 .
ii) With non detection : Assume that τ 2 is the undetected change point. For notational convenience, let us still denote by τ1 and τ3 the two successive potential change points obtained after Step 1 such that τ1 = τ

1 + ε 1 , τ3 = τ 3 -ε 3 and τ 1 < τ1 < τ 2 < τ3 < τ 3 . Then M ISE(τ 1 , τ 3 ) = 2σ 2 + r 3.8 (3.8) 
with :

|r 3.8 | ≤ M ε 1 σ 2 τ1 -τ 0 + τ 1 -τ 0 τ1 -τ 0 2 (µ 1 -µ 0 ) 2 + . . . • • • + M ε 3 σ 2 τ 4 -τ3 + τ 4 -τ 3 τ 4 -τ3 2 (µ 1 -µ 3 ) 2 .
Proof. See Appendix B.

In order to measure which kind of alarm (error) impacts more the MISE, we study the difference between the MISE in the case of the non detection and the MISE in the case of the false alarm. To begin with, we restricted ourselves to the particular case where r 1,i -→ 0 with i ∈ {1, 2, 3, 4}, which means that ε j = 0 with j ∈ {1, 2, 3} and the potential change points are the true change points. Moreover, we obtain the same results at the first order in the general case when we put ε i = 0. ii) Let τ1 , τ2 , and τ3 be the three successive potential change points obtained after Step 1 such that

τ 1 = τ1 < τ3 < τ2 = τ 2 . Then M ISE(τ 1 , τ 2 ) = 2σ 2 .
iii) The difference between the MISE in the case with false alarm and the case without false alarm is as follows : 

∆M ISE F A := M ISE withF A -M ISE withoutF A (3.9) = σ 2
τ 1 = τ1 < τ 2 < τ3 = τ 3 . Then M ISE(τ 1 , τ 3 ) = σ 2 + (τ 2 -τ 1 )(τ 3 -τ 2 ) τ 3 -τ 1 (δµ) 2
with δµ = (µ 2 -µ 1 ).

iii) The difference between the MISE in the case with non detection and the case without non detection is as follows :

∆M ISE N D := M ISE withN D -M ISE withoutN D (3.10) = (τ 2 -τ 1 )(τ 3 -τ 2 ) τ 3 -τ 1 (δµ) 2 -σ 2
Proposition 3.7 Let us assume that Propositions 3.3 and 3.4 are satisfied. Then

• if δµ σ 2 > 2, then ∆M ISE N D > ∆M ISE F A
, namely the impact of the non detection is more important than the impact of the false alarm .

• On the other side, if δµ σ

2 < 8 τ 3 -τ 1
, then ∆M ISE N D < ∆M ISE F A , namely the impact of the false alarm is more important than the impact of the non detection.

Proof. We want to show that :

δµ σ 2 > 2 =⇒ ∆M ISE N D > ∆M ISE F A (3.11) 
We have :

∆M ISE N D -∆M ISE F A = σ 2 (δµ) σ 2 (τ 2 -τ 1 )(τ 3 -τ 2 ) τ 3 -τ 1 - 2 
Thus,

∆M ISE N D -∆M ISE F A > 0 =⇒ ∆M ISE N D > ∆M ISE F A =⇒ δµ σ > 2 τ 3 -τ 1 (τ 2 -τ 1 )(τ 3 -τ 2 ) Set L = τ 3 -τ 1 , λ = τ 2 -τ 1 where L > 0 and λ ∈ [1, L -1] Thus, we have : f (λ) = 2L λ(L-λ)
The minimum of f (λ) is reached for λ = L/2, and the maximum is reached for λ = 1. We deduce then :

8 L ≤ f (λ) ≤ 2L L -1 < √ 2 Therefore, δµ σ > √ 2 implies ∆M ISE N D > ∆M ISE F A .
On the other hand, when δµ σ > 8 L we have ∆M ISE N D < ∆M ISE F A .

Bound on the error of type II for Filtered Derivative

Proposition 3.8 Let τ = (τ 1 , τ 2 , . . . , τ K ) be a configuration of K change points, with means µ = (µ 0 , . . . , µ K ) and shifts δ = (δ 1 , . . . , δ K ) as described in Subsection 1.1. Then

P N D global ≤ K × β * (C 1 , A),
where P N D global is defined by (3.1),

β * (C 1 , A) := Ψ δ 0 -C 1 σ A 2 × Φ C 1 -δ 0 /3 σ A 2 2 , (3.12) 
δ 0 is defined by (1.1), and Φ and Ψ are given by (1.2).

Proof. Actually, the proposition Prop. 

B k = ∀t ∈ [τ k -A, τ k + A], F D(t, A) < C 1 .
Thus, I P B k ≤ I P B k . On the other hand, following [7, Prop. 3.2, p 222], we have, 

I P (B k ) ≤ Ψ |δ k | -C 1 σ A 2 × Φ C 1 -|δ k |/3 σ A 2 2 . ( 3 
I P (B k ) ≤ β * (C 1 , A) := Ψ δ 0 -C 1 σ A 2 × Φ C 1 -δ 0 /3 σ A 2 2 . (3.14)
On the other hand, we obviously have

P N D global ≤ K k=1 I P (B k )
which combined with (3.14) provides the bound (3.8). This finishes the proof of Proposition 3.8.

Control of the number of false alarms

In this subsection, we want to control not only the Probability of False Alarm (PFA) but also the Number of False Alarms (NFA) (see Definition 3.1). Let us denote by K the number of change point select in step 1 of the FDpV method (FD), then the number of false alarms is ( K -K). Moreover, in order to control the number of false alarms, we need to choose the extraparameters A and C 1 .

The choice of parameter A

From the subsection 3.3, we can get the feeling that the larger the window size A is, the smaller type I and type II errors will be. This reasoning holds true as long as

2 × A < L 0 := inf{|τ k+1 -τ k |, k = 1, . . . , K}. (3.15)
Thus, we have to choose a parameter A < L 0 /2, even if we do not exactly know the quantity L 0 .

The choice of parameter C 1

In [START_REF] Bertrand | A local method for estimating change points: the "hat-function[END_REF] [START_REF] Bertrand | A local method for estimating change points: the "hat-function[END_REF], we have C 1 < δ 0 with δ 0 = inf{|δ k |, k = 1, ..., K} where δ k is the size of the average of µ k . With different Monte-Carlo simulations (see the subsection 3.5), we note that the best values of C 1 are between 0.1 and 0.2.

Monte-Carlo simulation

This Monte-Carlo simulation is done for M = 1000. Let (X j 1 , X j 2 , . . . , X j n ) be a sequence of simulated Gaussian random variables where n = 5000 or n = 50, 000 and j = 1, . . . , M , with a variance σ 2 = 1 and a mean µ t = f (t) where f is a piecewise constant function with a specified number of change points at different times τ with different means µ. On each sample, we apply the FDpV method for different values of the extra-parameters A and C 1 . We vary the parameter A between 20 and 220 with a step of 10 while we vary the parameter C 1 between 0.1 and 1 with a step of 0.05. 

Example 3

In this example, we keep the variables n and τ of the example 2 and we take shifts on the mean µ of the change point smaller than those in the example 1 and 2, that is to say δµ = (-2, -1. 

Conclusion

Our analysis suggest a comprehensive way to optimize the Filtered Derivative function extraparameters in the first step of the FDpV method. By giving the precise values to choose for the window size A and the threshold C 1 where we have to choose A > 70 and C 1 ∈ [0.15, 0.22], we obtain fewer false alarms and undetected change points. Thus, in the second step, we calculate less p-values, gaining computational time and memory. Another method is used in [START_REF] Messer | A multiple filter test for the detection of rate changes in renewal processes with varying variance[END_REF]. The first step is still based on the Filtered Derivative function with the two extra-parameters: the window size A and the threshold C 1 . Yet, in the second step, they increase the window size A such that for each value of A they detect a real change point. This algorithm may detect all the true change points. But the problem of the false discoveries is not resolved, and can be enhanced by a good initial choice of the parameters A and C 1 . On the other hand, by fixing a value for the window size A and the threshold C 1 in Step 1 of the FDpV method, we detect the real change points and, at the same time, we minimise the number of the false discoveries. Furthermore, in Step 2, we eliminate more false positives. Finally, we studied the impact of the false alarms and the undetected change points on the Mean Integrated Square Error in order to determine which one has a more significant impact. To sum up, for the FDpV method, we have specified the values of the window size A and the threshold C 1 in Step 1. In forthcoming studies, we need to find a way to estimate the value of the threshold p * 2 in Step 2 to discard as many false positives as possible.

A Proof of Proposition 3.3

Proof.

i) Without false alarm :

ISE(τ 1 , τ 2 ) = ISE(τ 1 , τ1 ) + ISE(τ 1 , τ2 ) + ISE(τ 2 , τ 2 ) -ISE(τ 1 , τ1 ) = ε 1 (µ 1 -μ0 ) 2
For τ 0 = τ0 et τ 3 = τ3 , we have :

μ0 = σ √ τ1 -τ 0 × U 0 + (τ 1 -τ 1 )µ 1 +(τ 1 -τ 0 )µ 0 τ1 -τ 0 µ 1 -μ0 = µ 1 - σ √ τ1 -τ 0 × U 0 - (τ 1 -τ 1 )µ 1 -(τ 1 -τ 0 )µ 0 τ1 -τ 0 = (τ 1 -τ 0 )µ 1 -(τ 1 -τ 1 )µ 1 -(τ 1 -τ 0 )µ 0 τ1 -τ 0 - σ √ τ1 -τ 0 × U 0 = τ 1 -τ 0 τ1 -τ 0 (µ 1 -µ 0 ) - σ √ τ1 -τ 0 × U 0 M ISE(τ 1 , τ1 ) = E ε 1 (µ 1 -μ0 ) 2 = E ε 1 τ 1 -τ 0 τ1 -τ 0 (µ 1 -µ 0 ) - σ √ τ1 -τ 0 × U 0 2 ≤ ε 1 ∞ × E τ 1 -τ 0 τ1 -τ 0 (µ 1 -µ 0 ) - σ √ τ1 -τ 0 × U 0 2 ε 1 ∞ = sup|ε 1 k | ≤ M ε 1 E τ 1 -τ 0 τ1 -τ 0 (µ 1 -µ 0 ) -σ √ τ1 -τ 0 × U 0 2 = σ 2 τ1 -τ 0 + τ 1 -τ 0 τ1 -τ 0 2 (µ 1 -µ 0 ) 2
Thus :

M ISE(τ 1 , τ1 ) ≤ M ε 1 σ 2 τ1 -τ 0 + τ 1 -τ 0 τ1 -τ 0 2 (µ 1 -µ 0 ) 2 ISE(τ 1 , τ2 ) = (τ 2 -τ1 )(µ 1 -μ1 ) 2
We have :

μ1 = µ 1 + σ √ τ2 -τ1 × U 1 ⇒ µ 1 -μ1 = -σ √ τ2 -τ1 × U 1 Thus : M ISE(τ 1 , τ2 ) = E (τ 2 -τ1 )(µ 1 -μ1 ) 2 = (τ 2 -τ1 )E(µ 1 -μ1 2 ) = (τ 2 -τ1 ) σ 2 τ2 -τ1 × E(U 2 1 ) = σ 2 ISE( τ2 -τ 2 ) = ε 2 (µ 1 -μ2 ) 2 we have : μ2 = σ √ τ3 -τ2 × U 2 + (τ 2 -τ 2 )µ 1 +(τ 3 -τ 2 )µ 2 τ3 -τ 2 µ 1 -μ2 = µ 1 - σ √ τ 3 -τ2 × U 2 - (τ 2 -τ2 )µ 1 -(τ 3 -τ 2 )µ 2 τ 3 -τ2 = (τ 3 -τ 2 )µ 1 -(τ 2 -τ2 )µ 1 -(τ 3 -τ 2 )µ 2 τ 3 -τ2 - σ √ τ 3 -τ2 × U 2 = τ 3 -τ 2 τ 3 -τ2 (µ 1 -µ 2 ) - σ √ τ 3 -τ2 × U 2 M ISE( τ2 , τ 2 ) = E ε 2 (µ 1 -μ2 ) 2 = E ε 2 τ 3 -τ 2 τ 3 -τ2 (µ 1 -µ 2 ) - σ √ τ 3 -τ2 × U 2 2 ≤ ε 2 ∞ × E τ 3 -τ 2 τ 3 -τ2 (µ 1 -µ 2 ) - σ √ τ 3 -τ2 × U 2 2 ε 2 ∞ = sup|ε 2 k | ≤ M ε 2 E τ 3 -τ 2 τ 3 -τ 2 (µ 1 -µ 2 ) -σ √ τ 3 -τ 2 × U 2 2 = σ 2 τ 3 -τ 2 + τ 3 -τ 2 τ 3 -τ 2 2 (µ 1 -µ 2 ) 2
Thus :

M ISE(τ 1 , τ1 ) ≤ M ε 2 σ 2 τ 3 -τ2 + τ 3 -τ 2 τ 3 -τ2 2 (µ 1 -µ 2 ) 2
Thus, we can deduce that :

M ISE(τ 1 , τ 2 ) ≤ σ 2 + ε 1 σ 2 τ1 -τ 0 + τ 1 -τ 0 τ1 -τ 0 2 (µ 1 -µ 0 ) 2 (A.1) + ε 2 σ 2 τ 3 -τ2 + τ 3 -τ 2 τ 3 -τ2 2 (µ 1 -µ 2 ) 2
ii) With false alarm :

ISE(τ 1 , τ 2 ) = ISE(τ 1 , τ1 ) + ISE(τ 1 , τ3 ) + ISE(τ 3 , τ2 ) + ISE(τ 2 , τ 2 ) ISE(τ 1 , τ1 ) = ε 1 (µ 1 -μ0 ) 2 we have : μ0 = σ √ τ1 -τ 0 × U 0 + (τ 1 -τ 1 )µ 1 +(τ 1 -τ 0 )µ 0 τ1 -τ 0 µ 1 -μ0 = µ 1 - σ √ τ1 -τ 0 × U 0 - (τ 1 -τ 1 )µ 1 + (τ 1 -τ 0 )µ 0 τ1 -τ 0 = τ 1 -τ 0 τ1 -τ 0 (µ 1 -µ 0 ) - σ √ τ1 -τ 0 × U 0 M ISE(τ 1 , τ1 ) = E ε 1 (µ 1 -μ0 ) 2 = E ε 1 τ 1 -τ 0 τ1 -τ 0 (µ 1 -µ 0 ) - σ √ τ1 -τ 0 × U 0 2 ≤ ε 1 ∞ × E τ 1 -τ 0 τ1 -τ 0 (µ 1 -µ 0 ) - σ √ τ1 -τ 0 × U 0 2 ε 1 ∞ = sup|ε 1 k | ≤ M ε 1 E τ 1 -τ 0 τ1 -τ 0 (µ 1 -µ 0 ) -σ √ τ1 -τ 0 × U 0 2 = σ 2 τ1 -τ 0 + τ 1 -τ 0 τ1 -τ 0 2 (µ 1 -µ 0 ) 2 
Thus :

M ISE(τ 1 , τ1 ) ≤ M ε 1 σ 2 τ1 -τ 0 + τ 1 -τ 0 τ1 -τ 0 2 (µ 1 -µ 0 ) 2 ISE(τ 1 , τ3 ) = (τ 3 -τ1 )(µ 1 -μ1 ) 2
We have :

μ1 = µ 1 + σ √ τ3 -τ1 × U 1 ⇒ µ 1 -μ1 = -σ √ τ3 -τ1 × U 1 Thus : M ISE(τ 1 , τ3 ) = E (τ 3 -τ1 )(µ 1 -μ1 ) 2 = (τ 3 -τ1 )E(µ 1 -μ1 ) 2 = (τ 3 -τ1 ) σ 2 τ3 -τ1 × E(U 2 1 ) = σ 2 ISE(τ 3 , τ2 ) = (τ 2 -τ3 )(µ 1 -μ2 2 ) We have : μ1 = µ 2 + σ √ τ2 -τ 3 × U 2 ⇒ µ 1 -μ2 = -σ √ τ2 -τ 3 × U 2 Thus : M ISE(τ 3 , τ2 ) = E (τ 2 -τ3 )(µ 1 -μ1 ) 2 = (τ 2 -τ3 )E(µ 1 -μ2 ) 2 = (τ 2 -τ3 ) σ 2 τ2 -τ3 × E(U 2 2 ) = σ 2 ISE(τ 2 , τ 2 ) = ε 2 (µ 1 -μ3 ) 2 we have : μ3 = σ √ τ2 -τ 4 × U 2 + (τ 2 -τ 2 )µ 1 +(τ 2 -τ 4 )µ 3 τ2 -τ 4 µ 1 -μ3 = µ 1 - σ √ τ2 -τ 4 × U 2 - (τ 2 -τ 2 )µ 1 + (τ 2 -τ 4 )µ 3 τ2 -τ 4 = τ 2 -τ 4 τ2 -τ 4 (µ 1 -µ 3 ) - σ √ τ2 -τ 4 × U 2 M ISE(τ 2 , τ 2 ) = E ε 2 (µ 1 -μ3 ) 2 = E ε 2 τ 2 -τ 4 τ2 -τ 4 (µ 1 -µ 3 ) - σ √ τ2 -τ 4 × U 2 2 ≤ ε 2 ∞ × E τ 2 -τ 4 τ2 -τ 4 (µ 1 -µ 3 ) - σ √ τ2 -τ 4 × U 2 2 ε 2 ∞ = sup|ε 2 k | ≤ M ε 2 E τ 2 -τ 4 τ2 -τ 4 (µ 1 -µ 3 ) -σ √ τ2 -τ 4 × U 2 2 = σ 2 τ2 -τ 4 + τ 2 -τ 4 τ2 -τ 4 2 (µ 1 -µ 3 ) 2 
Thus :

M ISE(τ 2 , τ2 ) ≤ M ε 2 σ 2 τ2 -τ 4 + τ 2 -τ 4 τ2 -τ 4 2 (µ 1 -µ 3 ) 2 
Then :

M ISE(τ 1 , τ 2 ) ≤ 2σ 2 + M ε 1 σ 2 τ1 -τ 0 + τ 1 -τ 0 τ1 -τ 0 2 (µ 1 -µ 0 ) 2 (A.2) + M ε 2 σ 2 τ2 -τ 4 + τ 2 -τ 4 τ2 -τ 4 2 (µ 1 -µ 3 ) 2 B Proof of Proposition 3.4 Proof. i) Without non detection : ISE(τ 1 , τ 3 ) = ISE(τ 1 , τ1 ) + ISE(τ 1 , τ2 ) + ISE(τ 2 , τ 2 ) + ISE(τ 2 , τ3 ) + ISE(τ 3 , τ 3 ) -ISE(τ 1 , τ1 ) = ε 1 (µ 1 -μ0 ) 2
For τ 0 = τ0 et τ 4 = τ4 , we have :

μ0 = σ √ τ1 -τ 0 × U 0 + (τ 1 -τ 1 )µ 1 +(τ 1 -τ 0 )µ 0 τ1 -τ 0 µ 1 -μ0 = µ 1 - σ √ τ1 -τ 0 × U 0 - (τ 1 -τ 1 )µ 1 -(τ 1 -τ 0 )µ 0 τ1 -τ 0 = (τ 1 -τ 0 )µ 1 -(τ 1 -τ 1 )µ 1 -(τ 1 -τ 0 )µ 0 τ1 -τ 0 - σ √ τ1 -τ 0 × U 0 = τ 1 -τ 0 τ1 -τ 0 (µ 1 -µ 0 ) - σ √ τ1 -τ 0 × U 0 M ISE(τ 1 , τ1 ) = E ε 1 (µ 1 -μ0 ) 2 = E ε 1 τ 1 -τ 0 τ1 -τ 0 (µ 1 -µ 0 ) - σ √ τ1 -τ 0 × U 0 2 ≤ ε 1 ∞ × E τ 1 -τ 0 τ1 -τ 0 (µ 1 -µ 0 ) - σ √ τ1 -τ 0 × U 0 2 ε 1 ∞ = sup|ε 1 k | ≤ M ε 1 E τ 1 -τ 0 τ1 -τ 0 (µ 1 -µ 0 ) -σ √ τ1 -τ 0 × U 0 2 = σ 2 τ1 -τ 0 + τ 1 -τ 0 τ1 -τ 0 2 (µ 1 -µ 0 ) 2 
Thus :

M ISE(τ 1 , τ1 ) ≤ M ε 1 σ 2 τ1 -τ 0 + τ 1 -τ 0 τ1 -τ 0 2 (µ 1 -µ 0 ) 2 ISE(τ 1 , τ2 ) = (τ 1 , τ2 )(µ 1 -μ1 ) 2
We have :

μ1 = µ 1 + σ √ τ2 -τ1 × U 1 ⇒ µ 1 -μ1 = -σ √ τ2 -τ1 × U 1 Thus : M ISE(τ 1 , τ2 ) = E (τ 2 -τ1 )(µ 1 -μ1 ) 2 = (τ 2 -τ1 )E(µ 1 -μ1 ) 2 = (τ 2 -τ1 ) σ 2 τ2 -τ1 × E(U 2 1 ) = σ 2 ISE( τ2 -τ 2 ) = ε 2 (µ 1 -μ2 ) 2 we have : μ2 = σ √ τ3 -τ2 × U 2 + (τ 2 -τ 2 )µ 1 +(τ 3 -τ 2 )µ 2 τ3 -τ 2 µ 1 -μ2 = µ 1 - σ √ τ 3 -τ2 × U 2 - (τ 2 -τ2 )µ 1 -(τ 3 -τ 2 )µ 2 τ 3 -τ2 = (τ 3 -τ 2 )µ 1 -(τ 2 -τ2 )µ 1 -(τ 3 -τ 2 )µ 2 τ 3 -τ2 - σ √ τ 3 -τ2 × U 2 = τ 3 -τ 2 τ 3 -τ2 (µ 1 -µ 2 ) - σ √ τ 3 -τ2 × U 2 M ISE( τ2 , τ 2 ) = E ε 2 (µ 1 -μ2 ) 2 = E ε 2 τ 3 -τ 2 τ 3 -τ2 (µ 1 -µ 2 ) - σ √ τ 3 -τ2 × U 2 2 ≤ ε 2 ∞ × E τ 3 -τ 2 τ 3 -τ2 (µ 1 -µ 2 ) - σ √ τ 3 -τ2 × U 2 ε 2 ∞ = sup|ε 2 k | ≤ M ε 2 E τ 3 -τ 2 τ 3 -τ 2 (µ 1 -µ 2 ) -σ √ τ 3 -τ 2 × U 2 2 = σ 2 τ 3 -τ 2 + τ 3 -τ 2 τ 3 -τ 2 2 (µ 1 -µ 2 ) 2
Thus :

M ISE(τ 1 , τ1 ) ≤ ε 2 σ 2 τ 3 -τ2 + τ 3 -τ 2 τ 3 -τ2 2 (µ 1 -µ 2 ) 2 ISE(τ 2 , τ3 ) = (τ 3 -τ 2 )(µ 1 -μ2 ) 2
We have :

μ2 = µ 1 + σ √ τ3 -τ 2 × U 3 ⇒ µ 1 -μ2 = -σ √ τ2 -τ1 × U 3 Thus : M ISE(τ 1 , τ2 ) = E (τ 2 -τ1 )(µ 1 -μ2 ) 2 = (τ 2 -τ1 )E(µ 1 -μ1 2 ) = (τ 2 -τ1 ) σ 2 τ2 -τ1 × E(U 2 3 ) = σ 2 ISE( τ3 , τ 3 ) = ε 3 (µ 1 -μ4 ) 2
we have : μ4 = σ √ τ 4 -τ3 × U 4 + (τ 3 -τ 3 )µ 1 +(τ 4 -τ 3 )µ 4 τ 4 -τ3

µ 1 -μ4 = µ 1 - σ √ τ 4 -τ3 × U 4 - (τ 3 -τ3 )µ 1 + (τ 4 -τ 3 )µ 4 τ 4 -τ 3 = τ 4 -τ 3 τ 4 -τ3 (µ 1 -µ 4 ) - σ √ τ 4 -τ3 × U 4 M ISE( τ3 , τ 3 ) = E ε 3 (µ 1 -μ4 ) 2 = E ε 3 τ 4 -τ 3 τ 4 -τ3 (µ 1 -µ 4 ) - σ √ τ 4 -τ3 × U 4 2 ≤ ε 3 ∞ × E τ 4 -τ 3 τ 4 -τ3 (µ 1 -µ 4 ) - σ √ τ 4 -τ3 × U 4 2 ε 3 ∞ = sup|ε 3 k | ≤ M ε 3 E τ 4 -τ 3 τ 4 -τ 3 (µ 1 -µ 4 ) -σ √ τ 4 -τ 3 × U 4 2 = σ 2 τ 4 -τ 3 + τ 4 -τ 3 τ 4 -τ 3 2 (µ 1 -µ 4 ) 2
Thus :

M ISE(τ 3 , τ 3 ) ≤ M ε 3 σ 2 τ 4 -τ3 + τ 4 -τ 3 τ 4 -τ3 2 (µ 1 -µ 4 ) 2
Thus, we can deduce that :

M ISE(τ 1 , τ 3 ) ≤ 2σ 2 + M ε 1 σ 2 τ1 -τ 0 + τ 1 -τ 0 τ1 -τ 0 2 (µ 1 -µ 0 ) 2 (B.1) + M ε 2 σ 2 τ 3 -τ2 + τ 3 -τ 2 τ 3 -τ2 2 (µ 1 -µ 2 ) 2 + M ε 3 σ 2 τ 4 -τ3 + τ 4 -τ 3 τ 4 -τ3 2 (µ 1 -µ 4 ) 2
ii) With non detection : ISE(τ 1 , τ 3 ) = ISE(τ 1 , τ1 )+ISE(τ 1 , τ 2 )+ISE(τ 2 , τ3 )+ISE(τ 3 , τ 3 ) ISE(τ 1 , τ1 ) = ε 1 (µ 1 -μ0 ) 2 For τ 0 = τ0 et τ 4 = τ4 , we have :

μ0 = σ √ τ1 -τ 0 × U 0 + (τ 1 -τ 1 )µ 1 +(τ 1 -τ 0 )µ 0 τ1 -τ 0 µ 1 -μ0 = µ 1 - σ √ τ1 -τ 0 × U 0 - (τ 1 -τ 1 )µ 1 -(τ 1 -τ 0 )µ 0 τ1 -τ 0 = (τ 1 -τ 0 )µ 1 -(τ 1 -τ 1 )µ 1 -(τ 1 -τ 0 )µ 0 τ1 -τ 0 - σ √ τ1 -τ 0 × U 0 = τ 1 -τ 0 τ1 -τ 0 (µ 1 -µ 0 ) - σ √ τ1 -τ 0 × U 0 M ISE(τ 1 , τ1 ) = E ε 1 (µ 1 -μ0 ) 2 = E ε 1 τ 1 -τ 0 τ1 -τ 0 (µ 1 -µ 0 ) - σ √ τ1 -τ 0 × U 0 2 ≤ ε 1 ∞ × E τ 1 -τ 0 τ1 -τ 0 (µ 1 -µ 0 ) - σ √ τ1 -τ 0 × U 0 2 ε 1 ∞ = sup|ε 1 k | ≤ M ε 1 E τ 1 -τ 0 τ1 -τ 0 (µ 1 -µ 0 ) -σ √ τ1 -τ 0 × U 0 2 = σ 2 τ1 -τ 0 + τ 1 -τ 0 τ1 -τ 0 2 (µ 1 -µ 0 ) 2
Thus :

M ISE(τ 1 , τ1 ) ≤ M ε 1 σ 2 τ1 -τ 0 + τ 1 -τ 0 τ1 -τ 0 2 (µ 1 -µ 0 ) 2 ISE(τ 1 , τ2 ) = (τ 1 , τ2 )(µ 1 -μ1 ) 2
We have :

μ1 = µ 1 + σ √ τ2 -τ1 × U 1 ⇒ µ 1 -μ1 = -σ √ τ2 -τ1 × U 1 Thus : M ISE(τ 1 , τ 2 ) = E (τ 2 -τ1 )(µ 1 -μ1 ) 2 = (τ 2 -τ1 )E(µ 1 -μ1 ) 2 = (τ 2 -τ1 ) σ 2 τ 2 -τ1 × E(U 2 1 )
= σ 2 ISE(τ 2 , τ3 ) = (τ 3 -τ 2 )(µ 1 -μ2 ) 2 We have :

μ2 = µ 1 + σ √ τ3 -τ 2 × U 2 ⇒ µ 1 -μ2 = -σ √ τ2 -τ1 × U 2 Thus : M ISE(τ 1 , τ2 ) = E (τ 2 -τ1 )(µ 1 -μ2 ) 2 = (τ 2 -τ1 )E(µ 1 -μ1 2 ) = (τ 2 -τ1 ) σ 2 τ2 -τ1 × E(U 2 2 ) = σ 2 ISE( τ3 , τ 3 ) = ε 3 (µ 1 -μ3 ) 2
we have : μ3 = σ √ τ 4 -τ3 × U 3 + (τ 3 -τ 3 )µ 1 +(τ 4 -τ 3 )µ 3 τ 4 -τ3

µ 1 -μ3 = µ 1 - σ √ τ 4 -τ3 × U 3 - (τ 3 -τ3 )µ 1 + (τ 4 -τ 3 )µ 3 τ 4 -τ3 = τ 4 -τ 3 τ 4 -τ3 (µ 1 -µ 3 ) - σ √ τ 4 -τ3 × U 3 M ISE( τ3 , τ 3 ) = E ε 3 (µ 1 -μ3 ) 2 = E ε 3 τ 4 -τ 3 τ 4 -τ3 (µ 1 -µ 3 ) - σ √ τ 4 -τ3 × U 3 2 ≤ ε 3 ∞ × E τ 4 -τ 3 τ 4 -τ3 (µ 1 -µ 3 ) - σ √ τ 4 -τ3 × U 3 2 ε 3 ∞ = sup|ε 3 k | ≤ M ε 3 E τ 4 -τ 3 τ 4 -τ 3 (µ 1 -µ 3 ) -σ √ τ 4 -τ 3 × U 3 2 = σ 2 τ 4 -τ 3 + τ 4 -τ 3 τ 4 -τ 3 2 (µ 1 -µ 3 ) 2
Thus :

M ISE(τ 1 , τ 3 ) ≤ M ε 3 σ 2 τ 4 -τ3 + τ 4 -τ 3 τ 4 -τ3 2 (µ 1 -µ 3 ) 2
Thus, we can deduce that :

M ISE(τ 1 , τ 3 ) ≤ 2σ 2 + M ε 1 σ 2 τ1 -τ 0 + τ 1 -τ 0 τ1 -τ 0 2 (µ 1 -µ 0 ) 2 (B.
2)

+ M ε 3 σ 2 τ 4 -τ3 + τ 4 -τ 3 τ 4 -τ3 2 (µ 1 -µ 3 ) 2
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 1 Figure 1: Blue with red crosses : the contrast function Q( τ K ); green : the penalized contrasted pen(K).
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 2 Figure 2: A graph of the Filtered Derivative function
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 3 Figure 3: Filtered Derivative function without noise (σ = 0).

Figure 4 :

 4 Figure 4: Filtered Derivative function with noise (σ = 1). The blue circles correspond to false alarms.
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 432 Impact of non detection and false alarm on the MISE i) From (3.4), we get | K -K| = |N F A -N N D|. Thus non detection and false alarm impact in the same way the criterion | K -K|.ii) Clearly, false alarm does not impact the quantity d 2 (τ, τ ) defined by (1.3), whereas non detection at the right place increases the quantity d 2 (τ, τ ).

Corollary 3 . 5 (

 35 False alarm) i) Let τ1 , τ2 be the two successive potential change points obtained after Step 1. Then M ISE(τ 1 , τ 2 ) = σ 2

Corollary 3 . 6 (

 36 Non detection) i) Let τ1 , τ2 and τ3 be the three successive potential change points obtained after Step 1 such that τ1 = τ 1 , τ2 = τ 2 and τ3 = τ 3 . Then M ISE(τ 1 , τ 3 ) = 2σ 2 ii) Next, assume that τ 2 is the undetected change point. For mathematical convenience, let us still denote by τ1 and τ3 the two successive potential change points obtained after Step 1 such that

. 13 )

 13 Next, by remarking that the right side of (3.13) is a decreasing function of |δ k | and recalling that δ 0 = inf k=1,...,K |δ k |, we can deduce that

Example 1

 1 The figures 5 and 6 show respectively the variation of the mean number of non detected change points and the variation of the mean number of the false alarms in function of the extra-parameters A and C 1 where n = 5000 ; τ = (1000, 1250, 1500, 2000, 3500, 4000, 4500) and δµ = (-0.5, -1, -1.5, 0.5, 1, 1.5) with δ 0 = 0.5.
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 56 Figure 5: The mean of the number of undetected change points
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 72 Figure 7: The contours of the figures 5 and 6 and their overlap
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 8 Figure 8: The mean of the number of undetected change points

Figure 9 :

 9 Figure 9: The mean of the number of false alarm

Figure 10 :

 10 Figure 10: The contours of the figures 8 and 9 and their overlap

  5, -1, -0.25, 0.25, 1, 1.5, 2) with δ 0 = 0.25. The figures 11 and 12 show the variation of the mean number of the undetected change points and those of the mean number of the false alarms for different values of the extra-parameters A and C 1 .
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 1112 Figure 11: The mean of the number of undetected change points
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 13 Figure 13: The contours of the figures 11 and 12
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